
Rheinische Friedrich-Wilhelms-Universität Bonn

Mathematisch-Naturwissenschaftliche Fakultät

Theoretical Aspects of Intruder Search

MA-INF 1318 Manuscript Wintersemsester 2015/2016

Elmar Langetepe

Bonn, 19. October 2015

The manuscript will be successively extended during the lecture in the Wintersemester. Hints
and comments for improvements can be given to Elmar Langetepe by E-Mail

elmar.langetepe@informatik.uni-bonn.de. Thanks in advance!

I

II

Contents

1 Introduction 3

1.1 Introductory examples . 3

1.1.1 Protecting parts of a polygonal area from a set of intruders 4

1.1.2 Catching an evader in a grid world . 5

1.1.3 Enclosing a fire by a single circle . 8

1.1.4 Simulation and conjecture for a discrete spiral strategy 9

2 Discrete Scenarios for Contaminations 11

2.1 Graphs . 11

2.1.1 Polynomial time algorithm for special graphs 11

2.1.2 NP-Completeness for graphs . 14

2.2 Trees . 14

2.2.1 Greedy approximation for a tree . 14

2.2.2 Exponential time algorithm for general trees 16

2.2.3 Capture of an Intruder by moving agents 19

2.2.4 Existance of monotone strategies . 20

2.2.5 Designing a monotone strategy for unit weights 25

2.2.6 Optimal contiguous Intruder Search Strategy for unit weights 27

2.2.7 Lower and upper bound for the contiguous search 30

2.2.8 The prize of connectivity . 32

3 Discrete Cop and Robber game 35

3.1 Classifications of graphs . 35

3.1.1 Simple examples and pitfalls . 35

3.1.2 Algorithmic approaches . 36

3.1.3 How many cops are required? . 38

4 Randomized variants 45

4.1 Better approximations for trees by randomization 45

4.2 Search numbers for random fire sources . 47

1

2 CONTENTS

Chapter 1

Introduction

In this lecture we consider intruder and evader problems from an algorithmic point of view. We
discuss problems in the context of motion planning in discrete and continuous environments.
Discrete environments will be mainly defined by graphs whereras in the continuous case we will
make use of the Euclidean plane or subsets of the Euclidean plane.

Generally, there is a set of searcher (or guards) and another set of intruder (or evaders) that com-
pete with each other. The intruder tries to escape from the searcher in the given environment.
The other way round the guards would like to protect a certain area from the intruder. Intruder
and searcher can have different facilities or sensors. There is always some kind of dynamics, the
searcher and/or the intruder can move or perform tasks over time.

The intruder search problem might also be considered as a scenario for the cleaning or the
enclosure of a spreading contamination. For any moment in time the current contamination
represents all possible remaining positions of the intruder. So the task of the searcher is to
reduce the number or to bound the area of these positions and to give a guarantee where the
intruder is located.

More precisely, from a theoretical point of view we would like to answer the following questions:

• Computational complexity (i.e. existence of a strategy, question for the number of guards
required, running time for the computation of a strategy)

• Correctness or Failure (i.e. success of a given strategy, limits of the strategy)

• Efficiency (i.e. number of steps or path length required for a given strategy, area saved by
the guards)

• Optimality (i.e. cost measures for the efficiency and its analysis)

We will also see that there are many interesting open questions. Sometimes simulations will be
helpful for getting more insight into the problem and a conjecture for a solution. Additionally,
the usage of simulation tools will be part of this lecture.

1.1 Introductory examples

In the following we would like to discuss some simple introductory examples and relate it to
the above questions. This gives some insight into the nature of the problems we would like to
discuss and also shows the variety of methods that will be applied.

3

4 CHAPTER 1. INTRODUCTION

ai
2

Ai
Bi

Ci

Di

s

r

Ai+1

ai+1
2

di√

r2 −
(
ai
2

)2
= xi

C ′i
h

h

Figure 1.1: Constructing a polygon with doors for a set of n integer a1, a2, . . . , an. The radius r
and the speed v are chosen appropriately so that after t+ 0.5 time steps the intruders can reach
any point C ′i but before t time steps no point Bi can be reached.

1.1.1 Protecting parts of a polygonal area from a set of intruders

Let us assume that we have a simple room modeled by a polygonal area P (a simple polygon)
and there is a set of n doors that can be closed successively. Additionally, there is a set of
intruders starting at some point s. The intruder moves with speed v. For a given set of n doors
each door can protect the area behind the door. The time for closing a single door di is given
by a value ai. Any door di protects a portion Ai of the polygon from the intruders. (Somehow
it makes sense that the time ai for closing the door is proportional to the area Ai that can be
saved by di.) We would like to close as many doors as possible, thus maximizing the portion
that cannot be entered by the intruders. The doors can only be closed one after the other.

The question is, which doors should be closed successively, so that the intruders cannot enter
the part of the polygon behind the doors. We would like to maximize the area that will be safe.
As a matter of computational complexity we show that this problem is NP -hard.

Optimal-Closing-Sequence
Instance: A simple polygon, a set of n intruders with starting positions and speed 1, a set of
m doors that can be closed successively in time ci and saves area Ai.
Output: Compute the optimal sequence of doors that has to be closed for maximizing the area
saved.

Theorem 1 Computing the optimal closing-sequence for a set of doors in a polygon is NP-hard
in general.

Proof. The subset-sum problem can be reduced to our problem. We have n integer numbers
a1, a2, . . . , an and a integer threshold t and we are searching for a subset-sum, so that the sum
does not exceed t but is as close as possible to t. 1 The subset-sum problem will be transformed
into our problem as depicted in Figure 1.1. We make use of a circle Cr of radius r. Let s be
the center of the circle. Along the boundary we use non-intersecting secants of length ai with
endpoints Ai and Di in clockwise order. A ray starting at s and running through the midpoint

1Note that partition can be reduced to the subset-sum problem.

1.1. INTRODUCTORY EXAMPLES 5

Bi of each secant hits the boundary of Cr at some point Ci. Along the segment BiCi we use a
point C ′i a fixed distance h away from Bi. For the construction of the polygon we use the chain
Ai,Bi,C

′
i,Di and connect Di with Ai+1 and also finally Dn with A1. There is a door di for each

pair of points Bi and Di. This door can be closed within ai time steps and saves a region of
area ai·h

4 proportional to ai.

Now we choose the speed v so that v(t+ 0.5) = r holds. This means that after t+ 0.5 time steps
an intruder can reach any C ′i. Additionally, we have to take care that after t time steps, none
of the entry points Bi closest to s can be reached by an intruder. Therefore, we choose r large

enough so that vt < xi =
√
r2 −

(
ai
2

)2
holds. Substituting v by r

(t+0.5) gives

(ai
2

)2
<

(
1− t2

(t+ 0.5)2

)
r2

which can be fulfilled for any ai.

Altogether, after t+ 0.5 time steps any entrance point Bi could be passed but after t time step
none of the entrance points have been visited. If we would like to save the maximum area from
the intruders, we have to compute a maximum sum of values ai not exceeding t+ 0.5 but beeing
as close as possible to t. This gives a solution for the subset-sum problem.

Conversely, for a solution of the subset-sum problem we obtain the maximum sum of values ai
smaller than t, thus we save a maximum area if we close the corresponding doors successively.

2

Exercise 1 Make use of the GeoGebra-tool and compute an interactive construction of the above
reduction for a finite set of elements a1, a2, . . . , an. Give examples a1, a2, . . . , an and t where the
subset-sum question is answered with Yes and with No, respectively.

1.1.2 Catching an evader in a grid world

The next example considers a discrete problem variant and a different intention.

There is some evader that can move in a rectangular grid world and a guard would like to enclose
and catch the evader. For the enclosement and for catching the evader the guard can block and
check cells of the grid while the evader is moving. The evader starts at a single cell and can
visit the cells of the 4Neighborship in one step or could stay in its current cell. Simultaneously,
the guard can block or check k of the cells. Any cell that was blocked cannot be entered by the
evader anymore. In order to synchronize the movements we first let the evader move and then
the guard can choose its k blocking and checking cells; see Figure 1.2.

We do not have an idea of the strategy of the evader. Therefore, simply all possible locations of
the single evader will be considered and marked by red circles. The blocked cells and checked
cells are marked by black circles. We would like to find an efficient strategy for the guard. That
is, we would like to enclose the evader as fast as possible. After that the guard simply checks
all the remaining red cells. The game ends when there is no single red cell any more.

Evader-Enclosement (Grid-Graph):
Instance: A rectangular grid, a start vertex s of the evader and k protecting guards per time
step.
Output: Compute a protection strategy that encloses the evader (and finally find the evader).

We first discuss failure and correctness for different values of k, we will see that some machinery
is necessary.

Lemma 2 Catching an evader in a grid world by setting k = 1 blocking cells after each move-
ment of the evader cannot succeed in general.

6 CHAPTER 1. INTRODUCTION

s

k = 2

Figure 1.2: The evader starts at s. In the first step he can move to the adjacent vertices of the
grid. For k = 2 the guard blocks and checks two cells afterwards. Now the evader can move on.

Proof. We show that the evader always has an escape strategy. Or the other way round, a
guard can never cancel out all cells marked red.

For a formal proof we show that it is already impossible to catch the evader in a single quadrant
of cells. The evader starts at the source of the quadrant, also called root in the following; see
Figure 1.3. For any step l ≥ 1 let Dl denote the set of vertices that are distance l away from
the root vertex. This means, that these cells lie on the l-th diagonal of the quadrant.

Let rl denote the number of blocked cells in Dl+1, Dl+2,. . . at the end of the l-th step. The
blocked cells in Dl+1, Dl+2,. . . can be considered to build a reserve for the future. Let Bl ⊆ Dl

denote the number of red cells at the end of the l-th step distance l away from the root. We
have r0 = 0.

By induction we show that Bl ≥ 1 + rl holds for all l ≥ 1. In the first step l = 1 the evader can
move to both vertices of D1 and the guard can block a single cell, either in Dt for t = 0, 1 or in
Dt for t > 1. The latter one means r1 = 1. In any case we have B1 ≥ 1 + r1.

Let us assume that the statement holds after l ≥ 1 steps. We can assume Bl ≥ 1 + rl. This
means that in step l the evader can visit rl + 1 + 1 cells in diagonal Dl+1. But some of them
might already be blocked by the reserve and another one can be blocked by the guard in this
step. Let us assume that there are x ≤ rl blocked cells in Dl+1.

This means that at first (the evader moves) we have Bl+1 ≥ 1 + 1 + rl − x red cells in Dl+1.
Now the guard can block another cell in step l also. Either in Dt for t ≤ l, in Dt for t = l + 1,
or in Dt for t > l + 1.

In the latter case we have rl+1 = 1+rl−x and in the former cases we have rl+1 = rl−x. Now the
guard can only reduce Bl+1 by blocking a vertex in Dl+1. In any case we have Bl+1 ≥ 1 + rl+1

which gives the conclusion. 2

Note that for the pure enclosement of the evader it seems reasonable that in step l the guard
should never block a cell that was marked by a red circle in one of the previous rounds < l.

Exercise 2 Give a formal argument for the fact that a fast guard strategy should first enclose
the evader and then check the remaining cells. This means that in step l the guard strategy will
not choose a red marked vertex that was marked in a step < l until the evader cannot move
anymore.

1.1. INTRODUCTORY EXAMPLES 7

s

1

2

D1 D4

Figure 1.3: The situation for k = 1 after step 2. We have r2 = 1 and B2 = 1 + r2 = 2.

s

1

1

1

1

2

2

2

2

2

3

3

3

3

3

4

4

4

4

4

5

5

5

5

5

6

6

6

6

7

7

7

8

8

Figure 1.4: For k = 2 there is a guard strategy that encloses the evader after 8 steps. Now the
evader can be catched by checking the remaining 18 cells.

Fortunately for k = 2 there is a successful strategy. We can just give the sequence of steps for
the enclosement as presented in Figure 1.4. After that the remaining cells can be cleaned.

Lemma 3 There is a successful guard strategy for k = 2. The evader can be enclosed after 8
steps. With 9 additional steps the evader will be catched.

Proof. By construction; see Figure 1.4. 2

The above situation can also be considered as the problem of containing a spreading fire. We
slightly change the rules of the game. Let us assume that the firemen first blocks k cells and
then the fire can spread from the source s to its neighboring cells. A burning cell can never be
blocked any more.

In this sense and for k = 2 a firemen can enclose a spreading fire in 8 steps as depicted in
Figure 1.4. Here only 18 vertices get burned. We give a formal proof that this is optimal.

Lemma 4 For the outbreak of a fire on a single source in a grid and the usage of two firefighters

8 CHAPTER 1. INTRODUCTION

per time step any successul strategy encloses an area of at least 18 burning vertices. This bound
is tight.

Proof. For the proof of the statement we make use of an Integer Linear Program as follows. We
already know that it is possible to enclose 18 burning cells by the strategy given in Figure 1.4
in 8 time steps. Therefore we make use of a fixed constant T > 8 for the number of time steps.
Additionally, we use a grid of size l × l for another fixed constant l.

Let L = {(x, y)||x| ≤ l and |y| ≤ l} and 0 ≤ t ≤ T . For v ∈ L let N(v) denote its 4Neighborship
in L. For the Integer Program we use the following variables for v ∈ L.

bv,t =

{
1 : vertex v ∈ L burns before or at time t
0 : otherwise

dv,t =

{
1 : vertex v ∈ L is defended before or at time t
0 : otherwise

We would like to minimize the number of vertices that become burned.

Minimize
∑

v∈L bv,T

so that bv,t + dv,t − bw,t−1 ≥ 0 : ∀v ∈ L, v ∈ N(w), 1 ≤ t ≤ T
bv,t + dv,t ≤ 1 : ∀v ∈ L, 1 ≤ t ≤ T

bv,t − bv,t−1 ≥ 0 : ∀v ∈ L, 1 ≤ t ≤ T
dv,t − dv,t−1 ≥ 0 : ∀v ∈ L, 1 ≤ t ≤ T

∑
v∈L(dv,t − dv,t−1) ≥ 2 : ∀1 ≤ t ≤ T

bv,0 = 1 : v ∈ L is the origin (0, 0)

bv,0 = 0 : v ∈ L is not the origin (0, 0)

dv,0 = 0 : ∀v ∈ L
dv,t, bv,t ∈ {0, 1} : ∀v ∈ L, 1 ≤ t ≤ T

The first inequality triggers the spread of the fire. The neighbor of a burning vertex is either
blocked or it burns in the next step. Note that with this condition any vertex can also burn
accidently. But this will not happen in the optimal solution. The next inequality prevents
a defended vertex from burning and a burning vertex from beeing defended. The next two
inequalities take care that the status of the vertices remains the same after burning or beeing
defended. The sum condition refers to the number k = 2 in any step. Initially only one vertex
is burning and no vertex is defended. Finally, the program gets binary.

The corresponding program was run for example by Develin and Hartke [] and for l = 6 and
T = 9 and the origin (0, 0) the solution of Figure 1.4 was achieved. 2

The above proof is an example where we make use of a computer aided process for the conclusion
of a theoretical proof. With similar arguments it is also possible to show that 18 vertices cannot
be enclosed within less than 8 steps.

1.1.3 Enclosing a fire by a single circle

In the last section we have seen that catching an evader and the enclosement of a fire are
very similar problems which can be formulated in a similar model. Let us consider the fire
containment problem in the following continuous setting.

The fire is already burning for a while and the fire spreads into any direction with the same unit
speed 1. There is a single firefighter which can build a firebreak with speed v > 1. Geometrically

1.1. INTRODUCTORY EXAMPLES 9

Figure 1.5: The firefighter builds a firebreak of length t with speed v > 1 and the fire expands
from the source with speed 1. The circular strategy is successful here.

we can assume that in the beginning of the game the fire is a circle of radius A from a source
C and the circle grows with speed 1 while the firefighter builds a path t with speed v > 1; see
Figure 1.5. We call this the geometric firefighter problem.

Geometric Firefigther Problem
Instance: A circle with center C of radius A that grows with unit speed. An agent who builds
a firebreak with speed v > 1
Output: Compute a strategy that finally fully enclose the spreading fire.

A simple question is: How fast must the firefighter be in order to enclose the fire by a single
circular loop around the source of the fire? Let us assume that we can choose an arbitrary
starting point p for the firefigther.

Lemma 5 Enclosing a fire of extension A with a single circular loop around the source of the
fire is possible, if and only if the speed v of the firefigther is larger than 2π.

Proof. We assume that the fire source is given by the origin and we choose a point p = (A+x, 0)
away from the fire. A single circular loop around the origin has length 2π(A + x) and takes
2π(A+x)

v time. We can enclose the expanding circle if this is smaller than or equal to x. This
gives 2πA

x + 2π ≤ v. For v > 2π there will always be an x so that the inequality holds. For
v ≤ 2π we can never fulfill the required inequality. 2

Exercise 3 Consider the above circular strategy. Assume that it is allowed to move along an
arbitrary circle (around an arbitrary center). Is it possible to improve the above bound? I.e., is
the above bound tight for arbitrary circles or can we always succeed with a circle and speed less
than 2π?

1.1.4 Simulation and conjecture for a discrete spiral strategy

Finally, we would like to motivate that in some settings it is helpful to make some simulation.
We would like to enclose a spreading contamination in a grid world and apply a strategy that
always moves close to the boundary of the contamination. The agent has to move from one cell
to the other and can build a wall as in the previous setting. The agent either moves clockwise
or counterclockwise around the starting contamination. We assume that the contamination is a
grid square in the beginning.

10 CHAPTER 1. INTRODUCTION

Figure 1.6: The fire spreads after 30 steps and the agent build a wall cell within 5 time steps.
The lefthandside figure shows the situation after 30 time steps. The contaminations is enclosed
in a single loop after a few more steps.

Figure 1.7: The fire spreads after 30 steps and the agent build a wall cell within 15 time steps.
After a while it seems that the spiral strategy will not succeed.

Parameters: Moving from one cell to the other takes one time step. Building a wall element
and cleaning a cell takes b time steps. After n time steps the contamination spreads. This means
that the 4Neighborship of any contamintated cell becomes contaminated but cells that contain
a wall element cannot be contaminated anymore.

Discrete Firefigther Problem
Instance: A grid contamination some size B that spreads to its 4Neighborship after n time
steps. An agent who cleans a cell, builds a wall and leaves the celle within b time steps.
Output: Compute a strategy that finally fully enclose the spreading fire.

Figure 1.6 shows an example for a 3× 3 starting contamination with a single agent, b = 5 and
n = 30 after exactly 30 time steps and when the task is finished. Figure 1.7 shows the case
where n = 30 and b = 15, the spiral strategy does not succeed.

Experiments from the thesis of Smiegilski [] give the following conjecture.

Conjecture 1 For a grid fire thats spreads after n time steps and an agent that builds a wall
within b time steps, the spiral strategy only succeeds if b < n−1

2 holds.

Chapter 2

Discrete Scenarios for
Contaminations

In this chapter we would like to discuss several results on the firefigther or intruder problem
on discrete graph structures. The main problem is NP-complete already for trees but there are
some variants that can be solved in polynomial time. Besides there are efficient approximation
schemes.

We consider dynamic problems for connected graphs G = (V,E) with a root vertex r where the
fire or contamination starts only at r. At each time step the firefigther can protect p vertices
that are not contaminated. Afterwards the contamination spreads to all unprotected vertices
neighboring a contaminated vertex. A protection strategy describes the sequence S of vertices
that will be protected over time.

Firefighter Decision Problem for Graphs (Saving k vertices):
Instance: A Graph G = (V,E) of degree d with root vertex r and p guards per step and an
integer k.
Question: If the fire breaks out at vertex r, is there a protecting strategy so that at least k
vertices can be protected?

An optimal protection strategy protects the maximum number of vertices. The problem is NP-
complete already for trees of small degree. This general proof is a bit technical and would take
some time so we will use a somewhat simpler proof for NP-completeness on graphs.

2.1 Graphs

2.1.1 Polynomial time algorithm for special graphs

Let us assume that the degree d of the vertices of G is bounded to 3. Thus it only makes sense
to set p to one. Otherwise the game ends in the very beginning. If the start vertex has degree
2, there is a simple polynomial time algorithm. In principle we force the fire to spread along
a path until finally some vertex is enclosed. The running time depends on the nature of this
vertex.

We first introduce this measure and a corresponding strategy for all vertices u of G. Let dist(u, r)
denote the length of a shortest path from r to u. Let V1 denote all vertices of degree 1 and let
V2 denote all vertices of degree 2 and let Vc denote all vertices of degree 3 that belong to a cycle.
Let C(u) denote the smallest cycle containing u. The following Lemma shows how long it could
take to enclose a vertex u which is finally on fire; see also Figure 2.1.

11

12 CHAPTER 2. DISCRETE SCENARIOS FOR CONTAMINATIONS

r

v ∈ V2
w ∈ Vc

1v

2v

3v

1w

2w

3w

4w

5w

C(w)

6w

Figure 2.1: Protecting a vertex v ∈ V2 and w ∈ Vc. The blue and red path denotes the shortest
path. The labels iv and jw denote the vertices that will be protected at step i and j until v and
w are finally enclosed, respectively.

Lemma 6 A vertex u ∈ V1 ∪ V2 can be enclosed in time dist(u, r) + 1 and only dist(u, r) + 1
vertices are on fire. A vertex u ∈ Vc can be enclosed in time dist(u, r) + C(u) − 1 and only
dist(u, r) + C(u)− 1 vertices are on fire.

Proof. For the above statements we simply follow a shortest path from r to u. In each time
step we defend the vertex that is adjacent to a burning vertex but not on the path to u. This
shows the property for all u ∈ V1 ∪ V2.
For u ∈ Vc after dist(r, u) + 1 time steps we are reaching u. For the remaining steps we protect
the vertex not on C(u) but with a burning neighbor. Thus we encircle u in any case. 2

Now we would like to prove a structural property for an optimal strategy. The first protected
vertex can always be one of the neighbors of r and after that it also suffices to always defend
the vertices neighboring the fire as the following Lemma shows.

Lemma 7 For a setting (G, r, 1) where G has maximal degree 3 and root r has degree ≤ 2 there
is always an optimal protection strategy that protects the neighbor of a contaminated vertex in
each time step.

Proof. If r has degree 1, the statement is trivial. So let r be of degree 2, assume that the
statement is false and let (G, r, 1) be a minimal counterexample. Let v1 and v2 be the neighbors
of r. If there is an optimal strategy that first protects the neighboring vertex v1 of r, let G′

denote the Graph that is attained by deleting r and v1. Thus (G′, v2, 1) is also a counterexample
that contradicts the minimality.

So we can assume that in a minimal counterexample in the first step neither v1 nor v2 will be
protected. Let u be the vertex protected first with shortest path distance ≥ 2 to r.

Consider the end of the optimal strategy. If u has no burning neighbor, the strategy could
not have been optimal. If u has only one burning neighbor, we can improve the strategy by

2.1. GRAPHS 13

protecting this neighbor in the first step. If there are two neighbors of u that are burning at the
end of the strategy, the vertex u lies on a cycle which is completely burned except for u. Thus
the strategy implied in Lemma 6 for one of the neighbors of u is an optimal variant. 2

Exercise 4 Show that the statement of Lemma 6 does not hold for a degree 3 starting vertex.
Present a non-trivial example for the optimal strategy of a graph G of degree 3 and root vertex
of degree 2 based upon the above calculations.

Finally, we suggest the following strategy. Let

f(u) :=





dist(u, r) + 1 : if u ∈ V1 ∪ V2
dist(u, r) + C(u)− 1 : if u ∈ Vc \ V2
∞ : otherwise

and find a vertex u with f(u) = minx∈V f(x). Enclose this vertex by the path strategy.

Theorem 8 For a problem instance (G, r, 1) of a graph G of maximum degree 3 and a root
vertex of degree 2 the above strategy is optimal.

Proof. In Lemma 7 we have shown that there is always an optimal strategy that protects the
neighbor of a contaminated vertex. Let u be one of the vertices burning last. If u has degree 1
or 2, we require at least d(r, u) + 1 time steps and d(r, u) + 1 are burning, which is optimal.

If u has degree one there are three neighbors n1, n2 and n3. If only one neighbor n1 is on fire,
u, n2 and n3 lie on a cycle that is totally burning, a contradiction to the path strategy.

So let us assume that two neighbors n2 and n3 of u are protected and one neighbor n1 is on fire.
There should be another neighbor of either n2 or n3 that is on fire. If this is not the case, we
could have blocked u one step earlier. This means that one of the neighbors n2 or n3 of u has
to build a cycle C(u) with u and n1 so that any vertex of this cycle burns except for u. In this
case the above strategy optimizes the best such cycle and is as least as good as the optimum.

Since the degree is bounded, there are no other cases. 2

Theorem 9 For a problem instance (G, r, 1) of a graph G = (V,E) of maximum degree 3 and a
root vertex of degree 2 the decision problem can be solved in polynomial time and the maximum
number of vertices that can be saved is |V | −minx∈V f(x).

Proof. By the above considerations. Just compute f(x) for every vertex x ∈ V taking the
shortest path and the smallest cycle into account. 2

Exercise 5 Analyse the precise running time for the computation of the optimal strategy. That
is, present an algorithm and its running time that computes f(x) for every vertex x ∈ v effi-
ciently.

Lemma 6 suggests to always choose a vertex close to the fire. For an arbitrary given tree with
root r it seems that this is also the best option we will prove this statement in Lemma 12. It
seems that for trees a greedy approach could be optimal but this is not the case as Section 2.2.1
shows.

14 CHAPTER 2. DISCRETE SCENARIOS FOR CONTAMINATIONS

2.1.2 NP-Completeness for graphs

Theorem 10 The firefighter decision problem for graphs is NP-hard.

Proof. We reduce the k-Clique problem to the firefigther problem. So let G = (V,E) be a
graph and k an integer: Is there a Clique of size k inside G? This question is known to be
NP-complete. We assume that G has at least k+ 1 non-isolated vertices. Otherwise the answer
is trivial.

For such a graph G we construct a bipartite graph G′ as follows; see Figure 2.2. For every vertex
v ∈ V we construct a vertex sv of V ′ and for every edge e = (u, v) ∈ E we construct a vertex se
of V ′. For edge e = (u, v) we construct two edges (su, se) and (sv, se) in E′.

Additionally, we construct i = 1, 2, . . . , k− 1 columns of k vertices where each vertex of column
i has an edges to every vertex on column i + 1. For every vertex of column k − 1 there is an
edge to every sv ∈ V ′. Finally, there is a unique vertex r that is connected to all vertices of the
first column.

The construction means that after k − 1 steps from r at least one vertex of column k − 1 is
burning and threatens all vertices sv.

So if we protect a k-Clique of V by choosing the corresponding vertices sv ∈ V ′ in the first
k steps, we will protect the k-Clique vertices and also the

(
k
2

)
(edge) vertices se of V ′ of the

k-Clique. In an additional step k + 1 we can save one more edge vertex se. This vertex exists
because we assumed that k+ 1 vertices in G are non-isolated. Thus, if a k-Clique exists, we can
save k′ = k +

(
k
2

)
+ 1 vertices.

So we would like to answer the decision problem forG′, root r and k′. The graphG′ is constructed
in polynomial time.

Conversely, suppose there is a strategy that saves at least k′ vertices. After k time steps the
fire will always reach the vertices sv since the k − 1 columns contain k vertices. For the first
t ≥ k−1 steps, it is not helpful to protect a vertex in one of the columns from 1 to k−1 because
they only will protect themself and we can also choose one of sv or se instead. This also means
that after k steps, all vertices except those chosen by the strategy are burning. Protecting one
of the vertices se before step k is also needless because it only saves itself. Therefore the best
one can do is, choose k vertices sv in the first k steps. These k vertices can save at most

(
k
2

)

vertices, which is only possible if the chosen vertices build a k-Clique in G. 2

2.2 Trees

2.2.1 Greedy approximation for a tree

A greedy algorithm for a tree always protects the subtree with the largest number of vertices.
Figure 2.3 shows that this strategy is not better than a 1/2 approximation. The optimal strategy
protects 2(k − 1) vertices whereas greedy protects only k + 1 vertices. Note that the greedy
algorithm always choose a vertex neighboring a contaminated vertex but also the optimal does
as we will prove later.

Theorem 11 For a problem instance (T, r, 1) of a rooted tree T = (V,E) the greedy strategy
gives a 1

2 approximation for the optimal number of vertices protected. This bound is tight.

Proof. As shown by Figure 2.3 greedy is not better than k+1
2(k−1) 7→ 1

2 .

For the upper bound we can subdivide the greedy strategy S into steps that outperform the cur-
rent optimal move and steps that do not outperform the current optimal move. Outperforming

2.2. TREES 15

k − 1 = 3 columns

k = 4 rows

v1
v2

v3

v4

v5

se1

sv2

sv3

sv4

sv5

sv1

e1
e2

e3
e4

e5

e6

se2

se3

se4

se5

se6

r

e7
e0

se7

se0

Figure 2.2: Protecting the vertices of the k-Clique in k steps and an additional vertex sej gives

k′ = k +
(
k
2

)
+ 1 protected vertices in total.

r
k vertices

k − 1 vertices

s

Figure 2.3: The greedy algorithm does not protect the vertex s first and only saves k+1 vertices.

16 CHAPTER 2. DISCRETE SCENARIOS FOR CONTAMINATIONS

means saving at least as many vertices as the optimal move in the same step. For an optimal
strategy opt let optA (greedy is not worse) denote the first category of safe vertices and let optB

(greedy is worse) denote the second category of safe vertices. Let SG denote the number of
vertices saved by S. We can assume that each step of a strategy cuts of a subtree of T and as
long as the fire spreads the distance of burning vertices to the root increases by 1 in every time
step.

We would like to show that 2SG ≥ optA + optB holds. This can be seen as follows. Greedy
starts with a step as least as good as the optimal one because it is greedy. Let us assume that
at some moment in time the optimal move is better than a greedy move or there is no greedy
move anymore. Then in one of the previous steps greedy has chosen a predecessor of the optimal
move v, otherwise the greedy algorithm could have also picked the optimal move now because
of the distance of vertex v to the root. Thus the vertices saved by the optimal move now have
already been saved by greedy before. 2

Exercise 6 Give an example for the proof idea of Theorem 11. Show that Theorem 11 also
holds for the case (T, r, p) for p > 1.

2.2.2 Exponential time algorithm for general trees

The decision problem is already NP-complete for trees. In this subsection we show that the
problem is fixed-parameter-tractable by giving a somewhat efficient algorithm.

For this purpose we also introduce another variant of the game. How many vertices can be
saved, if only k guards can be placed.

Firefighter Decision Problem (Protection by k guards):
Instance: A Graph G = (V,E) of degree d with root vertex r and p firefigther per step and an
integer k.
Question: What is the strategy that saves a maximum number of vertices by protecting k
vertices in total?

The algorithm is based on the following structural property for a strategy on trees.

Lemma 12 For any optimal strategy for an instance of the firefigther decision problem on trees
(protection by k guards, saving k vertices) the vertex defended at each time is adjacent to a
burning vertex. There is an integer l, so that all protected vertices have depth at most l, exactly
one vertex pi at each depth is protected and all ancestors of pi are burning.

Proof. If the vertex defended at some time step t has no burning neighbor, it is possible to
improve the strategy by protecting the vertex closer to the root. Thus, in any time step t one
vertex at depth t is chosen. 2

Exercise 7 Show an example that Lemma 12 does not hold for a a general graph.

Now we present an efficient algorithm that computes an optimal strategy by dynamic program-
ming for the above maximum protection-by-k-guards setting. An example is given in Figure 2.4.

Starting from the root vertex we label the vertices in pre-order. By the pre-order we define the
relation v lies to the left of w by pre(v) < pre(w). Due to Lemma 12 it suffices to consider the
vertices up to depth k only.

For the dynamic program process we more generally consider a substrategy where we place a
guard at step t or we do not place a guard at step t. This is due to the fact, that in step t we cut
of a subtree, consider a smaller tree and assume that in this remaining tree no guard was placed

2.2. TREES 17

r
1

2

3

4 5 6 7

8 9

10

11

12

13 14

15 16

17

18

19

20 21

L3

v

T v

l(v)

Av((1, 1, 0), 0)

|Tv| + Al(v)((1, 0, 0), 1) or Al(v)((1, 1, 0), 0)

|Tv| = 1

v∗

22

Figure 2.4: The pre-order of a tree T , the set Lk of vertices of depth ≤ k. Computing
Av((1, 1, 0), 0) means that we are searching for a strategy in the tree T v that sets guards in
the first and second depth and if a vertex is protected along the path from r to v, then its depth
is greater than 0. For the recursion we consider two cases. If the vertex v will be protected,
we are looking for |Tv| + Al(v)((1, 0, 0), 1). Here the second parameter 1 says that we are not
allowed to block a predecessor of v any more in this case. If the vertex v will be not protected,
we are looking for Al(v)((1, 1, 0), 0). The maximum of both is the best choice.

at step t. Therefore, we have a vector X ∈ {0, 1}k that represents a general strategy. X(j) = 1
denotes the case that at step j a guard will be placed at depth j and X(j) = 0 denotes the case
where no guard is placed at step j.

Let Lk be the set of vertices of the tree T with depth ≤ k. For any v ∈ Lk, we consider the
subtree T v of T with vertices from Lk and pre-order at most pre(v) (all vertices of Lk to the
left of v including v). We would like to compute the maximum number Av(X) of vertices that
can be saved in Tv if we apply a strategy for up to k steps that behaves as indicated by the
vector X.

There will be a rightmost vertex v∗ of depth k in T and we are obviously interested in Av∗(1k).
This is the end value we would like to compute.

Let us try to explain the recursive formula for a vertex v in general. By dynamic programming
in step j we can either choose vertex v of depth j to be protected in step j or not. Let |Tv|
denote the size of the subtree of T starting with root v.

If v is protected, we have saved |Tv| vertices cut of the tree Tv, exchange the entry j of the
current vector X by 0 and turn over to the next entry in Lk with pre-order less than v. For
vector X and vertex v of depth j let, Xv denote the 0−1 vector where the entry of X at j is set
to 0. Let l(v) denote the vertex of Lk with largest pre-order smaller than v. So in the recursion
just consider to compute Al(v)(X

v) and add |Tv| in this case.

There is a problem because in the subtree T l(v) it might be allowed to place a guard on the
shortest path from r to v which is no more allowed, if v was protected before. Therefore we
introduce a second variable i and always compute Av(X, i) where i denotes the depth along the
path from r to v after that a vertex can be chosen for protection. In the above case we have to

18 CHAPTER 2. DISCRETE SCENARIOS FOR CONTAMINATIONS

compute Al(v)(X
v,depth(v)− 1).

We can assume that at v the recursion was started with Av(X, i). And the above case only have
to be taken into account if X(depth(v)) = 1 and depth(v) > i.

Now let us assume that v will not be protected. In this case for Av(X, i) we do not change X
and turn over to Al(v) for the predecessor l(v) of v in Lk. The parent of v of depth (depth(v)−1)
is always on the path of r to l(v). If it was only allowed to set a guard at depth larger than i
on the path from r to v, we only have to take care that i is not larger than depth(v)− 1. This
means that Al(v)(X,min(depth(v)− 1, i)) has to be computed.

Theorem 13 Computing the optimal protection strategy for k guards on a tree T of size n can
be done in O(n2kk) time.

Proof. By the above definitions we consider a dynamic programming approach with

Av(X, i) = max





Al(v)(X,min(depth(v)− 1, i))

[X(depth(v)) = 1 and depth(v) > i] ·
(
|Tv|+Al(v)(X

v,depth(v)− 1)
)





where [φ] equals 1 if φ holds true and 0 otherwise.

For v ∈ Lk the value Av(X, i) just denotes the optimal protection number for a strategy in T v

that sets a number of guards on each depth w.r.t. the entries in X and does not set a guard on
the path from r to v before or at depth i.

We are simply searching for Av∗(1k, 0) where vertex v∗ is the rightmost vertex of depth k in T .

By the above description the dynamic programming procedure is correct. We compute Lk, l(v)
and |Tv| for each vertex v in linear time by a pre-order walkthrough. Then we traverse the
vertices of Lk from left to right and we have at most n× 2k × k entries Av(X, i) where n stands
for v, 2k stands for X and k stands for i. 2

Exercise 8 Compute the best strategy of the example in Figure 2.4 for k = 2 and with the
dynamic programming approach introduced above.

Exercise 9 Consider a binary tree and design an optimal strategy. Analyse the time complexity
for computing the strategy.

Exercise 10 For a given tree, formalize the computation of an optimal strategy by an Integer
Linear Program.

With the above algorithm we can also answer the question whether k vertices can be saved.

Corollary 14 Computing a strategy for a tree T of size n that saves at least k vertices can be
done in O(n2kk) time.

Proof. If (T, r, k) is an instance for the saving-k-vertices variant. It is clear that a strategy
with k placements will solve the problem. Therefore it suffices to run the above algorithm for
i = 1, . . . , k. We can save k vertices if and only if we can save at least k vertices for some value
of i.

Thus we have
k∑

i=1

i2in ≤ kn
k∑

i=1

2i = (2k+1 − 2)kn

2.2. TREES 19

so that the worst-case running time is in O(n2kk).

2

Finally, we would like to build up a good subexponential time bound and make use of the
following structural property in order to find a good bound on k w.r.t. n.

Lemma 15 If a vertex at depth d is burning in an optimal strategy for an instance of the
firefigther problem on trees, at least 1

2(d2 + d) vertices are safe.

Proof. Let us assume that in T and for an optimal startegy, a vertex v at depth d is burning.
Then by Lemma 12 there is a protected vertex vi for any depth i = 1, . . . , d. Any tree Tvi should
contain at least d − i + 1 vertices. Otherwise it was better to choose a vertex along the path
from r to v in this step i. Thus

d∑

i=1

(d− i+ 1) =
1

2
(d2 + d)

gives the bound. 2

Theorem 16 There is an O
(

2
√
2nn3/2

)
algorithm for the firefigther problem on a tree of size

n.

Proof. We show that we can run the algorithm of Theorem 13 for k ≤
√

2n. Suppose a vertex
of depth

√
2n is burning. Then by Lemma 15 n+

√
n/2 > n vertices are safe witch contradicts

the number n of vertices. This means that all vertices of depth
√

2n are safe in an optimal
strategy. In turn an optimal strategy makes use of less than

√
2n guards. Thus we set k ≤

√
2n

which gives the bound. 2

2.2.3 Capture of an Intruder by moving agents

Up to now we have considered stationary guards that check and block vertices of the graph or
tree. Many other variants are known from the literature. We discuss the following version. A set
of k agents starts at a homebase vertex b in a given tree T = (V,E) and there is some intruder
somewhere in T . The following problem definition and its solution goes back to Barrière et al. [].

The intention is to clear all edges of the tree. A contiguous search strategy can perform one of
the following two operations in one search time step:

1. Place a team of p guards on a vertex.

2. Move a team of m guards along an edge.

Additionally, the set of all cleared edges Ei after step i has to be connected for any i.

In one time step a set of agents located at vertex u can move along an edge e = (v, u) from v
to u. There is an integer edge weight w(e) ≥ 1 that says how many agents have to move along
e so that the intruder cannot cross the edge from u to v in this step. In this sense the agents
clear the link in this case. Intuitively, we can think of a large corridor and cleaning the corridor
from v to u requires at least w(e) agents. Furthermore, we have integer weights w(v) for the
vertices. Locally, a clear link e = (v, u) is preserved from recontamination, if either the vertices
v and u are guarded by w(v) and w(u) agents, respectively or all other edges incident to e are
also clear.

20 CHAPTER 2. DISCRETE SCENARIOS FOR CONTAMINATIONS

e1

e2

e4

e3

e6

e5

v1v2

v3

v4 v5

v6

v7

35

3

7

5

5

1

4

1

5
7

7

4

Figure 2.5: A given weighted tree T = (V,E). A successful contiguous strategy can start with 10
agents at v1, also cs(T) = 10 holds. The size of the frontiers of X1 = {e4, e5, e6} and X2 = {e2}
is w(X1) = 7 and w(X2) = 10, respectively.

We assume that guarding a vertex is at least as hard as the maximum number of searchers
required for clearing an incident edge. Thus, we require w(v) ≥ w(e) for any e = (v, u) ∈ E. So
for any vertex v ∈ V the weight could for example be given by w(v) := maxe=(u,v)∈E w(e). An
example for a weighted tree is given in Figure 2.5.

In any time step (after a step of the search strategy) an edge e becomes recontaminated, if there
is a path from a contaminated edge e′ to edge e that is not blocked by agents on the vertices.
This means that a corresponding intruder has infinite speed for crossing an arbitrary number
of edges. We consider contiguous search strategies as described above and ask for the minimum
number of guards, cs(T), that suffices to finally clear all links of the tree T .

A contiguous strategy for Figure 2.5 can start with 10 agents in vertex v7, clears edge e6. Leaves
6 agents at v5 and clear e5 with 4 agents. Moves back with 4 agents to v5 and clears edge e4
and edge e7 with 10 agents. Now, we leave 7 agents at v3, clear e2 by 3 agents, move back with
three agents and finally clear the last edge e3. Note that in the second last step, if we leave less
than 7 agents at v3, the edge e3 is contaminated and can recontaminate the full tree.

We would like to consider such monotone strategies. That is, a link that has already been
cleaned at some step t should not be contaminated (or visited by the intruder) later again. This
means that some of the agents will become stationary for a period of time in order to block
the movement of the intruder (or the recontamination of links). Additionally, we can compute
optimal monotone strategies efficiently as we will see below. First, we show that monotone
strategies always exist.

2.2.4 Existance of monotone strategies

One main structural result is, that for a tree T for the computation of cs(T) it suffices to consider
a montone strategy, where all agents start at the same homebase vertex b.

Theorem 17 For any weighted tree T there is a monotone contiguous search strategy with cs(T)
agents where all agents initially start at the same vertex b.

For the proof we require some notations. Let T = (V,E). For a subset X ⊆ E we denote all
vertices that have a vertex incident to X and E \X as the boundary vertices δ(X). If Xi denotes
the set of clear links after time step i of a strategy then at least

w(Xi) :=
∑

v∈δ(Xi)

w(v) (2.1)

2.2. TREES 21

e1

e2
e3

e4

Figure 2.6: Crusades are only defined by subsets of edges of a
graph. For the given graph G there is a connected crusade
(∅, {e1}, {e1, e2}, {e2}, {e2, e3}, {e1, e2, e3}, {e3, e4}, {e1, e3, e4}, {e1, e2, e3, e4}) and a pogres-
sive connected crusade is (∅, {e1}, {e1, e2}, {e1, e2, e3}, {e1, e2, e3, e4}).

guards have been used. (Note that the contamination threatens not only the directly adjacent
links but also any fully non-protected path!)

In Figure 2.5 we have w({e4, e5, e6}) = 7 and w({e2}) = 10.

For G = (V,E) a sequence (X0, X1, . . . , Xm) of subsets Xi ⊆ E is called a crusade, if X0 = ∅
and Xm = E and |Xi \ Xi−1| ≤ 1 for 1 ≤ i ≤ m. The frontier of a crusade (X0, X1, . . . , Xm)
is given by max1≤i≤mw(Xi) as defined in Equation 2.1 above, which is the minimum number
of guards required for defending any Xi. A crusade is progressive if X0 ⊆ X1 ⊆ · · · ⊆ Xm and
|Xi \Xi−1| = 1 for 1 ≤ i ≤ m. The crusade is connected, if Xi is connected for 1 ≤ i ≤ m.

Note that the definition of crusades holds for arbitrary graphs G. See Figure 2.6 for an example.

There will be a progressive connected crusade that will finally describe a strategy. In the very
beginning it is allowed to set agents on the vertices in many non-crusading steps. Then the
crusade starts to clean the links. But keep in mind that the above (connected) crusades are only
defined over sets of links up to now and do not directly represent a strategy.

Exercise 11 Define a crusade C = (X0, X1, . . . , Xm) of a tree T that is not related to a strategy.

It is easy to see, that for cs(T) ≤ k there should be a connected crusade of frontier ≤ k in T . For
a given contiguous strategy S let C = (X0, X1, . . . , Xm) denote the sequence of clear links after
each search step i. In any search step we can clear at most one additional edge, which means
|Xi \Xi−1| ≤ 1 for 1 ≤ i ≤ m. Since Xi is connected (definition of contiguous) and is no further
destructed after search step i, we have w(Xi) ≤ k. Of course by construction we have X0 = ∅
and Xm = E. An example for Figure 2.5 is the above mentioned strategy and the connected
crusade C = (∅, {e6}, {e6, e5}, {e6, e5, e4}, {e6, e5, e4, e1}, {e6, e5, e4, e1, e2}, {e6, e5, e4, e1, e2, e3})
We conclude:

Lemma 18 For cs(T) ≤ k there is a connected crusade of frontier at most k.

Now we would like to show that there is also a progressive connected crusade in T of frontier at
most k. Note that the above connected crusade of Figure 2.5 is indeed progressive.

So starting from the above Lemma from all connected crusades C = (X0, X1, . . . , Xm) of frontier
at most k we choose one that satisfies the following properties:

1.
∑m

i=0(w(Xi) + 1) is minimum.

2. Amog all crusade satisfying condition 1. choose one with:
∑m

i=0 |Xi| is minimum.

22 CHAPTER 2. DISCRETE SCENARIOS FOR CONTAMINATIONS

Obviously, one such crusade has to exist. So we only have to show that the crusade is progressive.
This means that we have to show X0 ⊆ X1 ⊆ · · · ⊆ Xm and |Xi \Xi−1| = 1 for 1 ≤ i ≤ m.

Let us first assume that |Xi \ Xi−1| = 0 holds, which means that Xi ⊆ Xi−1. Therefore, we
consider the connected crusade

C ′ = (X0, . . . , Xi−1, Xi+1, . . . , Xm)

of frontier at most k which contradicts condition 1. Note that |Xi+1\Xi−1| ≤ 1 can be concluded
from |Xi+1 \Xi| ≤ 1 and Xi ⊆ Xi−1.

Thus, we can assume that |Xi \Xi−1| = 1 holds for 1 ≤ i ≤ m. Next, we prove Xi−1 ⊆ Xi for
1 ≤ i ≤ m. We will first conclude that

w(Xi−1 ∪Xi) ≥ w(Xi) (2.2)

holds for 1 ≤ i ≤ m. Otherwise, we make use of the crusade

C ′ = (X0, . . . , Xi−1, Xi−1 ∪Xi, Xi+1, . . . , Xm) (2.3)

of frontier at most k which is a contradiction to condition 1. We know that Xi and Xi−1 are
connected. Thus, the set Xi−1 ∪ Xi is connected since |Xi \ Xi−1| = 1 holds. We can also
conclude that |Xi+1 \ (Xi−1 ∪Xi)| ≤ 1 holds, since |Xi+1 \Xi| = 1. If |Xi+1 \ (Xi−1 ∪Xi)| = 0
holds we can go back to the first step again.

Now assume that Equation 2.2 holds. For any two arbitrary link sets A and B of T we have
w(A ∪ B) + w(A ∩ B) ≤ w(A) + w(B) which is the question of Exercise 12. We conclude
w(Xi−1 ∩Xi) ≤ w(Xi) for 1 ≤ i ≤ m from Equation 2.2 and consider

C ′′ = (X0, . . . , Xi−2, Xi−1 ∩Xi, Xi+1, . . . , Xm) . (2.4)

Now, C ′′ has frontier at most k.

By the minimality of C w.r.t. condition 2. we conclude that |Xi−1 ∩Xi| ≥ |Xi−1| and therefore
Xi−1 ⊆ Xi holds. We conclude |Xi \ (Xi ∩Xi−1)| = |Xi \Xi−1| = 1 and |(Xi ∩Xi−1) \Xi−2| ≤
|Xi−1 \Xi−2| ≤ 1.

It remains to show that Xi−1 ∩ Xi is also connected. Assume that this is not the case. Let
{e} = Xi \ Xi−1 and W = Xi−1 \ Xi and Z = Xi−1 ∩ Xi. By assumption Z = Z ′ ∪ Z ′′
where Z ′ and Z ′′ do not share a vertex. The situation is depicted in Figure 2.7. We have
Xi−1 = Z ′ ∪ Z ′′ ∪W and Xi = Z ′ ∪ Z ′′ ∪ {e}. Since Xi and Xi−1 are both connected, and
{e} 6∈W there is a cycle Z ′ ∪ Z ′′ ∪W ∪ {e} in T which contradicts to the assumption that T is
a tree, Xi−1 ∩Xi is also connected. We have proven the following Lemma.

Lemma 19 For cs(T) ≤ k there is a progressive connected crusade of frontier at most k in T .

Exercise 12 For two link (edge) sets A and B in a graph G prove that w(A∪B) +w(A∩B) ≤
w(A) + w(B) holds.

Now, for obtaining a monotone contiguous strategy from above progressive connected crusade,
we first extend the tree T . We replace every link e by two consecutive links e′ and e′′ of the
same weight w(e). The newly inserted vertex v has also weight w(v) := w(e). This means that
after this transformation any link has at least one vertex of degree 2. Let T ′ be the outcome
of this process. We will use this property for designing a monotone contiguous strategy from a
progressive connected crusade. Afterwards we can transform the strategy back for acting on T .
Obviously, also cs(T ′) ≤ cs(T) holds.

2.2. TREES 23

e

W

Xi

Xi−1

Z ′′

Z ′

Figure 2.7: Let W = Xi−1\Xi and {e} = Xi\Xi−1 and Z = Xi−1∩Xi. By assuption Z = Z ′∪Z ′′
where Z ′ and Z ′′ do not share a vertex. Thus, the cycle Z ′ ∪ Z ′′ ∪W ∪ {e} contradicts T .

e2e3

v1v2

v3

35

3
5

7

7
v4

e1
λ({e1, e2}) = v3

w({e1, e2}) = 7

C = (∅, {e1}, {e1, e2})

e′2

e′′3
v1v2

v3

35

5

7

7
v4

e′1

e′′1

e′3

e′′2

7

7

7

5 3

5 3

7

C ′ = (∅, {e′1}, {e′1, e′′1}, {e′1, e′′1 , e′2}{e′1, e′′1 , e′2, e′′2})

w({e′1, e′′1 , e′2}) = 10

Figure 2.8: Replacing any link e in the tree T by two consecutive links e′ and e′′ yields the
desired correspondance of the frontier and the frontier and the number of agents required for
C = (∅, {e1}, {e1, e2}).

24 CHAPTER 2. DISCRETE SCENARIOS FOR CONTAMINATIONS

e1

e2

e4

e′′1

e′2

e′′4

e′1

e′′2

e′4

Figure 2.9: Replacing any link e in the tree T by two consecutive links e′ and e′′. Any link in
T ′ has at least one vertex of degree 2.

The main reason for this enlargement is presented in Figure 2.8. Unfortunately, there is no
one to one correspondance between the number of agents required for a contiguous strategy
and the size of the frontier of connected progressive crusade. For example, in Figure 2.8
we require 10 agents for successively cleaning C = (∅, {e1}, {e1, e2}) but the frontier of C is
7. If we enlarge the tree by artificial edges, we get the required correspondance for C ′ =
(∅, {e′1}, {e′1, e′′1}, {e′1, e′′1, e′2}{e′1, e′′1, e′2, e′′2}). Here w({e′1, e′′1, e′2}) = 10 gives the frontier.

Lemma 20 Let T ′ be a tree so that every link has at least one vertex of degree 2. If there is
a progressive connected crusade of frontier ≤ k in T ′, there is a monotone contiguous search
strategy using ≤ k guards in T ′ and the guards can be initially placed at a single vertex v1.

Proof. For the progressive connected crusade C = (X0, X1, . . . , Xm) of frontier ≤ k and ei =
(vi, ui) := Xi \Xi−1 we construct a strategy that clears the links e1, . . . , em successively.

In the beginning we set k guards at v1. We have w(X1) = w(v1) + w(u1) ≤ k and also
w(e1) ≤ w(u1) and move w(u1) searchers along w1.

Now by induction let us assume that we have constructed a monotone contiguous strategy for
i − 1 links e1, . . . , ei−1 without recontaminations. Consider the edge ei = (vi, ui) incident to
Xi−1, say vi ∈ δ(Xi−1).

If w(Xi−1) + w(ui) ≤ k holds, w(ui) agents can move from vi along ei to ui and clears link ei
and we are done.

Therefore, assume that w(Xi−1) + w(ui) > k holds. In this case not both vertices of ei can be
in δ(Xi). We have vi ∈ δ(Xi−1). Assume vi ∈ δ(Xi). We conclude deg(vi) > 2 and deg(ui) = 2.
This means that ui ∈ δ(Xi) implies that the other link fi 6= ei that contains ui has to be
contaminated, and ui 6∈ δ(Xi−1). Therefore, w(Xi) = w(Xi−1) + w(ui), but this has to be ≤ k,
a contradiction.

For w(Xi−1) + w(ui) > k at most one vertex of (vi, ui) is in δ(Xi) and we consider the corre-
sponding cases; see also Figure 2.10.

1. vi ∈ δ(Xi), ui 6∈ δ(Xi): As shown above deg(ui) = 2 and the other link fi 6= ei that contains
ui belongs already to Xi−1. There are already w(ui) guards at ui in step i − 1 and they
can clear the edge from ui to vi.

2. vi 6∈ δ(Xi), ui 6∈ δ(Xi): This means that ei is the only contaminated edge adjacent to vi and
ui. We can move with w(vi) searchers from vi to ui.

3. vi 6∈ δ(Xi), ui ∈ δ(Xi): This means that w(Xi) = w(Xi−1)−w(vi)+w(ui) and we have at least
w(vi) guards at vi. Move all k−w(Xi−1) free guards to vi. We have w(vi)+k−w(Xi−1) ≥
w(vi) + w(Xi)− w(Xi−1) ≥ w(ui) agents at vi that can clear ei now.

2.2. TREES 25

ei

vi

ui

vi ∈ δ(Xi)

w(ui)
ei

vi

ui

w(vi)

ei

vi

ui

w(vi) + k − w(Xi−1) ≥ w(ui)

ui 6∈ δ(Xi)
vi 6∈ δ(Xi)
ui 6∈ δ(Xi)

vi 6∈ δ(Xi)
ui ∈ δ(Xi)

Figure 2.10: Not both vertices vi and ui can be in δ(Xi). Therefore, also edge ei can be cleaned.

Altogether, there is a successful montone contiguous strategy for T ′ with k agents adapted from
the progressive connected crusade C = (X0, X1, . . . , Xm) of frontier ≤ k. 2

Note, that the above Lemma also holds for graphs with the same properties. The same holds
for the following Lemma where we show that we can obtain a strategy for T from the strategy
for T ′.

Lemma 21 Any contiguous monotone strategy for T ′ can be translated to a contiguous mono-
tone strategy for T with the same number k of agents.

Proof. Let e′ = (x, y) and e′′ = (y, z) be links stemming from the extension of a link e. If q
guards move from x to y or z to y, they stay in there place in T . If q guards move from y to x
or from y to z, they will move from z to x or from x to z in T , respectively. 2

The other way round, any strategy for T is also a strategy for T ′.

Lemma 22 Any contiguous monotone strategy for T with k agents can be translated to a con-
tiguous monotone strategy for T ′ with the same number k of agents.

Proof. A move along an edge e in T is splitted into two moves along e′ and e′′ in T ′. If the move
clears e, then q ≥ w(e) have traversed e. From the construction q searchers are also enough for
w(e) = w(e′) = w(e′′) and the weight w(e) of the intermediate vertex. 2

We collect our results:

Proof of Theorem 17: From Lemma 21 we conclude cs(T ′) ≤ cs(T). From Lemma 18 we
obtain a connected crusade of frontier ≤ cs(T) in T ′. From Lemma 19 we conclude that there is a
progressive connected crusade of frontier ≤ cs(T) in T ′. From Lemma 20 we obtain a monotone
contiguous search strategy using ≤ cs(T) guards in T ′ and we can assume that all searchers are
initially at a single starting vertex v1. From Lemma 22 we conclude that there is also an optimal
monotone contiguous search strategy that starts with all guards in a single vertex.

2.2.5 Designing a monotone strategy for unit weights

By Theorem 17 we can start a strategy from a single vertex v and we can consider monotone
strategies. Therefore, we design an optimal strategy for any starting vertex v and for the rooted
tree Tv we compute the minimum number, cs(Tv), of agents required for starting in v. Finally
we have cs(T) = minv∈T cs(Tv).

26 CHAPTER 2. DISCRETE SCENARIOS FOR CONTAMINATIONS

e1

e2

e4

e3

e6

e5

v1v2

z1

z
z2

z′1

z′2

10

7 5

1

4

1

5

815

v

Tv(z)8

Tv(z1)

Tv(z2)

15

1510

Tv(z
′
2)

Tv(z
′
1)

4

Figure 2.11: The rooted tree Tv has two subtrees Tv(z1) and Tv(z2) at vertex z. We have
cs(Tv(z1)) = 25 and cs(Tv(z2) = 6 and cs(Tv(z2)) + w(z) = 14 < 25 = cs(Tv(z1)) which means
that cs(Tv(z)) = 25 holds. We leave w(z) agents at z and clean Tv(z2) first. In Tv(z2) the same
situation occurs, here cs(Tv(z

′
1)) = 4 and cs(Tv(z2)) = 1 but cs(Tv(z

′
2)) + w(z2) = 6 > 4 =

cs(Tv(z
′
1). Therefore we require cs(Tv(z

′
2)) + w(z2) = 6 agents, first we clean Tv(z

′
2) by 1 agent

and block z2 by 5 agents. Then we clean Tv(z
′
1) by 6 agents.

An optimal monotone strategy for computing, cs(Tv), will also give an ordering of all vertices
z of Tv, stating which subtree, say Tv(z), of Tv w.r.t. root v is fully cleared first. We can also
consider the subtree Tv(z) with root z by its own and ask for cs(Tv(z)) for short and an optimal
monotone strategy.

We denote the children of the vertex z of the subtree Tv(z) of Tv by z1, . . . , zd w.r.t. the order
cs(Tv(zi)) ≥ cs(Tv(zi+1)) for i = 1, . . . , d− 1. An example is given in Figure 2.11. Now, we can
prove the main structural result. Unfortunately, there is a flaw in the proof of Barrière at al.
and we can only prove the statement for unit weighted trees. The flaw is precisely marked in
the proof below and also shown in Figure 2.12.

Lemma 23 Let z1, . . . , zd be the d ≥ 2 children of a vertex z in Tv and assume that cs(Tv(zi)) ≥
cs(Tv(zi+1)) for i = 1, . . . , d− 1. We have

cs(Tv(z)) = max{cs(Tv(z1)), cs(Tv(z2)) + w(z)} (2.5)

if the tree T is a tree with unit weights.

Proof. We can assume that cs(Tv(z)) ≥ cs(Tv(z1)) holds because we have to clear Tv(z1) before
clearing Tv(z). If in Equation 2.5 cs(Tv(z1)) ≥ cs(Tv(z2)) + w(z) holds, we can clear Tv(z) by
setting w(z) on z and clear all Tv(zi) by cs(Tv(z1)) agents but Tv(z1) last. Altogether, cs(Tv(z1))
agents are required and they are sufficient.

So let us assume that in Equation 2.5 cs(Tv(z1)) < cs(Tv(z2)) + w(z) holds. We would like to
prove that cs(Tv(z2)) + w(z)− 1 agents are not sufficient. We consider two cases:

1. Tv(z2) is cleared before Tv(z1): While cs(Tv(z2)) agents clear Tv(z2) there are only w(z)−
1 = 0 agents left for blocking a vertex in Tv(z1). Recontamination!

2. Tv(z1) is cleared before Tv(z2)): While cs(Tv(z1)) agents clear Tv(z1) there are no more
than w(z) − 1 = 0 agents left for blocking a vertex in Tv(z2) (because cs(Tv(z1)) =
cs(Tv(z2))). Recontamination!

2.2. TREES 27

Figure 2.12: The flaw in the prove of Barriére et al. The recursion cs(Tv(z)) =
max{cs(Tv(z1)), cs(Tv(z2)) + w(z)} does not hold for arbitrary weighted trees.

General weighted trees: The above statement does not hold for general weighted trees,
because the fact that an agent could only partially decontaminates Tv(z2) or Tv(z1) is not
taken into account. For example, consider the vertex, say v with weight 5 in the center of
Figure 2.12. and let z1, z2, and z3 be the children of v below v from right to left. We have
max{cs(Tv(z1)), cs(Tv(z2)) +w(z)} = max{8, 7 + 5} = 12 but we can recontaminate the subtree
by 10 agents only, if we first clean z3, leaving 5 agent at v. Then we clean vertex z2 with one
agent and leave this agent there. Aftre that we clean Tx(z1) with the remaining 9 agents, and
finally return to z3 for the last part.

So for unit weights we have shown that cs(Tv(z2))+w(z) are required and are also sufficient. For
cs(Tv(z1)) < cs(Tv(z2)) + w(z) we occupy z with w(z) agents and clear all Tv(zi) by cs(Tv(z2))
agents but Tv(z1) last with cs(Tv(z2)) + w(z) agents. 2

The consequence of the above Lemma is, that we can compute cs(Tv) in O(n) time by recursively
applying Equation 2.5. Alternatively, we can start from the vertices.

Exercise 13 Compute cs(Tv4) for the tree in Figure 2.5 by the above recursive process.

Corollary 24 For a unit weighted tree T of size n and for a given starting vertex v we can
compute the optimal monotone contiguous strategy starting at v in O(n) time. An overall optimal
contiguous strategy can be computed in O(n2).

2.2.6 Optimal contiguous Intruder Search Strategy for unit weights

We consider a message based algorithm that computes the optimal number of agents required
for any starting vertex v.

The following local recursive labeling λx(e) for the links e = (x, y) adjacent to x will be sufficient.
Let e = (x, y) be a link incident to x.

1. If y is a leaf, set λx(e) := w(y).

28 CHAPTER 2. DISCRETE SCENARIOS FOR CONTAMINATIONS

e1

e2

e4

e3

e6

e5

v1v2

v3

v4 v5

v6

v7

35

3

7

5

5

1

4

1

5
7

7

4

1.λv3(e2) = 32.λv3(e3) = 5

5.λv5(e5) = 4

3.λv5(e6) = 1
6.λv4(e4) = 6

4.λv4(e1) = 10

7.λv5(e4) = 10

8.λv3(e1) = 7

9.λv6(e5) = 10

10.λv7(e6) = 10

12.λv1(e2) = 1211.λv2(e3) = 10

Figure 2.13: The message sending algorithm can easily work sequentially.

2. Otherwise, let d be the degree of y and let x1, . . . , xd−1 be the incident vertices of y different
form x. Let λy(y, xi) =: li and li ≥ li+1. Then,

λx(e) := max{l1, l2 + w(y)} .

For any link e = (x, y) we will have two labels λx(e) and λy(e). By a messages sending technique,
we can compute the labels λx(e) and λy(e) for all edges e = (x, y) in overall linear time. Note
that we interpret any link e = (x, y) as undirected, which means that (x, y) = (y, x) = e, more
formally we could have used a notion e = {x, y}.
The message sending algorithm works as follows:

1. Start with the leaves and for any leaf y and for e = (x, y) send a message l = w(y) to x.
After receiving this messages, x sets λx(e) := l.

2. Consider a vertex y of degree d that has received at least d−1 messages li from the incident
vertices x1, . . . , xd−1 and let x be the remaining incident vertex. Let li ≥ li+1. Send a
message l = max{l1, l2 + w(y)} to x, after receiving the message x, set λx((x, y)) := l.

The above process can be applied sequentially, starting from the leaves. The process will not
stop until we have send a message from x to y and y to x along any edge e = (x, y). The process
ends and in total O(n) messages have been transmitted. An example is given in Figure 2.13.
Keep in mind that setting λx(e) means that x has received a message from the other vertex y
of e = (x, y).

Lemma 25 The links of a tree T can be labeled with labels λx by the above message sending
algorithm by O(n) messages in total.

Finally, we would like to prove that for an edge e = (x, y) the labeling algorithm indeed computes
cs(Tx(y)) for the rooted tree Tx and its direct neighbor y. Note that we can only proof the result
for unit weighted trees.

2.2. TREES 29

e1

e2

e4

e3

e6

e5

v1v2

v3

v4 v5

v6

v7

35

3

7

5

5

1

4

1

5
7

7

4

1.λv3(e2) = 32.λv3(e3) = 5

5.λv5(e5) = 4

3.λv5(e6) = 1
6.λv4(e4) = 6

4.λv4(e1) = 10

7.λv5(e4) = 10

8.λv3(e1) = 7

9.λv6(e5) = 10

10.λv7(e6) = 10

12.λv1(e2) = 1211.λv2(e3) = 10

µ(v3) = max(λv3(e1), λv3(e3) + 7) = 12

µ(v5) = max(λv5(e4), λv5(e5) + 5) = 10

Figure 2.14: Computing µ(v) = max{λv((v, x1)), λv((v, x2)) + w(v)} and the minimal
minv∈V µ(v) = cs(T) gives an optimal strategy at least for unit weighted trees.

Lemma 26 For a unit weighted tree T = (V,E) and an edge e = (x, y) ∈ E we have cs(Tx(y)) =
λx(e).

Proof. The proof goes by induction on the height h(y) of Tx(y). If y is a leaf we have λx(e) =
w(y) for h(y) = 0. The statement holds.

Assume that the statement holds for 0 ≤ h(y) < k and consider h(y) = k. For edge e = (x, y) let
x1, . . . , xd be the d ≥ 1 be the children of y in Tx(y) and assume that λy((y, xi)) ≥ λy((y, xi+1))
holds for i = 1, . . . , d−1. We also have Ty(xi) = λy((y, xi)) by induction hypothesis and Ty(xi) =
Tx(xi) by definition. Therefore we also have cs(Tx(xi)) ≥ cs(Tx(xi+1)) for i = 1, . . . , d− 1.

In Lemma 23 the recursion Equation 2.5 for Tx(y) is exactly the same as λx((x, y)) in step 2. of
the labeling process 2.2.6. Therefore, we conclude cs(Tx(y)) = λx(y). 2

Finally, we have to compute the optimal number of agents and also a corresponding strategy.
The first part can done as follows. We compute the minimum number of agents, µ(v), required
for starting at a vertex v in the tree T .

For this we order all λv((v, xi)) for all i = 1, . . . , d incident edges (v, xi) so that λv((v, xi)) ≥
λv((v, xi+1)) and compute

µ(v) = max{λv((v, x1)), λv((v, x2)) + w(v)} . (2.6)

See for example the computation of µ(v3) and µ(v5) in Figure 2.14.

Altogether, we have µ(v) = cs(Tv) and minv∈V µ(v) = cs(T). For the movements of the agents
we choose the vertex v that attains a minimum µ(v) and apply a strategy as induced by the
values λy. We traverse Tv in increasing order of the values λy.

For example, in Figure 2.14 µ(v5) = 10 gives the minimal number of agents required and we
start with 10 agents in v4 w.r.t. decreasing numbers λv5 . Thus, first 1 agent moves along e6
and back to v5, then 4 agents move along e5 and back to v5. After that 10 agents move along
e4 and so on.

30 CHAPTER 2. DISCRETE SCENARIOS FOR CONTAMINATIONS

Theorem 27 An optimal contiguous strategy for a unit weighted tree T = (V,E) can be com-
puted in O(n) time and space.

Proof. The number of messages required is given by the above considerations. For calculating
the messages (and also the values µ(x)) afterwards, we only have to register the largest three
entries λv(e) for any v. This can be done successively. For any new message we can adjust these
largest three entries in constant time. 2

2.2.7 Lower and upper bound for the contiguous search

For a given tree, Tn, with n nodes we are asking for maxn cs(Tn) =: cs(n). For convenience we
consider the unit weighted case, where all weights are equal to 1. We will prove the following
Theorem.

Theorem 28 For unit weights and for any number of vertices n, we have blog2 nc−1 ≤ cs(n) ≤
blog2 nc.

We prove each inequality of the Theorem separately by the following lemmata:

Lemma 29 For every n ≥ 1 we find trees Tn with cs(Tn) ≥ blog2 nc − 1.

Proof. We consider a rooted tree T with root r and for any vertex u let the level of u denote
the distance from r to u. If n equals 2k − 1 we choose a complete binary tree and show that
cs(Tn) = k − 1 = log2(n + 1) − 1 ≥ blog2 nc − 1 agents are required by considering the values
λv(e). See also Figue 2.15.

• We have λv((v, u)) = k − i and λu((v, u)) = k − 1, for any vertex u of level i > 0 and its
parent node v w.r.t. r. This can be easily seen by induction. The last value stem from
the fact that we have to clean a complete tree with 2k−1 − 1 vertices by starting from the
root node.

• We have µ(u) = k − 1 for any u 6= r and µ(r) = k, which gives the bound.

Now, for n 6= 2k − 1 consider the binary representation n =
∑r

i=1 2αi with α1 > α2 > · · · > αr.
For example consider n = 11010 in binary representation with α1 = 4, α2 = 3, α3 = 2. We
build a chain with vertices x1, x2, . . . , xr and for any xi we build an edge to a complete binary
tree Tαi of size 2αi − 1 as depicted in Figue 2.16.

This means that we have n vertices in total. We conclude that α1 agents are required, if 2α1 and
2α1−1 exists in the binary representation. This holds if we start somewhere outside Tα1 because
we visit the root of Tα1 at some point. If we start inside Tα1 (for example in a leaf) we require
at most α1−1 agents for Tα1 but at the root node yi of Tα1 we can assume that we have to place
an additional agent that blocks the recontamination from x1. For this we assume we assume
that we require at least α1 − 1 = λy1((y1, x1)), since the tree for 2α1−1 exists. Altogether in the
above case, we have 2α1 − 1 < n < 2α1+1− 1 and require cs(Tn) = α1 ≥ log2(n+ 1)− 1 ≥ agents
in total which gives the conclusion.

The remaining cases are as follows: Assume that 2α1−1 does not exist in the binary representa-
tion, we have two subcases.

1. If all subtrees from 2α1−2 to 20 exist, the tree starting at x1 into x2 is a binary tree of
depth α1− 1. Thus, we require again α1 agents for any starting vertex and we can use the
simple argumentation above.

2.2. TREES 31

r

v

u

level 1

level 2

level 3

k = 4 and n = 2k − 1

λv((v, u)) = k − level(u)

λu((v, u)) = k − 1

µ(r) = k and µ(u 6= r) = k − 1

Figure 2.15: For k = 4 and n = 2k−1 and Tn as the full binary tree, we conclude cs(Tn) = k−1
which gives the bound.

x1 x2 x3

y1 y2 y3

n = 1 · 24 + 1 · 23 + 0 · 22 + 1 · 21 + 0 · 20 = 11010

λy1((v, y1)) = α1 − 1

v

λy1((x1, y1)) = α2 + 1 = α1

Figure 2.16: A tree Tn with n = 1 · 24 + 1 · 23 + 0 · 22 + 1 · 21 + 0 · 20 = 26 vertices, requires
α1 = 4 agents.

32 CHAPTER 2. DISCRETE SCENARIOS FOR CONTAMINATIONS

2. If not all subtrees from 2α1−2 to 20 exist, only α1−1 agents are required. But now the value
for n is small enough so that we can conclude. α1− 1 ≥ blog2(

2
3(n+ 1))c ≥ log2(n+ 1)− 1

which gives the bound. This requires the measurement of 2
3(n+1) in comparison to α1−1

is left as an Exercise.

2

Exercise 14 Discuss the remaining case in the above proof. That is α2 − 1 < α1 and the two
cases depicted in the proof.

On the other hand, we show that blog2 nc agents are always sufficient.

Lemma 30 For every n ≥ 1 and unit weights, blog2 nc agents are sufficient for a contiguous
search strategy.

Proof. We consider a tree Tr with n vertices and µ(r) = cs(T). Now, we simplify this so that
it becomes a complete binary tree T ′r w.r.t. r with cs(Tr) = cs(T ′r) by the following rules. The
rules can be applied successively, until none of them is applicable any more. The children/parent
relation in the tree is considered w.r.t. r.

1. For a node x and its d > 2 children x1, x2, . . . , xd ordered by cs(Tr(xi)) ≥ cs(Tr(xi+1))
remove all Tr(xi) for i > 2.

2. For a node x with two children x1 and x2 and cs(Tr(x1)) > cs(Tr(x2)), remove Tr(x2).

3. For a node x 6= r with only one child x1, remove x and connect x1 to the parent of x.

4. If there are more than two vertices left, and r has only one child x1, remove x1 and connect
the children of x1 to r.

First, the number of agents required for T ′r and Tr are the same, because the computation of µ(r)
in Tr makes use of exactly the same values. Note that the weights of the vertices are restricted
to one, therefore rule 2. is also correct by cs(Tr(x1)) ≥ cs(Tr(x2)) + 1. Cancelling a vertex with
one child has no influence.

Second, we show that T ′r is a complete binary tree rooted in r. The first rule and the second
rule returns a tree that has internal nodes with at most 2 children. Rule three deletes internal
nodes with one child except for the root. Rule 4 makes the root have 2 or 0 children.

Thus, we have a binary tree whose internal nodes have degree excactly 2. Finally, we show that
the tree is complete. Let x be a node such that the subtree T ′x at x is not complete and there
is no other subtree in T ′x with this property. This means that the children x1 and x2 of x in T ′r
define complete subtree T ′x1 and T ′x2 of different size. Thus, rule 2 can be applied which gives a
contradiction. 2

2.2.8 The prize of connectivity

In the previous section we analyzed the contiguous search number for trees and presented a
polynomial time algorithm for trees. The key argument was that recontamination does not help
for decreasing the search number. The contiguous search idea is mainly based on the fact that
searchers should not jump.

In general in the non-continuous setting this is in some sense allowed. More precisely, we extend
the rules defined in the beginning of Section 2.2.3. We allow that some of the agents can be
retracted from somewhere and placed somewhere else.

2.2. TREES 33

1. Place a team of p guards on a vertex.

2. Move a team of m guards along an edge.

3. Remove a team of r guards from a vertex.

We consider the unit-weighted case in this section. Note that the monotonicity proof in the
previous section also holds for non-contiguous strategies for trees and also for graphs. And it
also holds, if Rule 3. can be applied. This means that the progressive crusades of frontier k and
the search number k for graphs correspond in general in the same way. Recontamintion does
not help and optimal monotone strategies always exists.

More precisely, the connectivity relationship in the proof of Lemma 19 depicted in Figure 2.7
was only shown for trees. We obtained a progressive connected crusade. In general the use of a
progressive crusade is sufficient. Conversely, in the proof of Lemma 20 the three cases depicted
in Figure 2.10 can also be handled, if the progressive crusade is not connected.

Exercise 15 Consider the proof of Theorem 17. Argue, that with the same arguments, we can
show: For any unit-weighted graph G, with search number s(G), there is always a monotone
strategy with s(G) searchers.

So we can ask what is the prize for the connectivity. General strategies for the above rules
indeed have better search numbers as we will show here. We between the search number, s(G),
for general strategies and the contiguous search number, cs(G), for contiguous strategies. As
mentioned above for both measures we find optimal monotone strategies.

Let Dk denote a tree with root r of degree three and three full binary trees, Bk−1, of depth k−1
connected to the r. We first show that cs(Dk) = k + 1 holds.

Lemma 31 For the graph Dk, we conclude cs(Dk) = k + 1.

Proof. Let T1, T2 and T3 denote the copies of Bk−1 connected to the root and let ei denote the
edge that connects Ti with the root r. For the contiguous search w.l.o.g. we can assume that the
edge e1 is cleared first at timestep i1 among the edges e1, e2 and e3. W.l.o.g. let i2 > i1 denote
the time step where for the first time a leaf l of T2 or T3 is reached. Assume w.l.o.g. f ∈ T2.
At time step i2 − 1 the path P (r, xk) = r, x1, . . . , xk−1 of length k − 1 from r to the neighbor
xk−1 of f with k vertices has to be clean and for any xi ∈ P (r, f) there is a unique subtree in T2
different from f that is not fully decontaminated. For the root r there is a subtree in T3 that is
not fully decontaminated. So at least one searcher for any xi and for r is required which gives
k in total. One additional searcher now is required for cleaning f . This gives cs(Dk) ≥ k + 1.

On the other hand k + 1 searchers are sufficient, if we start at the root with k + 1 agents and
first clean a leaf and its neighbor. Recursively, and full binary subtree of depth l is cleaned from
the root with l + 1 searchers. 2

Now, we would like to relate this to the number s(Dk). We consider D2k−1 with cs(D2k−1) = 2k.

Lemma 32 For D2k−1 we conclude s(D2k−1) ≤ k + 1.

Proof. For k = 1 the statement is trivial. So assume k > 1. We first place one agent at the
root r and successively clean the copies of B2k−2 by k agents. The last statement is shown by
induction. For k = 2 we place one agent at the root and a single agent starting at a leaf cleans
first the left subtree of r, is then moved to the leaf of the right subtree and cleans the second
subtree. Finally, all agents are placed at the root.

34 CHAPTER 2. DISCRETE SCENARIOS FOR CONTAMINATIONS

B1
2k−2

vk+12
vk+11

B2
2k−2 B4

2k−2B3
2k−2

B2(k+1)−2

Figure 2.17: The inductive step. Each subtree Bi
2k−2 can be cleaned by k agents. Placing an

additional searcher at vk+1
1 in the beginning, we first clean B1

2k−2 and B2
2k−2 successively by

k agents, move all k + 1 searchers to vk+1
2 and do the same for B3

2k−2 and B4
2k−2 successively.

Altogether, k + 1 searchers are sufficient for B2(k+1)−2.

Let us assume that the statement holds for k ≥ 2. We can fully clean B2k−2 with k searchers
that are finally located at the root. The tree B2(k+1)−2 has four subtrees Bi

2k−2 for i = 1, 2, 3, 4
of depth 2k − 2as shown in Figure 2.17 that can be cleaned by induction hypothesis with k
agents. Let vk+1

1 be the ancestor of B1
2k−2 and B2

2k−2 and let vk+1
2 be the ancestor of B3

2k−2 and
B4

2k−2.

We place one additional agent at vk+1
1 and clean B1

2k−2 and B2
2k−2 successively by k agents. Then

all k + 1 agents move over the root toward vk+1
2 . Here we again leave the additional agent at

vk+1
2 and clean clean B3

2k−2 and B4
2k−2 successively by k agents. Thus k+ 1 agents are required.

By induction, B2k−2 can be cleaned by k searchers and for D2k−1 at most k + 1 searchers are
required. 2

Now, we have a fixed relationship between cs(G) and c(G) for G = D2k−1. We have s(D2k−1) ≤
k + 1 and cs(D2k−1) = 2k.

Corollary 33 There exists a tree T so that cs(T) ≤ 2s(T)− 2 holds.

It was also shown by Barrière et al. 2012, that there is no tree T with ratio cs(T)
s(T) larger than 2.

More precisely,
cs(T)

s(T)
< 2 for all trees T .

The proof of this fact relies on the fact that in principle (up to retractions) the trees Dk can be
considered to be the category of graphs that gives the worst-case ratio. If there is some time
left at the end of the semester we will prove this fact.

Chapter 3

Discrete Cop and Robber game

In this chapter we would like to discuss another discrete variant of the intruder search problem.
In comparison to the previous chapter, we assume that at any time of the game the position of
the single intruder is given.

More precisely, there is a single robber R and a set of cops C and a graph G = (V,E). The
game starts with the cops, by choosing the starting vertices for the set C. After that, the robber
R can choose its starting vertex. The game runs in subsequent steps. First, any cop can move
from a vertex to an incident vertex, then the robber can move. The game ends, when one cop
enters the position of the robber or the robber enters the position of a cop, respectively.

Cop and Robber game for graphs:
Instance: A Graph G = (V,E) and the cardinality of the cops C.
Question: Is there a winning strategy S for the cops C?

We are searching for classifications of graphs that allow a winning strategy for C or vice versa a
winning strategy for R. Aigner and Fromme introduced the problem in the midst of the 90ies.

3.1 Classifications of graphs

3.1.1 Simple examples and pitfalls

It is interesting to see that it makes a difference, if we do not allow the robber to keep in place
during its strategy. This is called the active version of the game, in correspondance to the
passive version, where the robber is not forced to move in any step.

Figure 3.1 shows an example where this makes a difference for a single cop. In the active version
the cop starts at vertex v1 and the robber can only choose the opposite vertex r2. The cop
moves toward v. Now the robber has to move to r1. The cop moves toward v2 and after the
next mandatory move of the robber, the robber will be catched. In the passive version the
robber can move around or rest in the 4-cycle and holds distance 2 from the cop all the time.
In the following we will always discuss the more intuitive passive version of the game. Let GC
denote the set of all graphs that allow a winning strategy for C and let GR denote all graphs
that have a winning strategy for R.

Obviously, any tree T belongs to GC already for a single cop, that successively moves into the
subtree of R. Additionally, for a single cop, all graphs that contain a cycle of length at least 4
belong to GR.

We concentrate on a single cop. In the winning case for the cop, the final situation is as follows:
The robber is located in a vertex vr and the cop is located in vc for an edge e = (vr, vc).
Moreover, all neighbors, N(vr), of vr are also neighbors of vc, which means N(vr) ⊆ N(vc).

35

36 CHAPTER 3. DISCRETE COP AND ROBBER GAME

v1 v2

r1 r2

v

Figure 3.1: In this simple graph for one cop and a robber it makes a difference, if the robber
has to perform moves mandatorily.

Figure 3.2: A graph without pitfalls.

For a pair (vr, vc) of vertices we call vr a pitfall and vc its dominating vertex if N(vr) ∪ {vr} ⊆
N(vc) holds. Obviously, a graph G whithout a pitfall is in GR. Figure 3.2 shows an example.

Exercise 16 Present a construction scheme for graphs of arbitrary size without pitfalls.

3.1.2 Algorithmic approaches

We would like to show that for a single cop the classification of a graph depends on the successive
removement of pitfalls of G.

Lemma 34 Let vr be a pitfall of some graph G. Then

G ∈ GC ⇐⇒ G \ {vr} ∈ GC ,

where G \ {vr} results from G by removing all edges adjacent to vr and vertex vr from G.

Proof. If G \ {vr} ∈ GR holds, the robber simply identifies any visit of the cop of the pitfall
vr by the dominating vertex vc and makes use of a strategy in G ∈ GR \ {vr}. Note that the
neighborship of the pitfall vr is a subset of the neighorship of vc. This means that we do not
weaken the cop by the identification.

If G \ {vr} ∈ GC holds, the cop wants to extend its winning strategy to G. The cop simply
identifies any visit of the robber of the pitfall vr as a visit of the dominating vertex vc and
makes use of the same strategy. Again, since the neighborship of the pitfall vr is a subset of the
neighorship of vc, we do not weaken the robber by this identification. If at the end we catch the

3.1. CLASSIFICATIONS OF GRAPHS 37

imaginary robber at vc and the robber is physically located at vr, we will catch the robber in
the next step. 2

Now, we have a simple characterization of GC .

Theorem 35 The graph G is in GC , if and only if the successive removement of pitfalls finally
ends in a single vertex. The classification of a graph can be computed in polynomial time.

Proof. Lemma 34 gives the key argument, as the classification does not change by removing
pitfalls. This means that we either end up in a graph with no pitfalls for G ∈ GR or in a single
vertex for G ∈ GC .

Checking the existance of a pitfall can be done locally for any vertex and its neighborship. After
computing the neigborship sets, we can check the pitfall property for a vertex in a brute-force
manner in O(n2) time and for all vertices in O(n3) time for a graph with n vertices. At most n
reduction steps can be done. 2

Exercise 17 Design an efficient algorithm for checking the pitfall property of a single vertex
and/or for the graph.

The above shrinking process answers the classification question algorithmically in polynomial
time. On the other hand we would like to construct arbitrary examples of representatives of GC .
It can be shown that GC is closed under the operations product of two graphs and reduction of
a graph.

The product G1 × G2 of two graphs G1 = (V1, E1) and G2 = (V2, G2) is defined by vertex set
V1×V2 and an edge set by the folllowing rules: (v1, v2) and (w1, w2) of V1×V2 build an edge if:

1. v1 = w1 and (v2, w2) ∈ E2 or

2. (v1, w1) ∈ E1 and v2 = w2 or

3. (v1, w1) ∈ E1 and (v2, w2) ∈ E2.

Lemma 36 If G1, G2 ∈ GC , then G1 ×G2 ∈ GC

Proof. If the cop has a winning strategy for G1 that starts in vs1 and catches the robber in ve1
and for G2 that starts in vs2 and catches the robber in ve2, the cop can start in (vs1, v

s
2) apply

the strategies simultaneously and finally catches the robber in a vertex (ve1, v
e
2). This strategy

is obviously correct. 2

For a graph G and its subgraph H, the retraction from G to H is a mapping ϕ : V (G) 7→ V (H)
of the vertices of V (G) of G to the vertices V (H) of H as follows: ϕ(H) = H for (u, v) ∈ E we
have (ϕ(v), ϕ(u)) ∈ E(H). The graph H is called a retract of G, if a retraction from G to H
exists.

Note that G \ {vr} for a pitfall vr is a retract of G.

Lemma 37 If G ∈ GC , and graph H is a retract of G, then H ∈ GC .

Proof. Assume that H ∈ GR holds and let ϕ be the mapping for a retraction from G to H.
We would like to show G ∈ GR. We extend the winning strategy for H to a winning strategy
of G as follows: R remains in H and identifies the moves of C in G as moves in H. That is, if
C moves from v to u in G, the robber indentifies this move as a move from ϕ(u) to ϕ(w) which

38 CHAPTER 3. DISCRETE COP AND ROBBER GAME

exists in H by definition of ϕ. The robber always moves according to the strategy in H and
cannot be catched. 2

Note that, the above lemmata do not rely on the fact that there is only one cop.

Theorem 38 The class of graphs G in GC is closed under the operations product and retraction.

3.1.3 How many cops are required?

Obviously, any graph with a 4-cycle will not belong to GC , therefore it makes sense to think
about more than one cop. For a graph G the cop-number, c(G), denotes the minimum number
of cops required to guarantee that G ∈ GC holds.

A vertex cover of a graph G is a subset Vc ⊆ V so that any vertex u ∈ V \ Vc has a neighbor in
Vc. Therefore the minimum vertex cover is an upper bound on c(G). First, we show that c(G)
can be arbitrarily large for some graphs.

Theorem 39 Let G = (V,E) be a graph with minimum degree n that contains neither 3- nor
4-cycles. We conclude c(G) ≥ n.

Proof. Let us assume that n − 1 cops are sufficient. If G does not have a vertex cover of size
smaller than n, the n−1 cops located in the beginning at c1, . . . , cn−1 cannot prevent the robber
to choose a safe vertex. So the robber chooses such a vertex whose neighbors are not occupied
by the cops. Since there are no 3- and 4-cycles, by the next move a single cop cannot threaten
(occupy and/or be adjacent to) two neighbors of the robber in the next step. Therefore, there
is still one safe neighbor for the robber after the next move of the cops.

It remains to show that a vertex cover of size < n does not exist. Consider any vertex set
V = {v1, . . . , vn−1} of G and a vertex w 6= vi for i = 1, . . . , n− 1. Note that |V | ≥ n holds, so w
exists. Now consider the neighborhood, N(w), of w. Let it consist of k vertices v1, . . . , vk from
V and l − k vertices w1, . . . , wl−k not in V . We have l ≥ n, k ≤ n− 1 and l − k ≥ 1. There are
no 3- and 4-cycles, so N(wi) ∩N(wj) has to be {w} for i 6= j. If the set V is a vertex cover for
G, any N(wi) has to contain a different vertex from V . But none of the N(wi)’s can contain a
vertex of v1, . . . , vk, since this would give a 3-cycle with w. This means that we require l − k
different vertices from vk+1, . . . , vn−1 and n vertices from V in total, a contradiction. 2

We can construct regular graphs of arbitrary size, which fulfill the condition of Theorem 39.
The following Theorem is given by construction.

Theorem 40 For every n there exists a graph without 3- or 4-cylces with minimum degree n.
So, for any n there is a graph with c(G) ≥ n.

Proof. For n = 2 the simple 5-cycle will work. Note that C5 is 3-colorable, which means that
we color the vertices by three colora such that no two colors are adjacent. Three colors are
required and sufficient for C5. Inductively, we construct a 3-colorable graph with degree exactly
n for any vertex v of G and without 3- and 4-cycles. The coloring is required for maintaining
the cycle condition by construction.

The induction base for n = 2 was shown above. Let us assume that the statement holds for
n. We consider four copies G0, G1, G2, G3 of a corresponding graph G for n as depicted in
Figure 3.3. We build new edges with respect to the coloring of the vertices so that any vertex
obtains an additional edge; see Figure 3.3. From Gi to Gj the exact copies of two vertices of
a single color are connected. For example from G1 to G2 all identical copies of color 3 are

3.1. CLASSIFICATIONS OF GRAPHS 39

3(1) 3

3(2)

2

2

2(3)

2(1)

3
1

1

1(2)1(3)

Figure 3.3: In the inductive step we use four copies G0, G1, G2, G3 of a 3-colorable graph G of
degree exactly n without 3- and 4-cycles. Then we construct new edges according to the colors
and finally interchange some colors, appropriately.

connected, from G2 to G0 all identical copies of color 2 are connected and so on. There is a
unique correspondance as shown in Figure 3.3.

Since there are no cycles of size 3 or 4 in G0, G1, G2, G3 and any two edges between Gi and Gj
make use of identical copies of the same color there are at least two edges between them in Gi
and Gj respectively. So there are no 3- or 4-cycles in the new graph. For the inductive step, we
require a new 3-coloring, which will be attained by interchanging the colors for example color
3 by 1 and color 1 by 3 in G1 and color 2 by 1 and color 1 by 2 in G2 and so on. Thus, we
maintain 3-coloring in G0, G1, G3, G4 and also for the connections. 2

Finally, in this section we prove some positive results by bounding the cop-number from above
for special graphs. The corresponding proofs are constructive, i.e., a winning strategy for the
cops can be computed.

Theorem 41 Consider a graph G with maximum degree 3 and the property that any two adja-
cent edges are contained in a cycle of length at most 5. Then c(G) ≤ 3.

Proof. The proof is constructive in the following sense. If the position of the robber is known,
for the cops c1, c2 and c3 we consider three paths towards r that use all incident edges to r.
We choose P1, P2 and P3 for c1, c2 and c3 respectively. The paths cover the incident edges by
different cops and with length l1, l2 and l3. And the paths make use of any possible shortcut
for reaching the incident edges. Note that the paths need not be disjoint and r might also have
only one or two incident vertices. But such paths do always exist. We would like to argue that
by the condition of the Theorem, we can decrease the overall distance l := l1 + l2 + l3 in any
move of the cops.

Formally, after the move of the robber, R, we move c1, c2 and c3 to c′1, c
′
2 and c′3 so that l′ < l

holds. We further assume that r was adjacent to exactly three vertices r1, r2 and r3. The other
cases can be handled anlogously, and are given as an exercise. We have P1 = {c1, . . . , r1, r},
P2 = {c2, . . . , r2, r} and P3 = {c3, . . . , r3, r} and consider the following cases.

1. The robber R stands still. The cops move along the paths toward R and l′ ≤ l − 3.

40 CHAPTER 3. DISCRETE COP AND ROBBER GAME

r

P1

r1

r2
r3

c1

c2
c3

P2

P3

x

y

Figure 3.4: If r has degree 3 and c1 is not on r1, there is a 5-cycle so that we can move closer
to r at least by one.

2. The robber R moves to r1 (w.l.o.g.):

r1 has degree 1: This cannot happen since (r, r1) and (r, r2) are neighboring edges.

r1 has degree 2: Either c1 was on r1 and we are done or move all three cops toward r
which gives l′ ≤ l1 − 2 + l2 + l3 = l − 2 < l.

r1 has degree 3: Either c1 was on r1 and we are done or we have l1 ≥ 2. At least one
adjacent vertex, say x, of r1 does not belong to P1, otherwise we use a shortcut for P1.
This means that (x, r1) and (r1, r) are on a cycle of length at most 5. Since r has only
degree 3, one of the vertices r2 or r3, (say r2) also belong to this cycle as depicted
in Figure 3.4. So we have a 5-cycle r2, y, x, r1, r. We move all three cops toward
r, respectively r1 and use the paths P1 = {c′1, . . . , r1} P2 = {c′2, . . . , r2, y, x, r1} and
P3 = {c′3, . . . , r3, r, r1} with length l′ ≤ l1 − 2 + l2 + 1 + l3 = l − 1 < l′.

In any case we can reduce the distance of the cops to the robber for the paths to all all three
neighboring vertices. 2

Finally, we would like to prove that for any planar graph G, indeed c(G) ≤ 3 holds. We first
show that in any graph G it is always possible to protect a shortest path between two vertices
by two cops. Protection means the robber cannot enter the path without being caught in the
next step. The path length is given by the number of edges along a path between to vertices
in G. By this measure the triangle inequality holds.

Lemma 42 Consider a graph G and a shortest path P = s, v1, v2, . . . , vn, t between two vertices
s and t in G, assume that we have two cops. After a finite number of moves the path is protected
by the cops so that after a visit of the robber R of a vertex of P the robber will be caught.

Proof. First, we move a cop c onto some vertex c = vi of P . Let d(x, y) denote the distance
between two vertices in G. The robber R located at r can only have a shorter distance to vertices
on one side of P w.r.t. c because the triangle inequality holds. Assuming, that r is closer to
some x in s, v1, . . . , vi−1 and some y in vi+1, . . . , vn, t is a contradiction to the shortest path
between x and y. That is d(x, c) + d(y, c) ≤ d(x, r) + d(r, y). This means that d(r, x) < d(c, x)
only holds at most for one side of P w.r.t. c and for the other side we conclude d(r, y) > d(c, y)
in this case.

3.1. CLASSIFICATIONS OF GRAPHS 41

c

Ri

Figure 3.5: Case 1: All three cops in one vertex.

Thus, we move c towards the vertices x. Now the robber can move. Again, if there are still
vertices on one side of P w.r.t. c which are closer to r than to c we move further on toward
these vertices. So finally, we achieved

d(r, v) ≥ d(c, v) for all v ∈ P (3.1)

by this process.

Now the robber again could make its move. We show that we can maintain the inequality at all
time, which means that the robber will be caught if it tries to move towards the vertices of P .

Assume Equation 3.1 holds. The robber can either stay in its place, so the cop c does and we
fulfill Equation 3.1 (and the second cop could move now). Or the robber moves and tries to
contradict Equation 3.1 by its single move. Assume r goes to some vertex r′, we have

d(r′, v) ≥ d(r, v)− 1 ≥ d(c, v)− 1 for all v ∈ P .

If there is again some v′ ∈ P with d(c, v′) − 1 = d(r′, v′), we have the same situation as above
and we can move c toward v′ and Equation 3.1 holds again. Again as before the movement
toward r′ cannot reduce the distance to x and y on opposite sides of c w.r.t. P . Thus, by the
move toward some v′ we fulfill Equation 3.1. 2

Finally, we exploit the above property for planar graphs and by the use of 3 cops and two such
paths.

Theorem 43 For any planar graph G we have c(G) ≤ 3.

Proof. We show that the region Ri for the robber R will shrink successively, that is Ri+1 ⊂ Ri
after some moves of the cops. Two situations can appear.

Case 1: All three cops occupy a single vertex c and the robber is located in one component Ri
of G \ {c}; see Figure 3.5.

Case 2: There are two different paths P1 and P2 from v1 to v2 that are protected in the sense
of Lemma 42 by cops c1 and c2; see Figure 3.6. In this case P1 ∪ P2 subdivides G into an
interior, I, and an exterior region E. That is G \ (P1 ∪ P2) has at least two components.
W.l.o.g. we assume that R is located in the exterior E = Ri.

We will show that these two cases can appear successively and the region Ri of the robber will
shrink. In the beginning all cops are located in a single vertex c and we are in case 1. We show
how we handle the cases.

42 CHAPTER 3. DISCRETE COP AND ROBBER GAME

c2

v1

P2P1
c1

v2

Ri

Figure 3.6: Case 2: Two cops protect two paths.

Movements in Case 1: We consider different situations for the neighbors of c:

c has one neighbor in Ri: Move all cops to this neighbor c′ and consider Ri+1 = Ri \ {c′}.
This gives Case 1 again.

c has more than one neighbor in Ri: Let a and b be two of the neighbors and let R(a, b)
be a shortest path in Ri between a and b. One cop remains in c, another cop protects the
path P (a, b) by Lemma 42. Thus P1 = a, c, b and P2 = P (a, b). We are in Case 2 with
Ri+1 ⊂ Ri.

Movements for Case 2: We consider the situation for the composition of Ri and the location
of the robber. We first assume that there is another shortest path P ′(v1, v2) but different from
P1 and P2 that partially runs in Ri and also connects v1 and v2.

Let x1 be the first vertex of P ′(v1, v2) where the path P ′ leaves P1 ∪ P2 after v1 and x2 be the
first vertex of P ′ after x1 that enters P1 ∪ P2 again.

We let c3 protect the path P3 which results from combining P1,2(v1, x1) with x1, r1, . . . , rl, x2
and with P1,2(x2, v2) as depicted in Figure 3.7. While c1 and c2 protect P1 and P2, the cop
c3 can protect this path P3 from v1 to v2. At the end c3 protects P3 and c1 or c2 protect the
remaining path, we are in Case 2 with Ri+1 ⊂ Ri.
On the other hand, if there is no path different from P1 and P2 and partially running in Ri that
connects v1 and v2, there are no such leave and entry vertices x1 and x2 that are connected in
Ri. Thus, the robber has to be inside a component that fully is connected to a single vertex x
on P1 and P2. Thus, we move c3 to this vertex, and also c1 and c2 and end in Case 1 again. 2

3.1. CLASSIFICATIONS OF GRAPHS 43

c2

v1

P2
c1

v2
R1
i+1

P1

x1

x2

r1

r3
r1

r4

a

x1

xi

R2
i+1

x2

r2

r3

r2 R1
i+1

P3

P3

x

Figure 3.7: The situation for the two chains P1 and P2 protected by c1 and c2. If there is another
shortest path from v1 to v2 different from P1 and P2 that runs partially in Ri, we construct a
path P3 that runs from v1 to v2 that is protected by c3 alone and protects vertices of Ri. If
there is no such path, a vetex x exists that can be visited by all cops and gives Case 1 again.

44 CHAPTER 3. DISCRETE COP AND ROBBER GAME

Chapter 4

Randomized variants

In this chapter and before turning over to some geometric variants of the intruder search problem,
we would like to resume the graph decontamination problem for stationary guards in order to
show that there are also randomized strategies and problem variants that can be discussed.

We show a slightly better approximation as the greedy algorithm for trees by a randomized
strategy. Additionally, we interpret the search number of a graph in the configuration that the
fire spreads from any vertex with the same probability. We concentrate on positive results.

4.1 Better approximations for trees by randomization

We pick up the firefighter problem for trees again. As already asked for in Exercise 10 we can
formulate the problem as an integer LP by the following rules. Let v ≤ u denote that v equals
u or is a predecessor of u w.r.t. the root r of tree T .

Minimize
∑

v∈V
xvwv

so that xr = 0 = 0

∑

v≤u
xv ≤ 1 : for every leaf u

∑

v∈Li

xv ≤ 1 : for every level Li, i ≥ 1

xv ∈ {0, 1} : ∀ v ∈ V
In the above integer LP the weights wv denote the number of vertices in the subtree Tv of vertex
v w.r.t. the root r.

Let optILP denote the optimal solution of the above integer LP. For the approximation we solve
the problem in polynomial time for xv ∈ IR≥0. The optimal solution, optRLP , is a fractional
solution so that a subtree Tv with xv = a ≤ 1 is called a-saved, a portion a ·wv of the subtree is
saved. For two vertices v1 and v2 on the same path from the root r to a leaf u and v1 is ancestor
of v2 and xv1 = a1 and xv2 = a2 the vertices of Tv2 are (a1 + a2)-saved. The remaining vertices
of Tv1 are only a1-saved.

The simple idea is that we would like to use a rounding scheme. But we do this in a randomized
fashion. For each level we interpret the a-values as a probability dsitribution for choosing a
vertex to be safe. This is a rounded strategy w.r.t. the distribution. On each level we simply
choose a vertex at random according to its distribution. Note that the sum of the a-values for
level i could be smaller than 1. We interpret the remaining portion as the probability of choosing
none of the vertices in this level. The main problem is that we might choose vertices that are

45

46 CHAPTER 4. RANDOMIZED VARIANTS

on the same path from the root to a leaf. If no such double-protections occur the expected value
of the rounded strategy would be at least optILP and the expected approximation value would
be indeed 1.

If also a successor of a vertex is choosen by our procedure, we simply delete it in the final solution
and do not choose another vertex at this level. This makes the choosing procedure independent
for every level. Altogether, the only loss we have is for the double-protections. Let us assume
that they can occur. What happens if the a tree Tvi at level i is fully saved by the fractional
strategy? We would like to argue that in the worst-case the fractional strategy has assigned a
1/i fraction to all vertices on the path from r to vi and the subtree is fully saved by the rounding
scheme with probability

1− (1− 1/i)i ≥ 1− 1

e
.

We put this intuition into a formal argument.

Theorem 44 Consider an algorithm that protects the vertices w.r.t. the probability distribution
given by optRLP . The expected approximation ratio of the above strategy for the number of
vertices protected is

(
1− 1

e

)
.

Proof. Let SF denote the fractional solution for optRLP . For an integer solution, we choose a
vertex on each level w.r.t. the probability distribution from optRLP . Let SI denote the outcome
of this assignment. We would like to show, that the expected value of SI is larger than

(
1− 1

e

)

times the value of SF which in turn outperforms optILP .

Let xFv denote the value of xv for the fractional strategy and let xIv denote the value {0, 1}
of the integer strategy. For convenience we denote yv =

∑
u≤v xu ∈ {0, 1}, which indicates

whether v is finally saved or not. Let yFv =
∑

u≤v x
F
u ≤ 1 denote the fraction of v saved by

the fractional strategy. For yv = 1 it suffices that one of the predecessor of v was chosen. Let
r = v0, v1, v2, . . . , vk = v be the path from r to v, so we have

Pr[yv = 1] = 1−
k∏

i=1

(1− xFvi) .

For example, the probability that v2 is safe is x1 + (1 − x1)x2 = 1 − (1 − x1)(1 − x2) and the
probability that v3 is safe is 1−(1−x1)(1−x2)+(1−x1)(1−x2)x3 = 1−(1−x1)(1−x2)(1−x3)
and so on.

Thus we compute

Pr[yv = 1] = 1−
k∏

i=1

(1− xFvi)

≥ 1−
(∑k

i=1(1− xFvi)
k

)k
= 1−

(
k −∑k

i=1 x
F
vi

k

)k

= 1−
(
k − yFv
k

)k

= 1−
(

1− yFv
k

)k
≥ 1− e−yFv ≥

(
1− 1

e

)
yFv . (4.1)

The first inequality is a standard inequality for means of positive real values x1+x2+···+xn
n ≥

n
√
x1 · x2 · · ·xn. The second and third inequalities stem from classical analysis where we use the

fact that 0 ≤ yFv ≤ 1 holds.

4.2. SEARCH NUMBERS FOR RANDOM FIRE SOURCES 47

The value of SF is simply the sum of all yFv . Thus, we conclude

E(|SI | =
∑

v∈V
Pr[yv = 1] ≥

(
1− 1

e

)∑

v∈V
yFv =

(
1− 1

e

)
|SF | .

2

Altogether, we have a randomized polynomial time algorithm for trees with an expected ap-
proximation ratio better than the 1

2 -approximation of greedy.

Exercise 18 Prove x1+x2+···+xn
n ≥ n

√
x1 · x2 · · ·xn for positive real values xi. Also prove the last

two inequalities of Equation 4.1 in the proof of Theorem 44.

4.2 Search numbers for random fire sources

The second part on randomization is that we might use it to consider the situation that the
starting vertex of the fire has some influence on the number of agents required. Therefore, in this
section we again consider the firefigther problem on graphs but the start of the fire is choosen
uniformly at random among all vertices. The question is, what is the number of agents required
so that for a given class C of graphs it can be expected that at least linear number of vertices
can be saved.

This subsumes many questions handled before. We would like to have a classification by the
properties of C, we would like to find a minimum number k of agents required and we use an
expected value for assuming that the fire can start in any vertex with the same probability.

For a graph G = (V,E) and a fixed number k of agents, the k-surviving rate, sk(G), is the
expectation of the proportion of vertices that can be saved if the fire can start from any vertex
with the same probability. We are looking for classes, C, of graphs G so that for a fixed
constant ε, sk(G) ≥ ε holds for any G ∈ C. This means that at least ε · |V | vertices will be
saved. For a given graph G, a given k and a vertex v ∈ V let snk(G, v), denote the number of
vertices that can be protected by k agents, if the fire starts at v.

We are also searching for the minimal number k that guarantees sk(G) ≥ ε. This means that

1

|V |
∑

v∈V
snk(G, v) ≥ ε|V |

has to be shown. For a class C let the minimum number k that guarantees sk(G) > ε for any
G ∈ C be denoted as the firefighter-number, ffn(C), of C.

Firefighter-Number for a class C of graphs:
Instance: A class C of graphs G = (V,E).
Question: Assume that the fire breaks out at any vertex of a graph G ∈ C with the same
probability. Compute ffn(C).

Theorem 45 For planar graphs we have 2 ≤ ffn(C) ≤ 4.

There is a simple argument for the lower bound 2 ≤ ffn(C). Consider a planar bipartite complete
graph with 2 and n− 2 vertices on the corresponding sides. For any starting vertex at most one
vertex can be saved and 1

n will become arbitrarily small.

For the upper bound we first show a somewhat easier result that shows the main idea. The
vertices are subdivided into classes X and Y , where a root vertex from set X allows to save
many (a linear number of) vertices and a root vertex from the set Y allows to save only few
(almost zero) vertices. Finally, |Y | ≤ c|X| gives the bound.

48 CHAPTER 4. RANDOMIZED VARIANTS

Theorem 46 For planar graphs G with no 3- and 4-cycle, we have s2(G) ≥ 1/22.

Proof. We make use of the Euler formula, c+ 1 = v − e+ f , for planar graphs with e edges, v
vertices, f faces and c components. We assume that the graph is connected, that is c = 1. A
planar graph with no 3- and 4-cycle has average degree less than 10

3 . If not, we assume 10
3 v ≤ 2e,

summing up the degrees of all vertices gives exactly twice the number of edges and we count less
than that by assuption. We can also conclude 5f ≤ 2e, since any face has at least 5 edges that
can neighbor two faces, but we might not count all edges twice. This means f ≤ 2

5 . Inserting
v ≤ 3

5e into the formula gives f ≥ 2 + 2
5 , a contradiction. With similar arguments we can show

that a graph with no 3-, 4 and 5-cylces has average degree less than three, which is the question
of Exercise 19.

We subdivide the vertices V of G into groups w.r.t. the degree and the neighborship.

• Let X2 denote the vertices of degree ≤ 2.

• Let Y4 denote the vertices of degree ≥ 4.

• Let X3 denote the vertices of degree exactly 3 but with at least one neighbor of degree ≤ 3.

• Let Y3 denote the vertices of degree exacly 3 but with all neighbors having degree > 3
(degree 3 vertices not in X3).

Let x2,x3,y3 and y4 denote the cardinality of the sets, respectively.

Let |V | = n. For a vertex starting in X2, by two agents we protect the neighbors and safe n− 2
vertices. For a vertex in X3, we save two neighbors so that the fire spreads to the neighbor u of
degree ≤ 3 and in the next step we protect the remaining neighbors of u, thus protecting n− 2
vertices in total. For starting vertices in Y3 and Y4, we assume that we can save no vertex.

We have to show that 1
n

∑
v∈V snk(G, v) ≥ ε · n holds and we consider

s2(G) =
1

n2

∑

v∈V
snk(G, v) ≥ 1

n2
(x2 + x3)(n− 2) =

n− 2

n
· x2 + x3
x2 + x3 + y3 + y4

(4.2)

since x2 + x3 + y3 + y4 = n holds.

We first would like to compute a correspondance between Y3 and Y4 and consider the graph
GY = (VY , EY) that consists of the edges of G with precisely one vertex in Y3 and one vertex
in Y4. The graph GY has precisely 3y3 edges and at most y3 + y4 vertices. Note that some of
the vertices of Y4 might be neighbors for more than one vertex of Y3. The graph GY is bipartite
and a subgraph of G. A cycle of size 5 has to go forth and back from Y3 to Y4 vertices and
has to end at the same class Y4 or Y3. Therefore in GY we only have cycles of size at least 6
and by Exercise 19 the average degree of vertices of GY is at most 3. This means by counting
3(y3 + y4), we have counted at least any edge twice, which gives 3(y3 + y4) ≥ 6y3 and y3 ≤ y4.
Now we would like to compute a fixed relation between x2 + x3 and y3 + y4. By the average
degree, by counting 10

3 (x2 + x3 + y3 + y4) edges we have at least counted 3x3 + 3y3 + 4y4 edges,
which gives 9x3 + 9y3 + 12y4 ≤ 10(x2 + x3 + y3 + y4) and in turn 2y4 − y3 ≤ 10x2 + x3. By
y3 ≤ y4 we have y4 ≤ 10x2 + x3 and also y3 + y4 ≤ 20x2 + 2x3 ≤ 20(x2 + x3).

Now insertion into Equation 4.2 gives

s2(G) ≥ n− 2

n
· x2 + x3
x2 + x3 + y3 + y4

≥ n− 2

n
· x2 + x3

21(x2 + x3)
=
n− 2

21n
. (4.3)

If G has only two vertices, in any case the vertex distinct from the root can be saved. If G has
3 ≤ n ≤ 44 vertices, at least 2

44 are saved in a single step. For n ≥ 44 we have s2(G) ≥ 42
21·44 = 1

22 .
So the expected value of saved vertices is always 1

22n. 2

4.2. SEARCH NUMBERS FOR RANDOM FIRE SOURCES 49

Exercise 19 Prove by the Euler formula that a graph with no 3-, 4-cycle and 5-cylces has
average degree less than three.

Finally, we would like to prove the statement ffn(C) ≤ 4 of Theorem 45. To this end we prove
the following result with a precise value of s4(G) for planar graphs.

Theorem 47 Using four firefighters in the first step and then always three firefighters in each
step, for every planar graph G there is a strategy such that s4(G) ≥ 1

2712 holds.

Proof. We can assume that G is a maximal planar graph without multi-edges. Inserting more
edges will only help the fire but multi-edges will not. This means that G is a triangulation and
we can assume that any face has exactly three edges.

We provide the proof in several steps and the proof contains four Lemmate, namely Lemma 48,
Lemma 49, Lemma 50, and Lemma 51.

Similarily, to the proof above we subdivide the vertices V of G into sets X and Y . Where X
will be the set of vertices where a strategy saves at least n − 6 vertices and for Y we do not
expect to save any vertex, for |V | = n.

The final conclusion is that for some α = 1
872 we will conclude

|Y | ≤
(

93 +
3

α

)
|X| = 2709|X| . (4.4)

Thus from |X|+ |Y | = n and Equation 4.4 we conclude

s4(G) ≥ n− 6

n
· |X|
|X|+ |Y | >

n− 2

n
· |X|

2710|X| =
n− 6

2710n
. (4.5)

For n ≥ 10846 we have

s4(G) ≥ 1

2710
− 6

4 · 27102
≥ 2710− 3/2

27102
≥ 1

2712

For 2 ≤ n < 10846 we save at least min(4, n− 1) in the first step, which gives also s4(G) ≥ 1
2712 .

The remaining task is, to establish the above bounds. First, we subdivide the vertices accord-
ingly. Note that for starting vertices of degree 3 or four we can save n − 1 vertices in the first
step.

• For degree 3 ≤ d ≤ 6 let Xd denote the vertices that guarantee to save at least |V | − 6
vertices.

• All other vertices form the set Yd for d ≥ 5.

Also note that a starting vertex v of degree 5 with a neighbor u of degree at most 6 is in X5.
Because of the triangulation u and v have two common neighbors n1 and n2 . In the first step,
we let the fire only spread to u by protecting 4 neigbors at u. Then the neighbors v, n1 and n2
of u are already protected. So we fully protect the graph in the next step by 3 agents.

We require some more structural properties for the relationsship between X and Y which stem
from the triangulation. The length of a path in the graph is given by the number of edges.

Lemma 48 For a vertex v ∈ Y6 there is a path of length at most 3 from v to a vertex u that
has degree distinct from v (i.e., 6= 6) and the inner vertices of the path have degree exactly 6.

50 CHAPTER 4. RANDOMIZED VARIANTS

1

11

1

1 1

0

2 2

2

2

2 3

3

3

3

4

4

4

Figure 4.1: If a vertex v of degree 6 is in Y6, we will find a vertex u as given in Lemma 48 in
the neighborhood, or we finally end in a situation where v is blocked locally in a hexagon and
thus belongs to X6.

Proof. Let us assume that this is not the case. In the first step we can always protect 4
subsequent neighbors of v as depicted in Figure 4.1. If one of the remaining two neighbors (step
1) does not have degree 6, we are done. So assume that also these two neigbors have degree
6. Because of the triangulation, they will span a hexagon and we can protect 3 neighbors of
these two as depicted in Figure 4.1. The fire spread to only two remaining neighbors (step 2).
If one of them does not have degree 6 we are done again. So assume that both also have degree
6 and we extend the hexagonal grid. We can protect the neighbors by three agents as depicted
in Figure 4.1 and only one vertex remains on fire after the fire spreads (step 3). If this vertex
does not have degree 6 we are done again. But if this vertex also have degree 6 we will finally
enclose the fire in the next step and only 6 vertices (v, 2 in (step 1), 2 in (step 2), 1 in (step3))
gets burned in total, a contradiction to v ∈ Y6. Without the above property, v will be in X5! 2

The next lemma tells us something about vertices from Yd with d ≥ 7 related to y5. Let d(v)
denote the degree of vertex v.

Lemma 49 A vertex with d(v) ≥ 7 has at most b12d(v)c neighbors in Y5.

Proof. A neighbor u of v from Y5 has two neighbors n1 and n2 in common with v. If one of
them has degree strictly less than 7, the vertex u belongs to X5. So the vertices from Y5 around
v are seperated by vertices of degree ≥ 7, which gives the bound. 2

Finally, we make use of the following structural lemma that stems from the Euler formula and
the simple, maximal planar triangulation.

Lemma 50 For a simple, maximal planar graph we have

∑

v∈V
(d(v)− 6) = −12 . (4.6)

Proof. For a maximal, simple planar graph we have 3f = 2e, by counting the edges of every
triangular face, we count any edge exactly twice. Additionally, we have

∑
v∈V d(v) = 2e because

summing up the degree of the vertices counts any edge twice as well. The Euler formula says
v− e+ f = 2 and we conclude v− e+ 2

3e = 2⇐⇒ 2e− 6v = −12 which gives the conclusion. 2

Now we present the main idea for obtaining Equation 4.4. The idea is that we distribute the
intitial potential p1(v) := (d(v)− 6) of every vertex among the others so that finally any vertex
has potential p2(v) and also

∑
v∈V p1(v) =

∑
v∈V p2(v) = −12 holds.

The rules for the distribution are as follows:

4.2. SEARCH NUMBERS FOR RANDOM FIRE SOURCES 51

Rule A: A vertex v of degree at least 7 gives a value of 1
4 to each neighbor vertex from Y5.

Rule B: For a vertex v ∈ Y6 we choose exactly one vertex u with d(u) 6= 6 and distance
d(v, u) ≤ 3 as in Lemma 48. The vertex u gives a value of α > 0 to v.

We would like to choose α accordingly, the property
∑

v∈V p1(v) =
∑

v∈V p2(v) = −12 will hold
since the distribution is cost neutral by construction. Such a distribution with desired properties
exists.

Lemma 51 There is a constant α > 0 such that a distribution by Rule A and B gives
∑

v∈V p1(v) =∑
v∈V p2(v) = −12 and for every v ∈ X we have p2(v) ≥ −3− 93α and for every v ∈ Y we have

p2(v) ≥ α.

Before we prove this final lemma, we use its conclusion. An α = 1
872 will do the job. We then

conclude

−12 =
∑

v∈V
p2(v) ≥ (−3− 93α)|X|+ α|Y |

and this gives

|Y | ≤
(

93 +
3

α

)
|X| < 2790|X|

which is Equation 4.4. It remains to prove Lemma 51.

Proof of Lemma 51.
For the claim we estimate the distribution of the potential as given by the rules A and B.

Considering Rule B, how often can a vertex u with d(u) 6= 6 give a potential of α to some
vertex v? We give a rough upper bound with respect to the maximal distance ≤ 3 from u:

• Distance 1: d(v) times to a direct neighbor, if all of them are in Y6. This gives 1 · d(u).

• Distance 2: For all d(v) neighbors of the first case, at most 5 times, if the d(v) neighbors of
the above case have degree 6 and all 5 remaining neigbors are from Y6. This gives 5 · d(u).

• Distance 3: For all vertices of the second case, at most 5 times, if the vertices of the second
case all have degree 6 and the remaining neighbors are from Y6. This gives 25 · d(u).

Altogether, any vertex u with d(u) 6= 6 can give a potential α at most (1 + 5 + 25)d(u) = 31d(u)
times. This gives upper bounds for the potential p2(v):

• v ∈ X3: We have p2(v) ≥ −3− 93α because d(v) = 3 and p1(v) = −3.

• v ∈ X4: We have p2(v) ≥ −2− 124α because d(v) = 4 and p1(v) = −2.

• v ∈ X5: We have p2(v) ≥ −1− 155α because d(v) = 5 and p1(v) = −1.

For vertices of degree 6 we have the following:

• v ∈ X6: p2(v) = 0 because d(v) = 6 and p1(v) = 0.

• v ∈ Y6: p2(v) = p1(v) + α = α because Rule B gives a single value α from some u to v,
and by Lemma 48 such a vertex exists, if v exists.

52 CHAPTER 4. RANDOMIZED VARIANTS

Note that the distributions of these α potentials are cost-neutral in total for p1 and p2.

Considering Rule A, for vertex v and d(v) ≥ 7, we can apply Lemma 49 and the above estimate
for an upper bound

p2(v) ≥ (d(v)− 6)−
⌊

1

2
d(v)

⌋
· 1

4
− 31d(v)α . (4.7)

So the remaining cases can be estimated by

• v ∈ X ∪ Y with d(v) = 7: p2(v) ≥ 1
4 − 217α.

• v ∈ X ∪ Y with d(v) ≥ 8: p2(v) ≥ d(v)
(
7
8 − 31α

)
− 6 by b12d(v)c · 14 ≤ 1

8d(v).

We choose α > 0 so that 1
4 − 217α ≥ α and d

(
7
8 − 31α

)
− 6 ≥ α holds for all d ≥ 8. The first

inequality is fulfilled for α = 1
218·4 = 1

872 and this also fulfills the second inequality. Thus, we have
shown that for v ∈ Y p2(v) ≥ α holds. The same value for α also guarantess p2(v) ≥ −3− 93α
for all v ∈ X.

It remains to note that the distribution is cost-neutral also for Rule A. But this is clear because
the sum of the potential added and retracted is the same. Altogether, Lemma 51 holds and the
full conclusion can be drawn, which is s4(G) ≥ 1

2712 . 2

Exercise 20 Present the precise strategies that stem from Theorem 46 and Theorem 47. Anal-
yse the corresponding running time.

	Introduction
	Introductory examples
	Protecting parts of a polygonal area from a set of intruders
	Catching an evader in a grid world
	Enclosing a fire by a single circle
	Simulation and conjecture for a discrete spiral strategy

	Discrete Scenarios for Contaminations
	Graphs
	Polynomial time algorithm for special graphs
	NP-Completeness for graphs

	Trees
	Greedy approximation for a tree
	Exponential time algorithm for general trees
	Capture of an Intruder by moving agents
	Existance of monotone strategies
	Designing a monotone strategy for unit weights
	Optimal contiguous Intruder Search Strategy for unit weights
	Lower and upper bound for the contiguous search
	The prize of connectivity

	Discrete Cop and Robber game
	Classifications of graphs
	Simple examples and pitfalls
	Algorithmic approaches
	How many cops are required?

	Randomized variants
	Better approximations for trees by randomization
	Search numbers for random fire sources

