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Introduction

This lecture considers tasks for autonomous agents. In general, constructing autonomous machines is

a very complex challenge and has many different engineering and scientific aspects, some of which are

given in the following list.

• Elektronic devices

• Mechanical devices

• Control/Process engineering

• Artificial Intelligence

• Softwareengineering

•
...

• Plans: Algorithmic/Motion planning

• Full information (offline)/ Incomplete information (online)

• Input: Geometry of the Environment

As part of the algorithm track of the master program we will concentrate on the item Algorithms.

That is, we concentrate on the description and analysis of efficient schedules for solving motion planning

tasks for autonomous agents. Besides, we concentrate on problem definitions and models that take the

geometry of the scene into account. In this sense the scientific aspects of this course are part of the

scientific area called Computational Geometry. Furthermore we consider online problems, which means

that the full information of the problem is not given in advance. The agent has to move around and

collects more information.

We will mainly concentrate on the ground tasks of autonomous agents in unknown environments

such as

• Searching for a goal,

• Exploration of an environment,

• Escaping from a labyrinth,

and we consider different abilities of the agents some of which are

• Continuous/discrete vision,

• Touch sensor/compass,

• Building a map/constant memory.

The first concern is that we construct correct algorithms which always fulfil the task. Second we

concentrate on the efficiency of the corresponding strategy. We would like to analyse performance guar-

antees and would like to provide for formal proofs. The course is related to the undergraduate course on

Offline motion planning. In the offline case the information for the task is fully given and we only have

to compute the best path for the agent. The offline solution will be used as a comparison measure for the

online case. This is a well known concept for online problems in general.
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Chapter 1

Labyrinths, grids and graphs

In this section we first concentrate on discrete environments based on grid structures. For the grid struc-

ture we consider an agent that can move from one cell to a neighbouring cell with unit cost. We start

with the task of searching for a goal in a very special grid environment. After that we ask for visiting all

cells, which means that we would like to explore the environment. For this task the grid environment is

only partially known, by a touch sensor the agent can only detect the neighbouring cells. The agent can

build a map. Exploration and Searching are closely related. If we are searching for an unknown goal,

it is clear that in the worst-case the whole environment has to be explored. The main difference is the

performance of these online tasks. As a comparison measure we compare the length of the agent’s path

to the length of the optimal path under full information. Thus, in the case of searching for a goal, the

comparison measure is the shortest path to the goal.

At the end of the section we turn over to the exploration task in general graphs under different

additional conditions.

1.1 Shannons Mouse Algorithm

Historically the first online motion planning algorithm for an autonomous agent was designed by Claude

Shannon [Sha52, Sha93] in 1950. He considered a 5×5 cellular labyrinth, the inner walls of the labyrinth

could be placed around arbitrary cells. In principle, he constructed a labyrinth based on a grid environ-

ment; see Figure 1.1.

The task of his electronical mouse was to find a target, i.e. the cheese, located on one of the fields of

the grid. The target and the start of the mouse were located in the same connected component of the grid

labyrinth. The electronical mouse was able to move from one cell to a neighbouring cell. Additionally, it

could (electronically) mark any cell by a label N, E , S, W which indicates in which direction the mouse

left the cell at the last visit. This label is updated after leaving the cell. With theses abilities the following

algorithm was designed.

Algorithm 1.1 Shannons Maus

• Initialize any cell by the label N for ’North’.

• While the goal has not been found:

starting from the label direction, search for the first cell in clockwise order that can be visited.

Change the label to the corresponding direction and move to this neighbouring cell.

Sutherland [Sut69] has shown that:

Theorem 1.1 Shannon’s Algorithms (Algorithm 1.1) is correct. For any labyrinth, any starting and any

goal the agent will find the goal, if a path from the start to the goal exists.



4 Chapter 1 Labyrinths, grids and graphs

Figure 1.1: Shannons original mouse labyrinth.

S

T

Figure 1.2: An example of the execution of Shannons Algorithm.

Proof. We omit the goal and show that any cell in the connected component of the start will be visited

infinitely often. 2

Exercise 1 Formalize the above proof sketch!

As shown in Figure 1.2 the path of Shannons Mouse is not very efficient.

1.2 Intuitive connection of labyrinths, grids and graphs

For a human a labyrinth consists of corridors and connection points. In this sense the environment for

Shannons task can be considered to be a labyrinth. Obviously any such labyrinth can be modeled by a

planar graph.1 More precisely the environment for Shannons task is a grid graph. Figure 1.3 shows the

corresponding intuitive interpretations.

For any intuitive labyrinth there is a labyrinth-graph. On the other hand for any planar graph we can

build some sort of labyrinth. This is not true for general graphs. For example the complete graph K5 has

no planar representation and therefore a correspondance to a labyrinth does not exist.

1.3 A lower bound for online graph exploration

We consider the following model. Assume that a graph G = (V,E) is given. If the agent is located on a

vertex it detects all neighbouring vertices. Let us assume that moving along an edge can be done with

1A graph, that has an intersection free representation in the plane.
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Figure 1.3: Labyrinth, labyrinth-graph and gridgraph.

unit cost. The task is to visit all edges and vertices and return to the start. The agent has the ability of

building a map. If we apply a DFS (depth first search) for the edges we will move along any edges twice.

DFS can run online. The best offline strategy has to visit any edge at least once. In this sense DFS is a

2-approximation.

The comparison and approximation between online and offline is represented by the following con-

cept. A strategy that runs under incomplete information is denoted as an Online–Strategy. On the other

hand an Offline–Strategy solves the same task with full information. In the above example the offline

strategy is the shortest round trip that visits all edges of the graph.

The performance measure for Online-Algorithms is the so-called competitive ratio.

Definition 1.2 (Sleator, Tarjan, 1995)

Let Π be a problem class and S be a strategy, that solves any instance P ∈ Π.

Let KS(P) be the cost of S for solving P.

Let Kopt(P) be the cost of the optimal solution for P.

The strategy S is denoted to be c–competitive, if there are fixed constants c,α > 0, so that for all

P ∈ Π

KS(P)≤ c ·Kopt(P)+α

holds.

The additive constant α is often used for starting situations. For example if we are searching for

a goal and have only two unknown options, the goal might be very close to the start, the unsuccessful

step will lead to an arbitrarily large competitive ratio. This is not intended. Sometimes we can omit the

additive constant, if we have additional assumptions. For example we can assume that the goal is at least

distance 1 away from the start.

As already mentioned DFS on the edges visits any edge at most twice. There are graphs where the

optimal offline solution also has to visit any edge twice. For such examples DFS is optimal with ratio 1.

Now we are searching for a lower bound for the competitive ratio. That is, we would like to construct

example such that any possible online strategy fails within a ratio of 2.

Theorem 1.3 (Icking, Kamphans, Klein, Langetepe, 2000)

For the online-exploration of a graph G=(V,E) for visiting all edges and vertices of G there is always an

arbitrarily large example such that any online strategy visits roughly twice as much edges in comparison

to the optimal offline strategy. DFS always visit no more than twice as much edges against the optimum.

[IKKL00a]

Proof. The second part is clear because DFS visits exactly any edge twice. Any optimal strategy has to

visit at least the edges.
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The robot should explore a gridgraph and starts in a vertex s. Finally, the agent has to return to s. We

construct an open corridor and offer two directions for the agent. At some moment in time the agent has

explored ℓ new vertices in the corridor. If this happens we let construct a conjunction at one end s′ of the

corridor. At this bifurcation two open corridors are build up which run back into the direction of s. If the

agent proceeds one of the following events will happen.

1. The agent goes back to s.

2. The agent has visited more than ℓ+1 edges in one of the new corridors.

Let ℓ1 denote the length of the part of the starting open corridor into the opposite direction of s′. Let

ℓ2 and ℓ3 denote the length of the second and third open corridor.

We analyse the edge visits |SROB| that an arbitrary strategy SROB has done so far.

1. |SROB| ≥ 2ℓ1 +(ℓ− ℓ1)+ 2ℓ2 + 2ℓ3 +(ℓ− ℓ1) = 2(ℓ+ ℓ2 + ℓ3), see Figure 1.4. Now we close the

corridors at the open ends. From now on the agent still requires |SOPT | = 2(ℓ+ ℓ2 + ℓ3)+ 6 edge

visits, where SOPT is the optimal strategy if the situation was known from the beginning. Thus we

have: |SROB| ≥ 2|SOPT |−6.

l3

l1 l2

s
s′

Figure 1.4: The agent return to s.

2. W.l.o.g. the agent has explored ℓ+1-ten vertices in corridor 3. We have |SROB| ≥ 2ℓ1 +(ℓ− ℓ1)+
2ℓ2+(ℓ+1). We connect corridor 3 with corridor 1(see Figure 1.5) and close corridor 2. The agent

still requires ℓ+ 1+ 2(ℓ2 + 1)+ (ℓ− ℓ1) edge visits; in total at least 4ℓ+ 4ℓ2 + 4 = 4(ℓ+ ℓ2)+ 4

edge visits. From |SOPT |= 2(ℓ+1)+2(ℓ2+1)= 2(ℓ+ℓ2)+4 we conclude |SROB| ≥ 2|SOPT |−4>
2|SOPT |−6.

l

l1 l2

s′

s

Figure 1.5: The agent has visited ℓ+ 1 vertices in corridor 3.

We have |SROB|/|SOPT | ≥ 2− 6/|SOPT |. We also have |SOPT | ≥ 2(ℓ+ 1) and conclude 2− 6/|SOPT | >
2−6/2ℓ= 2−3/ℓ. For arbitrary δ > 0 we choose ℓ= ⌈3/δ⌉ and conclude |SROB|/|SOPT |> 2−δ. 2
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Remark 1.4 There are always examples so that the optimal exploration tour visits any edge twice.

Corollary 1.5 DFS for the Online-Edge-Exploration of general graphs is 2–competitive and optimal.

Exercise 2 Show that the same competitive ratio holds, if the return to the starting point is not required.

Exercise 3 Consider the problem of exploring the vertices (not the edges) of a graph. If the agent is

located at a vertex it detects the outgoing edges but along non-visited edges it is not clear which vertex

lies on the opposite side. Does DFS applied on the vertices result in a 2-approximation?
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1.4 Exploration of grid environments

Next we consider a simple discrete grid model. The agent runs inside a grid-environment. In contrast to

Shannons the inner obstacles consist of full cells instead of single blocked edges.

We would like to design efficient strategies for such grid environments. First, we give a formal

definition.

Definition 1.6

• A cell c is a tupel (x,y) ∈ IIN2.

• Two cells c1 = (x1,y1),c2 = (x2,y2) are adjacent, if :⇔ |x1 − x2|+ |y1 − y2|= 1. For a single cell

c, exact 4 cells are adjacent.

• Two cells c1 = (x1,y1),c2 = (x2,y2), c1 6= c2 are diagonally adjacent, if :⇔ |x1 − x2| ≤ 1∧ |y1 −
y2| ≤ 1. For a single cell c, exact 8 cells are diagonally adjacent.

• A path π(s, t) from cell s to cell t is a sequence of cells s = c1, . . . ,cn = t such that ci and ci+1 are

adjacent for i = 1, . . . ,n−1.

• A gridpolygon P is a set of path-connected cells, i.e., ∀ci,c j ∈ P : ∃ path π(ci,c j), such that

π(ci,c j) ∈ P verl”auft.

The agent is equipped with a touch sensor so that the agent scans the adjacent cells and their nature

(free cell or boundary cell) from its current position. Additionally, the agent has the capability of building

a map. The task is to visit all cells of the gridpolygon and return to the start. This problem is NP-hart for

known environments; see [IPS82]. We are looking for an efficient Online-Strategy. The agent can move

within one step to an adjacent cell. For simplicity we count the number of movements.

The task is related to vacuum-cleaning or lawn-mowing. A cell represents the size of the tool, the

tool should visit all cells of the environment. A general polygonal environment P can be approximated

by a grid-polygon.

ss

Figure 1.6: A polygon P and the gridpolygon P2 as a reasonable approximation.

The starting position and orientation of the tool fixes the grid and all connected cells which are

entirely inside P belong to the approximation P2; see Figure 1.6. For any gridpolygon P′ we use the

following notation. Cells that do not belong to P′ but are diagonally adjacent to a cell in P′ are called

boundary cells. The common edges of the boundary cells and cells of P′ are the boundary edges. Let

E(P′) denote the number of boundary cells or E for short, if the context is clear. The number of cells is

denoted by C(P′) or C respectively.

From Theorem 1.3 we can already conlcude a lower bound of 2 for the competitive ratio of this

problem. On the other hand DFS on the cells finishes the task in 2C−2 steps
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DFS

s s s

Verbesserung Optimal

Figure 1.7: Ist DFS optimal?

Exercise 4 Give a formal proof that for a gridpolygon P the DFS strategy on the cells requires exactly

2C−2 steps for the exploration (with return to the start) of P.

But is DFS really the best strategy in general? For fleshy environments DFS obviously is not very

efficient. Besides the lower bound construction makes use of corridors only. Compare Figure 1.7: After

DFS has visited the right neighbour of s the environment is fully known and we can improve the strategy.

It seems that even the optimal solution could be found in an online fashion in this example. On the

other hand there are always skinny corridor-like environments where DFS is the best online strategy.

Altogether, we require a case sensitive measure for the performance of an online strategy that relies on

the existence of large areas. The existence of large fleshy areas depends on the relationship between the

number of cells C and the number of (boundary) edges E . In Figure 1.7 the environment has 18 edges

and 18 cells. In corridor-like environments we have 1
2
E ≈C in fleshy environments we have 1

2
E <<C;

see also Figure 1.8.

C = 43

E = 86 = 2C E = 34 << 2C

Figure 1.8: The number of boundary edges E in comparison to the number of cells C is a measure for the existence

of fleshy or skinny parts.

1.4.1 Exploration of simple gridpolygons

We first consider simple gridpolygons P which do not have any inner boundary cell, i.e., also the set of

all cells that do not belong to P are path connected.

Note that the lower bound of 2 is not given, because the lower bound construction in the previous

section requires the existence of inner obstacles. We make use of a different construction.

Theorem 1.7 Any online strategy for the exploration (with return to the start) of a simple gridpolygon

P of C cells, requires at least 7
6

C steps for fulfilling the task.

Proof. We let the agent start in a corner as depicted in Figure 1.9(i) and successively extend the walls.

Assume that the agent decides to move to the east first. By symmetry we apply the same arguments, if

the agent moves to the south. For the second step the agent has two possibilities (moving backwards can

be ignored). Either the strategy leaves the wall by a step to the south (seeFigure 1.9(ii)) or the strategy

follows the wall to the east (see Figure 1.9(iii)).

In the first case we close the polygon as shown in Figure 1.9(iv). For this small example the agent

requires 8 steps whereas the optimal solution requires only 6 steps which gives a ratio of 8
6
≈ 1.3.
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s

ssss

(ii) (iii)

(vii)(vi)(v)(iv)

(i)

s

s

Figure 1.9: A lower bound construction for the exploration of simple gridpolygons.

In the second case we proceed as follows: If the robot leaves the wall (the wall runs upwards), we

close the polygon as depicted in Figure 1.9(v) or (vi), respectively. In this small example the agent

requires 12, respectively, whereas 10 steps are sufficient.

In the last and most interesting case the agent follows the wall upwards and we present the sophisti-

cated polygon of Figure 1.9(vii). In the offline case an agent requires 24 steps. The online agent already

made a mistake and can only finish the task within 24 steps. This can be shown by a tedious case dis-

tinction of all further movements. We made use of an implementation that simply checks all possibilities

for the next 24 steps. There was no such path that finishes the task. For all cases we guarantee have a

worst-case ratio of 28
24

= 7
6
≈ 1.16.

We use this scheme in order to present a lower bound construction of arbitrary size. Any block has

an entrance and exit cell which are marked by corresponding arrows; see Figure 1.9(iv)–(vii). If an agent

moves inside the next block, the game starts again. Since the arrows only point in east or west direction

we take care that the concatenated construction results in a simple gridpolygon of arbitrary size. as

required. 2

Note that the arbitrary-size condition in the above proof is necessary. Assume that we can only

construct such examples of fixed size D. This will not result in a lower bound on the competitive ratio.

Any reasonable algorithm will explore the fixed envirnment with komeptitive ratio 1 since α ≫ D exists,

with |SALG| ≤ |SOPT|+α.

We consider the exploration of a simple gridpolygon by DFS and formalize the strategy; see Algo-

rithm 1.2. The agent explores the polygon by the “Left-Hand-Rule”, i.e. the DFS preference is Left

before Straight-On before Right. The current direction (North, West, East or South) is stored in the

variable dir. The functions cw(dir), ccw(dir) und reverse(dir) result in the corresponding directions of

a rotation by 90◦ in clockwise or counter-clockwise order or by a rotation of 180◦, respectively. The

predicate unexplored(dir) is true, if the adjacent cell in direction dir is a cell of the environment, which

was not visited yet.
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Algorithm 1.2 DFS

DFS:

Choose dir, such that reverse(dir) is a boundary cell;

ExploreCell(dir);

ExploreCell(dir):

// Left-Hand-Rule:

ExploreStep(ccw(dir));

ExploreStep(dir);

ExploreStep(cw(dir));

ExploreStep(dir):

if unexplored(dir) then

move(dir);

ExploreCell(dir);

move(reverse(dir));

end if

verbesserter DFS

s
c2

c1

DFS

Figure 1.10: First simple improvement of DFS.

A first simple improvement for DFS is as follows:

If there are no unexplored adjacent cells around the current cell, move back along the shortest

path (use all already explored cells) to the last cell, that still has an unexplored neighbouring

cell.

Figure 1.10 sketches this idea: After visiting c1 the pure DFS will backtrack along the full corridor

of width 2 and reach cell c2 where still something has to be explored. With our improvement we move

directly from c1 to c2. Note that for the shortest path we can only make use of the already visited cells.

We have no further information about the environment.

By this argument we no longer use the step “move(reverse(dir))” in the procedure ExploreStep. After

the execution of ExploreCell we can no longer conclude that the agent is on the same cell as before.

Therefore we store the current position of the agent and use it as a parameter for any call of ExploreStep.

The function unexplored(base, dir) gives “True”, if w.r.t. cell base there is an unexplored adjacent cell

in direction dir. We re-formalize the behaviour as follows:
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Algorithm 1.3 DFS with optimal return trips

DFS:

Choose dir, such that reverse(dir) is a boundary cell;

ExploreCell(dir);

Move along the shortest path to the start;

ExploreCell(dir):

base := current position;

// Left-Hand-Rule:

ExploreStep(base, ccw(dir));

ExploreStep(base, dir);

ExploreStep(base, cw(dir));

ExploreStep(base, dir):

if unexplored(base, dir) then

Move along the shortest path

among all visited cells to base;

move(dir);

ExploreCell(dir);

end if

c1

c2 s

Figure 1.11: Second improvement of DFS.
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Algorithm 1.4 SmartDFS

SmartDFS:

Choose direction dir, such that reverse(dir) is a boundary cell;

ExploreCell(dir);

Move along the shortest path to the start;

ExploreCell(dir):

Mark the cell with its layernumber;

base := current Position;

if not SplitCell(base) then

// Left-Hand-Rule:

ExploreStep(base, ccw(dir));

ExploreStep(base, dir);

ExploreStep(base, cw(dir));

else

// Choose different order:

Calculate the type of the components by the layernumbers

of the surrounding cells;

if No component of typ (III) exists then

Move one step by the Right-Hand-Rule;

else

Visit the component of type (III) last.

end if

end if

ExploreStep(base, dir):

if unexplored(base, dir) then

Move along the shortest path along

the visited cells to base;

move(dir);

ExploreCell(dir);

end if
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For a second kind of improvement we consider the gridpolygon Figure 1.11. In this example the

current DFS variant fully surrounds the polygon. Finally the agent has to move back from c2 to c1 so

that the corridor of width 2 is visited almost 4 times. Obviously it would be better to first fully explore

the component at c1 move to the other component at c2 and finally move back to the start. In this case

the critical corridor will be visited only once. So, if the exploration splits the polygon into components

that have to be considered, we have to take care which component should be visited first.

A cell (like the cell c1) where the remaining polygon definitely splits into different parts is called a

split-cell. At the first visit of split-cell c1 in Figure 1.11 it seems to be better to not apply the Left-Hand

preference. This depends on the location of the starting point, because we have to move back at the end.

The idea can be formulated as follows.

If the unexplored part of the polygon definitely is splitted into different components (i.e., the

graph of unexplored cells is splitted into different components), try to visit the unexplored

part that does not contain the starting point.

This idea leads to the Algorithm 1.4 (SmartDFS). It remains to decide, which component actually

contains the starting point. For this we introduce some notions. Until the first split happens we apply

the Left-Hand-Rule and successively explore the polygon layer by layer from the outer boundary to the

inner parts. We require a formal definition of the layers.

2l Kanten weniger

l

l

π

2l Kanten dazu

Figure 1.12: The ℓ-Offset of gridpolygon P.

Definition 1.8 Let P be a (simple) gridpolygon. The cells of P that share a boundary edge belong to

the first layer, the 1-Layer of P. The gridpolygon that stems from P without the 1-Layer is called the

1-Offset of P. Recursively, the 2-Layer of P, is the 1-Layer of the 1-Offset of P and the 2-Offset of P

is the 1-Offset of the 1-Offset of P and so on.

Note that the ℓ-Offset of a gridpolygon need not be connected and finally the Offsets will decrease

to an empty polygon. The definition is totally independent from any strategy. Fortunately, during the

execution of SmartDFS on a simple gridpolygon, we can successively mark and store the layers for any

visited cell. The ℓ-Offset has an interesting property.

Lemma 1.9 The non-empty ℓ-Offset of a simple gridpolygon P has at least 8ℓ edges less than P.
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Proof. We surround the boundary of the gridpolygon in clockwise order and visit all boundary edges

along this path. Let us assume that the offset remains a single component. For a left turn the ℓ-Offset 2ℓ
looses 2ℓ edges for a right turn the ℓ-Offset 2ℓ wins 2ℓ edges We can show that there are 4 more right

turns than left turns. So the ℓ-Offset has at least 8ℓ edges less than P. Even more edges will be cancelled,

if the polygon fell into pieces. 2

Exercise 5 Show that for any surrounding of the boundary of a simple gridpolygon in clockwise order

there are 4 more rigth turns than left turns. Make use of induction.

Exercise 6 Show that in the above proof the non-empty ℓ-Offset will loose even more edges, if it consists

of more than one connected component. Show the statement for the 1-Offset.

(i) (ii)

c

P2Q

s

K1

c

P

Q

K2 K2

s

K1

P1 Q

c

s′

Figure 1.13: Decomposition at a split-cell.

Layer 2

Layer 1

(ii)(i)

c

(II)

(III) (III)

(I)

c

Figure 1.14: Three types of components.

We consider Figure 1.13(i): In the 4. Layer for the first time a split-cell c occurs. Now we decompose

the polygon into different components2:

2Let A
•

∪B denote the disjoint union A
•

∪B = A∪B mit A∩B = /0.
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P = K1

•

∪K2

•

∪ {visisted cells of P},

where K1 denotes the component that was visited last. SmartDFS recursively works on K2, returns to c

and proceeds with K1.

By the layernumbers we would like to avoid the situation of Figure 1.11. We will find the split-cell in

layer ℓ, which gives three types of components; see Figure 1.14:

(I) Component Ki is fully surrounded by layer ℓ.
(II) Component Ki is not surrounded by layer ℓ (may be touched by the split-cell only).

(III) Component Ki is partly surrounded by layer ℓ (not only touched by the split cell).

Obviously, if a split-cell occurs, we should visit the component of type (III) last because the starting

point lies in the outer layers of this component.

(i) (ii)

2

2

2

2

2

1

2 2

2

s

c

1

c

1

11 11

111 1

1 1

1

1

1

2

2

2

2

1

121 1 2

2

1

s

1

1

1 2

2

Figure 1.15: Special cases: No component of typ (III) exists.

There are some situations where the a component of type (III) does not exist. For example if the split-

cell is the first cell on the next layer, or the component of the starting point was just explored (efficiently).

More precisely:

(a) The component with the starting point on its layer was just fully explored in the current layer; see

Figure 1.15(i). In this case the order of visiting the remaining components is not critical, we can

choose an arbitrary order. This example also shows that at a split-cell more than two components

has to be visited. We simply apply one the next step by changing to the Right-Hand-Rule.

(b) Two components have been fully surrounded, because at the split-cell we change from layer ℓ to

ℓ+ 1; see Figure 1.15(ii). In all other cases at least one additional visited cell is marked with

layer number of the split-cell. We can conclude that layer ℓ was closed with the split-cell. This

means that the starting point is not part of the layer of the component where the agent currently

comes from. Because the agent normally moves by the Left-Hand-Rule, it suffices to apply the

Right-Hand-Rule in this case also.

Altogether in both cases we simply apply the Right-Hand-Rule for a single step.

For the overall analysis at a split-cell we consider two polygons P1 und P2 as depicted in Fig-

ure 1.13(i). Here we detect the component of type (III). K2 is a component of type (II). Let Q be a
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rectangle of edge length (width or height) 2q+1 around the split cell c so that

q :=

{
ℓ, if K2 has type (I)

ℓ−1, if K2 has type (II)
.

Now choose P2 so that K2 ∪{c} is the q-Offset of K2 ∪{c}. The idea is that the rectangle Q will

be added so that P2 has the desired form. Now let P1 := ((P\P2)∪Q)∩P, comp. Figure 1.13. The

intersection with P is necessary, since there are cases where Q does not totally fit into P. We would like

to apply arguments recursively for P2 and P1. Let us consider them separately as shown in Figure 1.13(ii).

We have choosen P1,P2 und Q in a way so that the paths in P1\Q und P2\Q did not change w.r.t. the

paths already performed for P3. The already performed paths that lead in P from P1 to P2 and from P2 to

P1 will be used and adapted so that the paths outside Q will not change; see Figure 1.13. We can consider

P1 and P2 separately.

We know that any cell has to be visited at least once. Therefore we count the number of steps S(P) for

polygons P as follows. It is the sum of the cells, C(P), of P plus the extra cost excess(P) for the overall

path length.

S(P) :=C(P)+ excess(P).

The following Lemma gives an estimate for the extra cost w.r.t. the above decomposition around a

split-cell.

Lemma 1.10 Let P be a gridpolygon, c a split-cell, so that two remaining components K1 und K2 has

to be considered. Assume that K2 is visited first. We conclude:

excess(P)≤ excess(P1)+ excess(K2 ∪{c})+1.

Proof. The agent is located at cell c and decides to explore K2 ∪{c} starting from c and return to c.

This gives additional cost at most excess(K2∪{c}), note that the part P2\(K2∪{c}) can only help for the

return path. Because c was already visited, we count one additional item for the excess of visited cells.

After that we proceed with the exploration of P1 and require excess(P1) for this part. 2

For the full analysis of SmartDFS we have to prove some structural properties:

Lemma 1.11 The shortest path between to cells s and t in a simple gridpolygon P with E(P) boundary

edges consists of at most 1
2
E(P)−2 cells.

Proof. W.l.o.g. we assume that s and t are in the first layer, otherwise we can choose different s or t

whose shortest path is even a bit longer. Consider the path, πL, in clockwise order in the first layer from

s to t and the path, πR, in counter-clockwise order in the first layer from s to t. Connecting πL and πR

gives a full roundtrip. As in the proof of Lemma 1.9 counting the edges gives 4 more edges than cells

which gives

|πR|+ |πL| ≤ E(P)−4

visited cells.

In the worst case both path have the same length, which gives |π(s, t)| = |πR| = |πL|, and 2|π(s, t)| ≤
E(P)−4 ⇒ |π(s, t)| ≤ 1

2
E(P)−2. 2

Lemma 1.12 Let P be a gridpolygon and let c be a split-cell. Define P1,P2 und Q as above. For the

number of edges we have:

E(P1)+E(P2) = E(P)+E(Q).

3For the uniqueness of this decomposition into P1 and P2 we remark that P1 and P2 are connected, respectively and P∪Q =
P1∪P2 and P1 ∩P2 ⊆ Q holds.
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Proof. For arbitrary gridpolygons P1 and P2 we conclude

E(P1)+E(P2) = E(P1 ∪P2)+E(P1∩P2).

Let Q′ := P1 ∩P2, we have:

E(P1)+E(P2) = E(P1 ∩P2)+E(P1∪P2)

= E(Q′)+E(P∪Q)

= E(Q′)+E(P)+E(Q)−E(P∩Q)

= E(P)+E(Q), since Q′ = P∩Q

2

Exercise 7 Show that for arbitrary two gridpolygons P1 and P2 we have E(P1)+E(P2) = E(P1 ∪P2)+
E(P1∩P2).

Using all these arguments we can show:

Theorem 1.13 (Icking, Kamphans, Klein, Langetepe, 2000)

For a simple gridpolygon P with C cells and E boundary edges the strategy SmartDFS required no more

than

C+
1

2
E −3

for the exploration of P (with return to the start). This bound will be attained exactly in some environments.

[IKKL00b]

Proof. By the above arguments it suffices to show excess(P)≤ 1
2
E −3. We give a proof by induction on

the number of components.

Induction base:

Assume that there is no split-cell. For the exploration of a single component, SmartDFS visits all

cells exactly once and return to the start. For visiting all cells we require C − 1 steps. Now the

excess is the shortest path back. By Lemma 1.11 1
2
E −2 steps suffices which gives the conclusion

Induction step:

Consider the (first) decomposition at a split-cell c. Let K1,K2,P1,P2,Q be defined as above, assume

that K2 is visited last. We have:

excess(P) ≤ excess(P1)+ excess(K2 ∪{c})+1 (Lemma 1.10)

≤(I.A.)

1

2
E(P1)−3+

1

2
E(K2 ∪{c})
︸ ︷︷ ︸

≤E(P2)−8q (Lemma 1.9)

−3+1

≤
1

2

[

E(P1)+E(P2)
︸ ︷︷ ︸

≤ E(P)+4(2q+1) (1.12, Def. of Q)

]

−4q−5

≤
1

2
E(P)−3

2

A Java-Applet for the Simulation of SmartDFS and different strategies can be found at:

http://www.geometrylab.de/
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Finally, we would like to show, how to compute the offline shortest paths in gridpolygons Of course

the Dijkstra algorithm can also be applied on the gridgraph, but this algorithm does not use the grid

structure directly. As an alternative we apply Algorithm 1.5 (C. Y. Lee, 1961, [Lee61]), the running time

is only linear in the number of overall cells. The algorithm simulates a wave propagation starting from

the goal. Any cell will be marked with a label indicating the distance to the goal. Obstacles slow down

the propagation a bit; see Figure 1.16. When the wave reaches the starting point s, we are done with the

first phase. For computing the path we start at s and move along cells with strictly decreasing labels.

Obviously, the shortest path need not be unique.

Algorithm 1.5 Algorithm of Lee

Shortest path from s to t in a gridpolygon

Datastructur: Queue Q

// Initialise

Q.InsertItem(t);
Mark t with label 0;

// Wave propagation:

loop

c := Q.RemoveItem();
for all Cells x such that x is adjacent to c and x is not marked do

Mark x with the label of label(c)+1;

Q.InsertItem(x);
if x = s then break loop;

end for

end loop

// Backtrace:

Move along cells with strongly decreasing labels from s to t.

3 4 5 6

7

7

67 7
56 67 7
45 56 67 7
34 45 56 67 7

3 34 45 56 67 7
3 45 5 76347 6

3 45 56 67 7
67 7

3 4 5 66 77
3 44 55 66 77
4 55 66 77
5 66 77
6 77

t
s

t
s
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Figure 1.16: Wave-Propagation.
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1.4.2 Competitive ratio of SmartDFS

The corridor of width 3, see Figure 1.7, indicates that the competitive ratio of SmartDFS should be better

than 2. SmartDFS runs 4 times though the corridor whereas the shortest path visits any cell only once.

This gives roughly a ratio of 4
3
. We will show that this is the worst-case for SmartDFS. The gap between

e 7
6

and 4
3

is small.

For the analysis we first give a precise definition of the structure of parts of gridpolygons which

will be explored in an optimal fashion. The SmartDFS Strategy does not make any detours within these

passages.

For a corridor of widths 1 this is abviously true. But also corridors of width 2 will be passed

optimally, since SmartDFS runs forth and back along different tracks; see Figure 1.17. We give a formal

definition of the narrow passages.

Definition 1.14 The set of cells that can be deleted such that the layernumber of the remaining cells do

not change are called narrow passages of P.

P2
P1

Figure 1.17: SmartDFS is optimal in narrow passages.

SmartDFS passes narrow passages optimally since they allow an optimal forth and back pass-through.

There are no additional detours at the entrance and exit of a narrow passage because they consist of cells

in the first layer. They can be considered as gates. The entrance and exit is always precisely determined.

The idea is to consider polygons without narrow passages first. There is a fixed relationship between

edges and cells.

Lemma 1.15 Let P be a simple gridpolygon without narrow passages and without a split-cell in the

first layer. We have

E(P)≤
2

3
C(P)+6 .

Proof. A 3×3 gridpolygon has precisely this property, C(P) = 9 und E(P) = 12. Any gridpolygon with

the above conditions can be reduced by successively removing columns or rows such that in each step

the property remains true and such that always at least 3 cells and at most 2 edges will be removed. This

is an exercise below.

Starting backwards from the property E(P0 = 2
3
C(P0) + 6 we will maintain the bound E(Pi) ≤

2
3
C(Pi)+ 6 since we add at least 3 cells and add at most 2 edges. Finally, E(P) ≤ 2

3
C(P)+ 6 holds.

2

First, we show that the overall number of exploration steps of SmartDFS decreases for the given class

of polygons.

Lemma 1.16 A simple gridpolygon P with E(P) edges and C(P) cells, without narrow passages and

without a split-cell in the first layer well be explored by SmartDFS with no more than S(P) ≤ C(P)+
1
2
E(P)−5 steps.
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c′

π′

s′

s

P′

Figure 1.18: A simple gridpolygon without narrow passages and no split-cell in the first layer has the property

E(P)≤ 2
3

C(P)+ 6. After the first coil SmartDFS starts in the 1-Offset P′. The return path to c′ from an arbitrary

point in P′ is shorter than 1
2
E(P)/2− 2.

Proof. From Theorem 1.13 we conclud S(P) ≤ C(P)+ 1
2
E(P)− 3. By the properties of P, SmartDFS

performs a full first round from s to the first cell s′ in the second layer. After that, in principle we start

SmartDFS again at s′ in a gridpolygon (1-Offset P′ of P); see P′ in Figure 1.18. P′ is path connected and

by Lemma 1.9 P′ has 8 edges less than P;

The cells in the first layer have been visited optimally the path length from s to s′coincidence with the

number of cells in the first layer. Finally, we have to count two additional steps from s′ to s. Altogether,

we require S(P)≤C(P)+ 1
2
(E(P)−8)−3+2 =C(P)+ 1

2
E(P)−5 steps. 2

With the statements above we will be able to prove the main result.

Mit diesen Vorbereitungen können wir die kompetitive Schranke beweisen.

Theorem 1.17 (Icking, Kamphans, Klein, Langetepe, 2005) The SmartDFS strategie for the exploration

of simple gridpolygons is 4
3
-competitive! [IKKL05]

Proof.

Let P be a simple gridpolygon. First, we remove the narrow passages from P. We know that the

entrance and exits over the gates by SmartDFS are optimal. We obtain a sequence Pi, i = 1, . . . ,k of

gridpolygons connected by narrow passages. See for example P1 and P2 in Figure 1.17.

We can consider the gridpolygons Pi separately. We can also assume different starting points. The

movement between the gates count for the required additional steps. It is sufficient to show S(Pi) ≤
4
3
C(Pi)− 2 for any subpolygon. This bound exactly holds for 3×m gridpolygons for even m; see Fig-

ure 1.19.

We show the bound by induction over the number of splil-cells.

s

optimal strategySmartDFS

s

Figure 1.19: In a corridor of width 3 and with even lenght the bound S(P) = 4
3

SOpt(P)− 2 holds.

Induktion-Base: If Pi has no split-cell, there is also no split-cell in the first layer. We apply Lem-

ma 1.16 and Lemma 1.15 and obtain:

S(Pi) ≤ C(Pi)+
1

2
E(Pi)−5
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≤ C(Pi)+
1

2

(
2

3
C(Pi)+6

)

−5

=
4

3
C(Pi)−2 .

Induktion-Step: If there is no split-cell in the first layer we can apply the same arguments as above.

Therefore, we assume that the first split occurs in the first layer. Two cases can occur as depicted in

Figure 1.20.

In the first case the component of type (II) was not visited before and we define Q := {c}. The second

case occurs, if the split-cell c is diagonally adjacent to a cell c′; compare Figure 1.20(ii), (iii) and (iv).

We build the smallest rectangle Q that contains c and c′. In case (ii) and (iii) Q is a square of size 4. In

case (iv) by simple adjacency Q is a rectangle and |Q|= 2.

Analogously to the proof of Theorem 1.13 we split the polygons into parts P′ and P′′ both containing

Q.

Here P′′ is of type (I) or (II) and P′ the remaining polygon. das Polygon der Komponenten vom Typ

(I) oder (II) und P′ das andere.

For |Q|= 1 (see Figure 1.20(i)) we have S(Pi) = S(P′)+S(P′′) and C(Pi) =C(P′)+C(P′′)−1. We

apply the induction hypothesis on P′ and P′′ (they have one split-cell less) and obtain:

S(Pi) = S(P′)+S(P′′)

≤
4

3
C(P′)−2+

4

3
C(P′′)−2

≤
4

3
C(Pi)+

4

3
−4 <

4

3
C(Pi)−2 .

For |Q| = 4 we argue that by the union we will save some steps that will occur for the separate

explorations. We consider P′ and P′′ separately, first. The movements from c′ to c (and c to c′) count in

both polygons. For the complete Pi the path from c′ to c (and c to c′) are given either P′ or in P′′, this

means that we save 4 = |Q| steps.

We have S(Pi) = S(P′)+ S(P′′)− 4 and C(Pi) = C(P′)+C(P′′)− 4. By induction hypothesis for P′

and P′′ we conclude:

S(Pi) = S(P′)+S(P′′)−4

≤
4

3
C(P′)+

4

3
C(P′′)−8

=
4

3
(C(P′)+ C(P′′)−4)−

8

3

<
4

3
C(Pi)−2 .

The case |Q|= 2 is left as an exercise.

Altogether an optimal strategy requires ≥C(Pi) steps or ≥C(P) in total and we have a competitive

ratio of 4
3
. 2

Exercise 8 Analyse the remaining case |Q|= 2 in the above proof.

If we compare the result to Theorem 1.7 there is a gap of size 1
6

between 7
6

and 4
3
. Recently, both

parts have been improved. There is a lower bound of 20
17

and an upper bound of 5
4

shown by Kolenderska

et. al 2010. In principle the strategy is a local improvement of SmartDFS and the lower bound is an

extension of our construction. The result comes along with a tedious case analysis.
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(i) (iii)(ii) (iv)

c

c′ Q

cc′Qc

P′
P′

P′′ P′′

c

P′

P′′

c′

P′′

P′

Q

Figure 1.20: A gridpolygon Pi that is separated into components of type (I) or (II) at the split-cell. The rectangle

Q is always inside Pi.
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Figure 1.21: 2D-cells and D×D sub-cells.

1.4.3 Exploration of general gridpolygons

For the more general exploration of gridpolygons we first slightly change the model4: We consider an

agent that is located at the center of 4 cells of size D×D. The tool for the exploration still has size D×D

as before and moves freely around the agent. More precisely, we consider 4 sub-cells of size D×D and

unify them to a 2D-cell5; see Figure 1.21(i).

It can happen that for the 2D-cell, not all sub-cells belong to the initial gridpolygon, since some of

the sub-cells simply belong to the boundary. Such 2D-cell are denoted as partially occupied cells.

In Figure 1.21(i) all cells intersected by the original polygonal segments are partially occupied (com-

pare also reffigfigOnline/PolyToGrid on page 8). The agent is always located in the center of the 2D-cell.

Analogously to the SmartDFS model, the agents scans the four adjacent 2D-cells. The tool moves freely

around the agent, we would like the count the number of steps of the tool; see also Figure 1.21(ii).

The current cell of the agent is denoted as current cell. The parent cell of the agent is the cell where

he is actually coming from. In the beginning we initially an arbitrary adjacent 2D-cell as the parent cell.

The strategy “Spanning-Tree-Covering” (STC) constructs a spanning tree for all connected 2D-cells

that are also not occupied. The tool moves along the spanning tree by the Left-Hand-Rule. The con-

struction can be done fully online. The 2D-cells are detected by the Right-Hand-Rule. Obviously by

this approach the tool exactly visits any cell at most once by following the spanning tree. Figure 1.22(i)

shows an example for the efficient exploration of all non-occupied cells by 2D-Spiral-STC. As mentioned

before, for the start we can choose an arbitrary parent cell.

The disadvantage of 2D-Spiral-STC is, that we do not visit sub-cells by that tool which actually lie in

the connected component of the sub-cells. Now we relax the behaviour of 2D-Spiral-STC. The strategy

4We will see later that the change was only done for the reason of a convenient analysis and description.
5In the following a cell always denotes a 2D-cell.
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Algorithm 1.6 2D-Spiral-STC

2DSPSTC( parent, current ):

Mark current as visited.

while current has unvisited neighbour cell do

• From parent search in ccw order for a neighbouring cell free, which is not marked as visited and

is not partially occupied.

• Build the spanning tree edge from current to free.

• Move the tool by Left-Hand-Rule along the spanning tree edge to the first sub-cell of free.

• Call 2DSPSTC( current, free ).

end while

if current 6= s then

• Move by the Left-Hand-Rule along the spanning tree edge back from current to the first sub-cell

of parent.

end if

Algorithm 1.7 SpiralSTC

SPSTC( parent, current ):

Mark current as visited.

while current has unvisited neighbour cell do

• From parent search in ccw order for the first neighbouring cell free.

• Build a spanning tree edgs from current to free.

• Move the tool along the spanning tree edge to the first sub-cell of free. The movement depends on

the local situation. For double-sided edges the tool moves by Left-Hand-Rule along the edge. For

single-sided edges the tool might change to the other (left) side of the spanning tree edge in order

to avoid an occupied sub-cell for reaching the corresponding sub-cell.

• Call SPSTC( current, free ).

end while

if current 6= s then

• Move along the spanning tree edge back from current to the first possible sub-cell of parent. The

movement depends on the type of the edge, as mentioned above.

end if
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s s

(ii)(i)

Figure 1.22: Examples for (i) 2D-Spiral-STC and (ii) Spiral-STC.

Spiral-STC (Algorithm 1.7) also constructs a spanning tree in an online fashion. But we also insert a

corresponding edge if a partially occupied 2D-cell contains sub-cells that are still reachable by the tool.

In this case the tool cannot always move the the Left-Hand-Rule along the spanning tree edge. The tool

has to avoid occupied sub-cells and visits some sub-cells more than once. For systematically analysing

the corresponding additional sub-cell visits of the tool we make use of the following notion:

Lokal unzusammenh”angendeEinseitige Kante
Zelle

Doppelseitige Kante

(iii)(ii)(i)

Figure 1.23: (i) Double-sided edge, (ii) one-sided edge, (iii) locally disconnected 2D-cell.

Definition 1.18 A spanning tree edge construced by STC in a gridpolygon P is denoted as

(i) double-sided edge, if all adjacent sub-cells belong to the gridpolygon P (Figure 1.23(i)),

(ii) single-sided edge, if at least one of the adjacent sub-cells is a boundary sub-cell of P (Figure 1.23(ii)).

Double-sided edges are handled in the same way as in the 2D-Spiral-STC strategy. Single-sided

edges impose a detour for the tool, some sub-cells will be visited more than once since the tool changes

to the other side of the spanning tree edge. For the analysis we will consider the corresponding cases

systematically. A special case occurs, if the situation imposes two spanning tree edges for the same cell

from different directions. The cell is locally disconnected in this case; see Figure 1.23(iii). This 2D-cell

will be visited twice from different directions. For simplicity we internally double the corresponding

vertex and the spanning tree has exactly one incoming edge for any vertex. For the analysis we have

to take care that we count the cell only once. An example of the execution of Spiral-STC is shown in

Figure 1.22(ii).

By the preference rule for the 2D-cells the Spiral-STC constructs spanning trees with many windings.

This is not always intended, especially for lawn-mowing or vacuum-cleaning a tool should try to avoid

so many turns. The number of turns might also be part of the cost model. The Scan-STC variant has

a fixed given preference for vertical or horizontal edges. We would like to make local decision for the

construction of spanning tree edges. In our examples we prefer a vertical scan of the gridpolygon. For

this we extend the sensor model and allow to have information about all diagonally adjacent 2D-cells of

a current cell.

The idea is that the construction of a horizontal edge will be postponed, if it is clear that we can also

reach the 2D-cell by another vertical spanning tree edge. To keep the rule simple we only look ahead as
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c

current

Figure 1.24: Avoid horizontal edges with the Scan-STC.

indicated in Figure 1.24 (i) and (ii). Here we currently would like to build a horizontal edge. The agent

is located at cell current and is looking (in ccw order starting from father) for the first free cell free. If

there is a counterclockwise path from free over free+45 and free+90 back to the current cell, we change

the preference and build a spanning tree edge to free+90. Here free+45 lies on the sam row as free and is

the the next cell in ccw order from free. free+90 is the next cell in ccw order from free+45 in the same

column as current.

If the full turn exists, the cell free will also be reached from free+45 be a vertical edges and free+45

can be reached from free+90. Note that we have extended the sensor model in this case and also have

information about diagonally adjacent edges.

Analogously, we can also consider partially occupied 2D-cells and apply the same idea. For the

corresponding avoidance rule we consider the sub-cells c, f 0, f+45 and f+90 instead if the cells current,

free, free+45 und free+90; see Figure 1.24(iii).

By the above idea we could define a strategy 2D-Scan-STC that corresponds to 2D-Spiral-STC. We

skip this step and directly define a Scan-STC Algorithm that makes use of the sub-cells c, f 0, f+45 and

f+90 by the same arguments. If f+45 and f+90 are also free, we will reach f 0 from f+45 and in turn f+45

from f+90. Algorithm 1.8 summarizes this behaviour.

s s

(ii)(i)

Figure 1.25: Examplle for (i) 2D-Scan-STC, (ii) Scan-STC.
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Algorithm 1.8 ScanSTC

SCSTC( parent, current ):

Mark current as visited.

while current has unvisited neighbouring cell do

• From parent search in ccw order for the fisrt non-visited neighbouring cell free.

if Spanning tree edge from current to free is horizontal and sub-cells f+45 and f+90 are free then

free := free+90.

end if

• Build a spanning tree edge from current to free.

• Move the tool along the spanning tree edge to the first sub-cell of free. The movement depends on

the local situation. For double-sided edges the tool moves by Left-Hand-Rule along the edge. For

single-sided edges the tool might change to the other (left) side of the spanning tree edge in order

to avoid an occupied sub-cell and reach the corresponding sub-cell.

• Call SCSTC( current, free ) auf.

end while

if current 6= s then

• Move along the spanning tree edge from current back to the first possible sub-cell of parent. The

movement depends on the type of the edge, as mentioned above.

end if

Theorem 1.19 (Gabriely, Rimon, 2000)

Let P be a gridpolygon with C sub-cells. Let K be the number of all sub-cells, which are diagonally

adjacent to an occupied (boundary) sub-cell6. The gridpolygons P will be explored by Spiral-STC and

Scan-STC in time O(C) and space O(C). There are no more than

S ≤C+K

exploration steps, S, for the tool. [GR03]

Proof.

Correctness:

Both algorithms construct a spanning tree by DFS such that any 2D-cell which has reachable D sub-cells

will be visited. The tool moves along the spanning tree on both sides – as long as the path is not blocked

– and visits all sub-cells that are touched by the spanning tree.

Zelle ”Ubergr. Intern Gesamt Randzellen

1 0 1 1 2

2 1 2 3 3

3 1 2 3 3

4 1 1 2 2

5 1 2 3 3

s

5

1

3

4 2

Figure 1.26: Estimating the double visits of sub-cells by STC locally.

Path length:

The number of steps for the tool is essential the sum of the visited sub-cells C. If the tool changes to the

left side of a spanning tree a detour has to be made and some sub-cells will be visited more than once.

Beyond C we simply count the number of sub-cells that are visited more than once and locallly charge

the sub-cells of a 2D-cell for these visits.

6K can be estimated by the number of sub-cells in the first layer of P.
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Figure 1.27: Analysis of STC, all possible cases.

We differentiate between inner double visits and intra double visits. The latter one occur during the

movement inside a 2D-cell if a sub-cell is visited again. The former one occur if we leave a 2D cell c

along the spanning tree to a neighbouring cell and the corresponding sub-cell was visited before. For this

double visit we also charge the 2D cell c, since it was responsible for the detour.

Any 2D-cell c is visited for the first time by an incoming spanning tree edge. The inner-cell double

visit will occur only if the cell c is left again along this edge. Figure 1.26 shows an example for counting

inner and intro double visits. For cell 1 sub-cell s is visited twice, an intra double visit. The sub-cell

above s is also visited twice, but by the movement back for 5 to 1 along the spanning tree edge. Therefore

2D-cell 5 is charged for this by an inner double visit.

The table of2D-cells Figure 1.26 shows the number of inner and intra double visits for any 2D-cell.

We charge the 2D-cells for these double visits. On the other hand, for any 2D-cell we also count the

number of sub-cells that are diagonally adjacent to a boundary sub-cell. The corresponding boundary

sub-cell need not lie inside the 2D-cell itself. Surprisingly, the sum of inner and intra double visits does

never exceed the number sub-cells with diagonally adjacent neighbours. This is also given in the table of

Figure 1.26.

For a full systematic proof we refer to Figure 1.27. Any 2D-cell c is visited by some spanning tree



1.4 Exploration of grid environments 29

edge for the first time and the inner double visits can only occur on this edge. Therefore it is sufficient to

consider the 2D-cell without other outgoing spanning tree edges. For any intra detours only sub-cells of

the current cell are responsible. For the inner detour only the parent cell was responsible.

We distinguish between double sided and single sided edges and between the number of boundary

sub-cells inside the corresponding 2D-cell c. We always count inner and intra double visits and compare

the sum to the number of sub-cells adjacent to boundary sub-cells.

For all reasonable cases the sum of double visits is always covered locally by the number sub-cells

adjacent to boundary sub-cells. The case marked with (∗) is a bit tricky. The corresponding 2D cell

might also be visited by another spanning tree edge. This is not critical because there is only 1 double

visit in this case for each sub-case. They can be handled separately.

Running time and space requirement

The tool performs at most C +K ≤ 2C steps. Any movement is computed locally in O(1) time. The

corresponding overall information required does not exceed O(C). 2

Finally, we consider the Scan-variants of the STC-Algorithms. We would like to give a rough estimate

for the efficiency in avoiding horizontal edges by 2D-Scan-STC.

C

Cℓ

Cr

CCℓ,1

Cr

Cℓ,2

Cℓ,3

(iii)(i) (ii)

C2,1

C2,2

C4,2

C4,1 C5,1

C4,4

C4,3

C5,2C3,2

C6C1

C3,1

c

Figure 1.28: (i) Columns and the change of connectivity, (ii) Columns without changes, (iii) Difficult online

situation.

We consider columns of the gridpolygon and from left to right we count the change of the connec-

tivity from a column to its neighbour on the right. For example on Figure 1.28(i) there is a numbering of

the columns and the number of different vertical components of the columns. From left to right we sum

up all differences in the number of components of a column to its neighbour. In Figure 1.28(i) column C1

has one component and in column C2 this component split into two components C2,1 and C2,2. This gives

a difference of 1. The components C5,1 and C5,2 of column C5 run together in C6 to a single component.

This also is a change of 1 in the difference. Of course also many parts might be involved. We count the

changes of any component separately. Let Z denote the sum of all these local changes.

The number Z is a measure for the additional horizontal edges of the spanning tree of Scan-STC against

an optimal number of spanning tree edges:

Theorem 1.20 (Gabriely, Rimon, 2000)

Let P be a gridpolygon. Let HOpt denote the minimal number of spanning tree edges among all 2D

spanning trees of P. Let Z be the above number of connectivity changes for the columns of the 2D-cells.
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2D-Scan-STC constructs a spanning tree with at most

HSTC ≤ HOpt +Z+1

horizontal edges. [GR03]

Proof.(Sketch)

If there is no change in a 2D column, the optimal spanning tree and 2D-Scan-STC will visit and leave

the column only once; compare Figure 1.28(ii). The main problem is that by 2D-Scan-STC a connected

component of a column will be left by the spanning tree to the same side more than once. This can only

happen, if there are changes in the connectivity; see Figure 1.28(iii). 2

Concluding remarks

Arkin, Fekete and Mitchell gave some approximation results for the offline exploration of gridpolygons;

see [AFM00]. Betke, Rivest und Singh considered a variant of the exploration problem. They introduced

the following piecemeal-condition: The agent has to explore an environment with rectangular obstacles

and has to return to the start from time to time (charging an accumulator); see [BRS94]. A strategy for

this problem for general grid-environments stems from Albers, Kursawe und Schuierer [AKS02].
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1.5 Constrained graph-exploration

We consider the problem of the exploration of an unknown graph G = (V,E) starting from some fixed

vertex s ∈ V . This means that we would like to visit all edges and vertices of G. First, we consider

unit-weights which means that any visit of an edge has cost 1. Different from the previous section we

consider a constrained version of the exploration, due to the following practical models. Let r denote the

radius or depth of the graph w.r.t. s. I.e., r is the maximal length of a shortest path from s to some vertex

v ∈V . Let us first assume that r is known, but not the graph itself.

1. The agent is bounded by a tether of length ℓ= (1+α)r (for example a cable constraint).

2. The agent has to return to the start after any 2(1+α)r steps (for example an accumulator has to be

recharged).

3. A large graph should be explored up to a given fixed depth d (for example for searching a close by

target).

The above third variant will be applied to a searching heuristic with increasing depth, later. First,

we show some simple simulation resutls. If an algorithm for the tether variant is known, one can also

establish an accumulator strategy with some extra cost.

Lemma 1.21 Given a tether variant strategy with tether length l = (1+α)r and overall cost T . For any

β > α there is an accumulator-strategy with cost
1+β
β−α T

Proof. We design the accumulator strategy by following the tether strategy. After any 2(β−α)r steps

we move back from the current vertex v to the start, recharge the agent and move back to v. Then we

proceed with the next step of length 2(β−α)r of the tether strategy path. In the tether strategy for any

vertex v, we are never more than (1+α)r away from the start. That is 2(β−α)r+2(1+α)r = 2(1+β)r
always result in correct loops. The strategy is correct.

On the other hand, we have cost T for following the tether path and additional cost for moving back

and force. We move back at most T
2(β−α)r times and require 2(1+α)r steps for any movement. This

gives total cost:

T +
T

2(β−α)r
·2(1+α)r = T

β−α+1+α

β−α
=

1+β

β−α
T .

2

Exercise 9 Given an accumulator strategy S with accumulator size 2(1+β)r and overall cost T . For a

given α > β design an efficient tether strategy that makes use of S so that the cost of the tether strategy

is f (α,β) ·T . Determine f (α,β) precisely.

We can also consider the Offline-variant of the problem. In this case the graph is fully known. To the

best of our knowledge the complexity of the Offline-variant (computing the best strategy) is not known.

Since in the case that the tether is very long, the Hamiltonian-path problem appears to be part of the

problem, the problem is assumed to be NP-hard.

If the optimal Offline-strategy is not known, we can design an Offline-strategy that approximates the

optimal strategy. We consider the accumulation variant and assume that the accumulator has size 4r.

Lemma 1.22 Let us assume that an accumulator of size 4r is given. There is a simple Offline algorithm

that explores a graph of depth r with no more than 6|E| steps.
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Proof. We consider the DFS walk among the edges of the graph which requires 2|E| steps. Now we split

this overall path into pieces of size 2r. Similarly to the simulation in the proof above we successively

move to the start vertices of these subpaths, follow the DFS path for 2r steps and return to the start

after that. In total the accumulator of size 4r is sufficient. Moving along the DFS path gives 2|E| steps.

There are no more than
⌈

2|E|
2r

⌉

sub-paths that require no more that
⌈
|E|
r

⌉

2r steps in total. We have
⌈
|E|
r

⌉

2r ≤
(
|E|
r
+1

)

2r ≤ 2|E|+2r which shows that 4|E|+2r ≤ 6|E| is sufficient. 2

From now on we consider only the tether variant, for the accumulation variant similar results can be

shown. A first simple idea is to take the tether length for the DFS walk into account.

Just performing DFS is not always possible. A BFS approach is always possible but results in too

many exploration steps; see Figure 1.29. Therefore we apply DFS with the tether restriction as given in

Algorithm 1.9. There is a backtracking step, if the tether is fully exhausted. We call this algorithm bDFS

for bounded DFS.

(i)

(ii)

S

S

Figure 1.29: (i) A Graph with n vertices and with depth r = 1, pure DFS would require a tether of length n−1. (ii)

A graph of depth n, BFS with a tether of length n requires Ω(n2) steps.

s 1 2 3 . . .

ℓ− 1

ℓ

v

. . .

Figure 1.30: bDFS kann einige Knoten nicht erreichen.

Algorithm 1.9 boundedDFS

bDFS( v, ℓ ):

if (ℓ= 0)∨ (no adjacent non-explored edges) then

RETURN

end if

for all non-explored edge (v,w) ∈ E do

Move from v to w along (v,w).
Mark (v,w) as explored.

bDFS(w, ℓ−1).

Move back from w to v along (v,w).
end for

In general bDFS is not sufficient for the full exploration of a graph. For example in Figure 1.30 we

have the problem that the dark-colored vertices cannot be reached, if the algorithm first chooses the path

along the vertices 1,2, . . . , ℓ− 1, visits vertex l, v and s and winds back to the start s. The path from s

over v is short enough but will not be considered by bDFS.
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Therefore we would like to call bDFS from different sources. The aim is to achieve a constant

competitive algorithm. In Algorithm 1.10 we maintain a set of (edge) disjoint trees T = {T1,T2, . . . ,Tk }
with root vertices s1,s2, . . . ,sk, respectively. The trees still contain incomplete vertices where not all

adjacent edges have been visited. We choose a tree Ti with the minimal distance from s to root si among

all trees of T . From this tree we prune subtrees Tw j
with root vertices w j, so that w j is a certain distance

(minDist = αr
4

) away from s and Tw j
has a certain minimal depth (determined over minDepth = αr

2
).

Those trees will be inserted into T . The pruning forces the trees of T to have a minimum size, it is still

worth visiting them.

After pruning, the rest of Ti will be explored by DFS and if an incomplete vertex will be found, we

start bDFS with the current remaining tether length for the exploration of new edges. The newly explored

edges and vertices build a graph G′. If G′ has incomplete vertices, we construct a spanning tree T’ with

a root vertex s′, where s′ is the vertex in T ′ closest to s in the current overall explored graph G∗. T ′ will

be inserted into T . After the overall DFS (and bDFS) walk in Ti we delete all trees of T that are now

fully explored. Some of the trees in T might have common vertices. We merge those trees and build a

new spanning tree for them with a new root vertex.

A scheme of the algorithm is shown in Figure 1.31. We have done the prune step by values (2,4).
Otherwise, we have to build very large example graphs.

I. Auswahl next!

II. Pruning: (2,4), neuer Tree!

III. DFS im Restbaum! Enfernen!

IV. bDFS starten

V. Spanning Tree, neuer Tree!VI. Fertig! Entfernen!

s

T1

T3

s1

s2

s3

{T1,T2,T3}

T2

w

Tw

T ′

{Tw,T
′,T3}

Figure 1.31: The algorithm maintains a set of disjoint trees T = {T1,T2,T3} and choose the tree T2 with minimal

distance dG∗(s,si). After that the tree is pruned. Subtrees of distance 2 away from s2 with vertices inside that have

distance at least 4 from s2 are cut-off. After that DFS starts on the rest of T2 and starts bDFS on the incomplete

vertices. Here some new graphs G′ will be explored and we build spanning trees T ′ for them. Some trees in T get

fully explored. Tw und T ′ are added to T , the tree T2 is deleted.

In the following let dG′(v,w) denote the distance between vertices v and w in the subgraph or tree G′.

G∗ = (V ∗,E∗) denotes the currently known part of G.

The algorithm makes us of the following subdivision of vertices:

non-explored a vertex, which was never been visited before.

incomplete a vertex already visited before but some of the adjacent edges are still non-explored.
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Algorithm 1.10 CFS

CFS( s, r, α )

T := {{s}}.

repeat

Ti := closest subtree of T to s in G∗.

si := vertex of Ti closest to s n G∗.

(Ti,Ti) := prune( Ti, si,
αr
4

, αr
2

).

T := T \{Ti}∪Ti.

explore( T ,Ti,si,(1+α)r ).

Delete fully explored trees from T .

Merge the trees of T with common vertices.

Define a root vertex closest to s in G∗.

until T = /0

prune( T , v, minDist, minDepth )

v := Wurzel von T .

Ti := /0.

for all w ∈ T with dT (v,w) = minDist do

Tw := subtree of T with root w.

if maximale Distanz between v and a vertex in Tw > minDepth then

// Cut-Off Tw from T ab:

T := T \Tw.

Ti := Ti ∪{Tw}.

end if

end for

RETURN (T,Ti)

explore( T , T , si, ℓ )

Move from s to si along shortest path in G∗.

Explore T by DFS. If incomplete vertex occurs, do:

ℓ′ := remaining tether length.

bDFS( v, ℓ′ ).

E ′ := set of newly explored edges.

V ′ := set of vertices of E ′.

Calculate spanning tree T ′ for G′ = (V ′,E ′).
Define root vertex of T ′ closest to s in G∗

T := T ∪{T ′}.

Move back from si to s.
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explored a vertex, that was visited and all adjacent edges have been explored.

Additionally, for the bDFS walk we mark the edges as ’non-explored’ or ’explored’.

Lemma 1.23 The following properties hold during the execution of the CFS–Algorithm:

(i) Any incomplete vertex belongs to a tree in T .

(ii) Until G∗ 6= G, there is always an incomplete vertex v ∈V ∗ so that dG∗(s,v) ≤ r.

(iii) For any chosen root vertex si: dG∗(s,si)≤ r.

(iv) After pruning Ti is fully explored by DFS. All trees T ∈ T have size |T | ≥ αr
4

.

(v) All trees T ∈ T are disjoint (w.r.t. edges).

Proof.

(i) Follows directly from the construction of the trees by bDFS and Pruning. No incomplete vertex is

missing.

(ii) Assume that for all v ∈V ∗ we have dG∗(s,v)> r and let v be an incomplete vertex of V ∗. In G there

is a shortest path P(s,v) from s to v with length ≤ r. Along P(s,v) there is a first vertex w that does

not belong to G∗. Thus its predecessor w′ along P(s,v) belongs to V ∗ and is incomplete. We have

dG∗(s,w′)≤ r.

(iii) Follows from (ii), the root of a corresponding tree T is always the vertex of T closest to s.

(iv) We show the property by successively considering the upcoming trees. Or by induction on the

number of pruning steps. In the beginning the algorithm starts with bDFS at the root s. Either, the

graph will be fully explored and we are done, or bDFS have exhausted the tether of length (1+α)r
and have visited more than (1+α)r edges. The single spanning tree T has size |T | ≥ (1+α)r > αr

4
.

Let us assume that the condition holds for the trees inside T and the next pruning step happens.

Now by the next iteration we are choosing tree Ti with root si closest to s among all trees in T . After

that we prune Ti. The rest of Ti has still size |Ti| ≥
αr
4

since we cut off subtrees Tw with distance

≥ αr
2

away from si. For a corresponding subtree Tw we conclude |Tw| ≥
αr
2
− αr

4
= αr

4
since there is

a vertex inside Tw that is at least distance αr
2

away from s. Now consider the remaining DFS/bDFS

combination on (the rest of) Ti. The distance from s to si is at most r.

Any incomplete vertex in the current Ti has at most distance αr
2

from si otherwise this vertex would

be part of a tree Tw that has to be considered in the pruning step. This means that at any incomplete

vertex there is a rest tether of length αr
2

which can be used for the bDFS part. If the exploration

results in another spanning tree T ′ with incomplete vertices, this tree has size at least αr
2

.

Finally fully explored trees are deleted from T which is not critical. Additionally, some other trees

might be merged and still have incomplete vertices. These trees only grow.

2

Finally, we show:

Theorem 1.24 (Duncan, Kobourov, Kumar, 2001/2006)

The CFS–Algorithm for the constrained graph-exploration of an unknown graph with known depth is

(4+ 8
α)–competitive. [DKK06, DKK01]

Proof. We split the cost for any appearing subtree TR. Let K1(TR) denote the cost for moving from s to si

in G∗. Let K2(TR) denote the cost of DFS for TR and let K3(TR) denote the cost for the bDFS exploration

done for the incomplete vertices starting at TR. The trees are edge disjoint.

The total cost is a sum of the cost for any TR. We have

∑
TR

K3(TR)≤ 2 · |E|, since bDFS only visits non-explored edges (twice).

∑
TR

K2(TR) = ∑
TR

2 · |TR| ≤ 2 · |E|, the cost for all DFS walks.

For K1(TR) we have K1(TR) = 2 · dG∗(s,si) ≤ 2r. The complexity of any TR is at least αr
4

which gives

|TR| ≥
αr
4

for the number of edges. We conclude r ≤ 4|TR|
α and

∑
TR

K1(TR)≤ ∑
TR

2r ≤
8

α ∑
TR

|TR| ≤
8

α
|E|
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Altogether, the algorithm makes (4+ 8
α)|E| step whereas any optimal algorithm visits at least any edge

once. 2

In general we assume that α is a small constant with 0 < α < 1. The above proof works for any

α > 0. The cost of the algorithm for known depth r are within O(|E|/α). More precisely we can show

that actually O(|E|+ |V |/α) steps are made. For this we have a closer look at the cost. bDFS work on

the edges only. The DFS walk work on trees where the number of vertices is the same as the number

of edges. Some of these vertices appear in two trees, so by a factor of 2 we are on the save side. The

movements from s to si are analysed over the size of spanning trees, where vertices and edges are also

the same.

The cost K1(TR) and K2(TR) sum up to
(
2+ 8

α

)
2|V |.

Altogether there is an Θ(|E|+ |V |/α) algorithm for the exploration of arbitrary graphs.

Corollary 1.25 The CFS–Algorithm for the constrained graph-exploration of an unkown graph with

known depth has optimal exploration cost Θ(|E|+ |V |/α).

Now we have some possibilities for extensions. First, we assume that the depth of the graph is

unknown in the beginning. Next we would like to consider weighted edges.

1.5.1 Restricted graph-exploration with unknown depth

Let is now assume that the radius, say R, of the unknown graph G is not known. From a practical point of

view, spending some cable is costly and we would like to extend the tether only if it is necessary. A first

simple idea is that we guess the depth, say r, and successively double its length until the algorithm finally

explores the whole graph. Obviously, the repeated application of the CFS-algorithm runs in O(logr|E|)
step. As shown above we can also refine the analysis of this approach. For any bDFS step we make

use of the already visited edges and directly jump to incomplete vertices (now with larger tether length).

Therefore the bDFS steps are still subsumed by 2|E| steps. But we still have to take the movements to

the roots of the trees into account as well as the DFS movements on the new subtrees. Therefore we have

the following result.

Corollary 1.26 Applying the CFS–Algorithmus by successively doubling the current depth r gives an

algorithm that explores an unknown graph G with unknown depth R with Θ(|E|+(logR)|V |/α) steps.

We will now show that we can get rid of the log-factor by successively adjusting r appropriately. We

only exchange two calls in the main procedure. In principle, instead of the known value r we successively

make use of r := dG∗(s,si), which is the smallest distance from s to one of the roots of the trees in T .

More precisely, we exchange prune(Ti, si,
αr
4

, αr
2

) wird by prune(Ti, si,
αdG∗ (s,si)

4
,

9αdG∗ (s,si)
16

) and

explore(T , Ti, si, (1 + α)r ) by explore(T , Ti, si, (1 + α)dG∗(s,si)). This means that the pruning-

step is done with the values
αdG∗ (s,si)

4
and

9αdG∗ (s,si)
16

and the eplore-step is done with tether length (1+
α)dG∗(s,si).

In the beginning we have dG∗(s,si) = 0, therefore we make use of some fixed constant c in the

beginning and use r := max(dG∗(s,si),c). Let dG∗(s,T ) denote the shortest distance from s to some

vertex in T inside G∗.

Lemma 1.27 For the CFS–Algorithmus with unknown depth R we have the following properties:

(i) Any incomplete vertex belongs to a tree in T .

(ii) There is always an incomplete vertex v ∈V ∗ with dG∗(s,v) ≤ r, until G∗ 6= G.

(iii) For the closest root si we have: dG∗(s,si)≤ r.

(iv) For all trees T ∈ T we have |T | ≥ max(dG∗ (s,T ),c)α
4

. After pruning the remaining tree will be fully

explored by DFS.

(v) All trees ever considered in T are (edge) disjoint.
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Proof. For the proof of (i),(ii),(iii) and (v) we apply the same arguments as in the proof of Lemma 1.23.

It remains to show that (iv) holds. The main difference is that the size of a tree T is directly correlated to

the distance from s to T , this is different from the previous argumentation.

Let us first show that the remaining tree Ti (after pruning) will be fully explored by DFS. For any

vertex v in Ti we have dTi
(si,v)≤

9dG∗ (s,si)α
16

, otherwise v has been cut of by pruning. Thus we have

(1+α)dG∗(s,si)−dG∗(s,si)−dTi
(si,v)≥

7dG∗(s,si)α

16
,

which shows that the tether is long enough Ti will be fully explored by DFS.

By induction over the number of pruning steps we will finally show: ∀T ∈ T : |T | ≥ max(dG∗ (s,T ),c)α
4

.

In the beginning we apply bDFS from the start with tether length c. Either we explore the whole

graph or we have |T | ≥ (1 + α)c > αc
4

for the resulting spanning tree T . For simplicity we assume

dG∗(s,Ti)> c from now on.

We would like to show that for any tree Tw, resulting from the pruning of some Ti, we have |Tw| ≥
dG∗ (s,Tw)α

4
. Also the remaining tree Ti has this property.

For the remaining tree Ti (after pruning), we conclude dG∗(s,Ti) = dG∗(s,si) and pruning guarantees

|T | ≥ dG∗ (s,T )α
4

. For a tree Tw pruned from Ti we have: |Tw| ≥
9dG∗ (s,si)α

16
− dG∗ (s,si)α

4
= 5

dG∗ (s,si)α
16

by the

pruning values. Additionally, we have dG∗(s,Tw) ≤ dG∗(s,si)+ dG∗(si,w) = (1+ α
4
)dG∗(s,si), since the

root w of Tw is exactly
αdG∗ (s,si)

4
steps away from s. Für 0 < α < 1 we conclude: dG∗(s,Tw) <

5dG∗ (s,si)
4

and together with the above inequality we have |Tw|>
dG∗ (s,Tw)α

4
.

Finally, we have to analyse the emerging spanning trees Tv, which will be constructed from the bDFS

steps starting during the DFS walk in Ti. Such a tree Tv starts at some incomplete vertex v in Ti. We

have dG∗(si,v) ≤
9αdG∗ (s,si)

16
, otherwise v would have been pruned and could not be a leaf of the rest of Ti

any more. Thus we have dG∗(s,Tv)≤ dG∗(s,si)+dG∗(si,v) <
25dG∗ (s,si)

16
or dG∗(s,si)>

16dG∗ (s,T ′)
25

. If Tv is

fully explored, we are done, since the tree will be deleted. Assume that Tv still has incomplete vertices.

As mentioned above we have dT (si,v) ≤
9αdG∗ (s,si)

16
. Starting from v there was a remaining tether length

of
7αdG∗ (s,si)

16
for the construction of the incomplete Tv, which gives |Tv| ≥

7αdG∗ (s,si)
16

. Application of

dG∗(s,si)>
16dG∗ (s,Tv)

25
gives |Tv|>

7αdG∗ (s,Tv)
25

> dG∗ (s,Tv)α
4

. Either we have explored everything behind v or

the spanning tree Tv has size |Tv|>
dG∗ (s,Tv)α

4
.

We have considered any emerging T ∈ T ! 2

Theorem 1.28 (Duncan, Kobourov, Kumar, 2001/2006)

Applying the CFS–Algorithm with the adjustments above results in a correct restricted graph-exploration

of an unknown graph with unknown depth. The algorithm is (4+ 8
α)–competitive. [DKK06, DKK01]

Proof. We apply the same analysis as in the proof of Theorem 1.24. For the analysis of the movements

from s to the roots of the trees we make use of the correlation |TR|>
dG∗ (s,TR)α

4
. 2

For the number of steps we can also refine the analysis, analogously.

Corollary 1.29 The above CFS–Algorithm for the restricted exploration of an unknown graph with

unknown depth requires Θ(|E|+ |V |/α) exploration steps, which is optimal.

Finally, we would like to argue that the usage of a look-ahead of αr is necessary for attaining linear

optimal exploration cost (i.e., in comparison to |E| and |V |. This can be shown for the accumulator

variant as follows. First, it is clear that an accumulator of size 2r is not sufficient for exploring all edges.

The graph in Figure 1.32 has depth 6, but exploring all edges requires an accumulator of size 13.

This means that an accumulator size 2r+1 is necessary. We show that an accumulator of size 2r+d

for constant d is not sufficient in the sense of performing no more than C · |E| exploration steps.

Lemma 1.30 For the accumulator variant with accumulator size 2r+d for constant d, there are exam-

ples do that any algorithm attains at least Ω
(

|E|
3
2

)

exploration steps.
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S

Figure 1.32: A graph of depth r = 6 that cannot be explored by an accumulator of size 2r.

Proof. We consider the following example as given in Figure 1.33. Starting from s there is a path of

length n
2

that visits a clique of size n
2
+ 1. Moving forth and back along the path requires n steps, the

depth of the graph is n
2
+1. Exploration with accumulator size n+2+d means that we have to visit the

clique Ω
(

n2

d

)

times since the clique has Ω
(
n2
)

edges. This gives Ω
(

n2

d
·n
)

= Ω
(
n3
)

exploration steps.

The statement follows from |E| ∈ Θ(n2). 2

S

Figure 1.33: A graph with n+ 1 = 13 vertices. A path of length n
2

visits a clique of size n
2
+ 1. Any accumulator

strategy with accumulator size n+ 2+ d requires Ω(n3) steps.

With a similar argument we conclude that an sub-linear extension of the accumulator, i.e., size 2r+
o(r), is not sufficient for attaining a linear cost strategy. Let us briefly repaet the small-o notation. For real

valued functions or series f and g we define f ∈ o(g), if and only if limr→∞
f (r)
g(r) → 0 holds. Therefore we

conclude r ∈ o(r2), c ∈ o(r) for any constant c and also 1
r
∈ o(1). By the above arguments and example

we can show that Ω
(

n3

f (n)

)

exploration steps are necessary for an accumulator of size n+2+ f (n). For

f (n) = n1−ε (this means f ∈ o(n)) we have to perform Ω(|E|1+ε) exploration steps.

Note, that for the tether variant up to our knowledge there is no such statement that a tether of length

r+o(r) is necessary for attaining O(|E|) exploration cost.

We have shown that we can explore any graph (online and offline) with at most Θ(|V |+ |E|) explo-

ration steps. These are the pure cost for the motion of the agent. In the literature this is also denoted as

the mechanical cost; see also [?]. Besides, there are also some computational cost, for the planning and

preparation of the strategy.

For example the computational cost of the CFS-Algorithm have to be analysed for the following

tasks:

• Build the spanning trees

• Update the shortest paths to the trees of T

• Merge the trees

• Detect fully explored trees

• Prune a tree

• Maintain the list T

• Apply DFS/bDFS
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For unit-lenght edges some of the above tasks can be done very efficiently. The overall approach can

be easily extended to weighted graphs (positive edge weights).

Exercise 10 Analyse the computational cost for the CFS-Algorithm in O−notation for |E| and/or |V |.

Exercise 11 Show that the CFS-Algorithm approach also works for graphs with positive edges weights.

How do we have to adjust the CFS-Algorithm?

1.5.2 Mapping eines unbekannten Graphen

Finally, in this section we would like to show the influence of different capabilities of the agent. Up to

now we assumed that an already visited vertex or edge will be recognized at the next visit. This means

that we have marked any visited edge and vertex.

Let us now assume that the agent cannot mark parts of the environment. We do not have any land-

marks. We still assume that we have enough storage for constructing the sub-graph detected so far.

The following model is taken from Dudek et al.; see[?]. The agent has no orientation and no compass.

At any vertex the outgoing edges are presented in the same order. This order need not represent a planar

embedding. If the agents visits the vertex from different incoming edges, the order will be consistent.

This means that there is a fixed cyclic order, the relative presentation of the order stems from the edge

where the agent currently comes from. Figure ?? shows an example of a relative order. By this order,

the agent knows where he was coming from and can also return to this vertex. Since the storage is not

limited, it is possible to remember a return path. Let us for example assume that the agent visits vertex

v2 by edge e1 and then visits the second edge e3 in ccw-order from e1. If the agent moves back along

e3 to v2, it already knows that it was recently coming from the first edge in ccw order, which is e1. The

agent can make use of this return path. If the agent visits a vertex in a forward step, it has no idea which

of the vertices the visited vertex actually is.

Is it possible to build a map of the graph and to locate oneself inside the graph? The offline input is

a triple G = (V,E,S), where by S for any vertex the cyclic local order of the edges is given.

First, it is easy to see that without further capabilities, one can not fully detect a given graph. Fig-

ure 1.34 shows two different regular graphs of fixed degree 3. For an agent the information on any vertex

is exactly the same. It is not possible to distinguish between the two variants. At least one marker is

necessary.

Figure 1.34: Two different regular graphs of degree 3, an agent cannot distinguish them without a marker.

Corollary 1.31 Let G = (E,V,S) be a graph with local cyclic edge order- Without a marker an online

agent cannot build a correct map of the graph.

Exercise 12 Give a formal argument that the graphs in Figure 1.34 are different. Which class of graphs

can be correctly detected by an online agent without a marker?
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A single marker (or pebble) is sufficient as shown by Dudek et al. [?]. We describe the corresponding

Marker-Algorithm. The algorithm maintains the current known graph G∗ and a list L of non-determined

(seen but not correctly detected) edges. In the beginning the starting vertex is known and its outgoing

edges belong to L. They are given in the cyclic order.

In the main step, the algorithm choose an edge e of L starting at a detected vertex b and moves to a

vertex u along the edges e = (b,u). Now the agent sets the marker on u, moves back to b along e and

searches for the pebble in G∗.

Case 1: The pebble was not found in G∗. In this case we add the edge e = (b,u) to G∗ w.r.t. the cyclic

order. All outgoing edges of u different from e will be inserted into the list L of non-determined edges.

Case 2: The marker has been found at some vertex v ∈ G∗. If there is more than one non-determined

outgoing edges at v = u, we cannot precisely detect e. Therefore we take the marker, move back to b,

place the pebble there, move back to v again and successively check the non-determined edges. Finally,

we will detect the edge e and add it to G∗ by the local order.

The above algorithm is simple and correct. By construction in any step an additional edge will be

correctly detected. The number of exploration steps is restricted by O(|E|× |V |) whereas the computa-

tional cost are bounded by O(|E|2 + |E||V | log |V |). We assume that the graph is not a multigraph and

has no loop edges (v,v). Besides, we assumed that we any edge has unit-length.

Theorem 1.32 (Dudek, Jenkin, Milios, Wilkes, 1991)

Let G = (E,V,S) be a graph with given cyclic local order of the edges. By the use of one marker it is

possible to fully detect the structure of the graph by online navigation with O(|E|×|V |) exploration steps

and also overall O(|E|× |V |) computational cost.

Proof.

Let G∗ = (V ∗,E∗,S∗) be the current graph during the execution of the Marker-Algorithm. Setting

the marker has cost O(1), searching for the marker in G∗ can be done by DFS by O(|V ∗|) steps. Moving

back and force along a path can be done in O(|V ∗|) steps as well. The traversal cost are considered for

any edge, which gives O(|E|× |V |) steps in total.

For unit-edge length the computational cost are precisely the same for any edges we have to compute

the shortest paths between two vertices. The effort is bounded by O(|V ∗|). This gives O(|E|× |V |). 2

Exercise 13 Explain why the cyclic order of the edges is necessary for the above Marker-Algorithm.

Where is it used during the execution of the algorithm?

Exercise 14 Analyse the mechanical and the compuational cost of the marker algorithm for graphs with

positive edge weights.
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