Chan's randomized optimization technique

- T. M. Chan, "Geometric Applications of a Randomized Optimization Technique," Discrete and Computational Geometry, vol. 22, pp. 547567, 1999. (We teach first three sections)
- For certains geometric problems, the technique can turn a deterministic algorithm for the decision version into a randomized algorithm for the optimization version.

Decision Problem:

- Given an instance I and a value k, answer if there exists a solution for I whose value is k, at most k, or at least k.
- E.G.: Given a set I of points in the plane and a value k, does there exist a spanning tree connecting all points in I whose length is at most k ?

Optimization Problem:

- Given an instance I, answer a solution for I with the minimum or maximum value.
- E.G.: Given a set I of points in the plane, find a spanning tree connecting all points in I with the minimum length.

Importance of the Technique

- It is usually easier to develop an algorithm for the decision version of a problem than one for the optimization version.
- An algorithm for the decision version is probably a bit simpler, i.e., easier for implementation
- Expected behavior of an algorithm usually reflects its actual behavior, i.e., the worst case hardly occurs.

Finding the minimum of r numbers, i.e., $\min \{A[1], A[2], \ldots, A[r]\}$

Algorithm RAND-MIN

1. randomly pick a permutation $\left\langle i_{1}, \ldots, i_{r}\right\rangle o f\langle 1, \ldots, r\rangle$
2. $t \leftarrow \infty$
3. for $k=1, \ldots, r$ do
4. if $A\left[i_{k}\right]<t$ then (decision)
5. $\quad t \leftarrow A\left[i_{k}\right] \quad$ (evaluation)
6. return t
$O(D r+E \log r)$ expected time

- Imagine $A[0], \ldots, A[r]$ have not yet been precomputed
- D : time to decide if $A[i]<t$
- E : time to evaluate $A[i]$
- The expected number of times that step 5 is execuated is $\ln r+1$. (Exercise)
- $O(D r+E \log r)$. If $E \gg D$, it is better than $O(E r)$.

Consider an instance I with n elements for a minimization problem. Let $A[I]$ be the cost of the minimal solution for I. Assume we can randomly partitaion I into r subsets with almost equal size, I_{1}, \ldots, I_{r} such that $A[I]=$ $\min \left\{A\left[I_{1}\right], \ldots, A\left[l_{r}\right]\right\}$.

- if $A\left[l_{i}\right]<t$: a decision problem
- $t \leftarrow A\left[l_{i}\right]$: an optimization problem
- $O(D(n / r) * r+E(n / r) * \log r)$
- $D(m)$: time to solve the decision problem for an m-size input
$-E(m)$: time to solve the optimization problem for an m-size input

Denotation and Assumption

- Γ represent the problem space
- Given a problem $P \in \Gamma$, let $w(P) \in \mathbb{R}$ be its solution
- $|P|$ is the size of P (a positive integer)
- The solution of a problem of constant size can be computed in constant time.

Lemma Chan's randomized technique
Let $\alpha<1, \epsilon>0, r$ be constants, and let $D(\cdot)$ be a function such that $D(n) / n^{\epsilon}$ is monotone increasing in n. Given any problem $P \in \Gamma$, suppose that within $D(|P|)$ time,
(i) we can decide whether $w(P)<t$ for any given $t \in \mathbb{R}$, and
(ii) we can construct r subproblems, P_{1}, \ldots, P_{r}, each of size at most $\lceil\alpha|P|\rceil$, so that

$$
w(P)=\min \left\{w\left(P_{1}\right), \ldots, w\left(P_{r}\right)\right\} .
$$

Then for any problem $P \in \Gamma$, we can compute the solution $w(P)$ in $O(D(|P|)$ expected time

Proof

General Idea

- Compute $w(P)$ by applying Algorithm Rand-Min to the unknown numbers $w\left(P_{1}\right), w\left(P_{2}\right), \ldots, w\left(P_{r}\right)$.
- Deciding $w\left(P_{i}\right)<t$ takes $D\left(\left|P_{i}\right|\right)$ time.
- Evaluating $w\left(P_{i}\right)$ is done recursively unless $\left|P_{i}\right|$ drops below a certain constant.

Analysis

- let $T(P)$ be the random variable corresponding to the time needed to compute $w(P)$.
- Let $N\left(P_{i}\right)$ be 0-1 random variable, having value 1 if and only if $w\left(P_{i}\right)$ is evaluated

$$
T(P)=\left(\sum_{i=1}^{r} N\left(P_{i}\right) T\left(P_{i}\right)\right)+O(r D(|P|))
$$

Note that the expected number of evaluations by Algoirthm RAND-MIN is $E\left[\sum_{i=1}^{r} N\left(P_{i}\right)\right] \leq \ln r+1$

- Define $T(n)=\max _{|P| \leq n} E[T(P)]$.

Since $N\left(P_{i}\right)$ and $T\left(P_{i}\right)$ are independent, we have

$$
\begin{gathered}
E[T(P)]=\sum_{i=1}^{r} E\left[N\left(P_{i}\right)\right] E\left[T\left(P_{i}\right)\right]+O(r D(|P|)) \\
\leq(\ln r+1) T(\lceil\alpha|P|\rceil)+O(r D(|P|))
\end{gathered}
$$

Which implies

$$
T(n)=(\ln r+1) T(\lceil\alpha n\rceil)+O(D(n))
$$

$(O(r D(|P|))=O(D(n))$ since r is a constant)
If we assume,

$$
(\ln r+1) \alpha^{\epsilon}<1
$$

$T(n) \leq C \cdot D(n)$ for an appropriate constant C depending on α, r, and ϵ. (Exercise)

To enforce $(\ln r+) \alpha^{\epsilon}<1$, we compress l levels of the recursion into one before appying Algorithm Rand-Min, where l is a sufficiently large constant. Then,

- r increases to r^{l}
- α decreases to α^{l}
- $\lim _{l \rightarrow \infty}\left(\ln r^{l}+1\right) \alpha^{l \epsilon}=0$

Note:

The above lemma still holds if (i) and (ii) require $D(|P|)$ expected time (rather than the worst-case).

Applications

Closest Pairs

- Let U be a collection of objects.
- Given a distance function $d: U \times U \rightarrow \mathbb{R}$,
- closest-pair problem: to compute $w(P)=\min _{p, q \in P} d(p, q)$ for a given set $P \subset U$
- closest-pair decision problem: to determine whether $w(P)<t$ for a given P and $t \in \mathbb{R}$.

Theorem.

If the closest-pair decision problem can be solve in $D(n)$ time, then the closestpair problem can be solved in $O(D(n))$ expected time, assuming that $D(n) / n$ is monotone increasing.

- Arbitrarily partition P into three subsets P_{1}, P_{2}, P_{3} of roughly equal size.

$$
w(P)=\min \left\{w\left(P_{1} \cup P_{2}\right), w\left(P_{2} \cup P_{3}\right), w\left(P_{1} \cup P_{3}\right)\right\}
$$

- Applying the technique with $r=3$ and $\alpha=\frac{2}{3}$.

Ray Shooting

- Let U be a collection of objects
- Let V be a collection of rays
- Let $\tau: U \times V \rightarrow \mathbb{R}$ be an ordering function, where $\tau\left(p_{1}, q\right)<\tau\left(p_{2}, q\right)$ means that ray q hit object p_{1} before p_{2}.
- The ray shooting problem: to preprocess a given set $P \subset U$ of size n into a data structure that answers queries of the following type:
- given $q \in V$, compute $W(P, q)=\min _{p \in P} \tau(p, q)$.
- The ray shooting decision problem: given any $q \in V$ and $t \in \mathbb{R}$, determine whether $w(P, q)<t$.

Theorem

If the ray-shooting decision problem can be solved with $P(n)$ preprocessing and $D(n)$ query time, then the ray-shooting problem can be solved with $O(P(n)$) preprocessing and $O(D(n))$ expected query time, assuming that $P(n) / n^{1+\epsilon}$ and $D(n) / n^{\epsilon}$ are monotone increasing forsome constant $\epsilon>0$

proof

- Parition P into two subset P_{1} and P_{2} of roughly equal size, build the decision data structures for P_{1} and P_{2}, and recursively preprocess P_{1} and P_{2}.
- The new preprocessing time $P^{\prime}(n)$ satisfies the recurrence

$$
P^{\prime}(n)=2 P^{\prime}(n / 2)+O(P(n)
$$

- If $P(n) / n^{1+\epsilon}$ is monotone increasing, $P^{\prime}(n)=O(P(n))$
- To compute a given $q \in V$, we can divide the problem into two subproblems, each of size roughly $n / 2$:

$$
w(P, q)=\min w\left(P_{1}, q\right), w\left(P_{2}, q\right)
$$

- Chan's technique implies the expected query time to be $O(D(n))$.

