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Discrete Surveillance Tours in Polygonal Domains

Elmar Langetepe∗ Bengt J. Nilsson† Eli Packer‡

Abstract

The watchman route of a polygon is a closed tour that
sees all points of the polygon. Computing the shortest
such tour is a well-studied problem. Another reasonable
optimization criterion is to require that the tour mini-
mizes the hiding time of the points in the polygon, i.e.,
the maximum time during which any points is not seen
by the agent following the tour at unit speed. We call
such tours surveillance routes.
We show a linear time 3/2-approximation algorithm

for the optimum surveillance tour problem in rectilin-
ear polygons using the L1-metric. We also present an
O(polylogwmax)-approximation algorithm for the opti-
mum weighted discrete surveillance route in a simple
polygon with weight values in the range [1, wmax]. Our
algorithm can have superpolynomial complexity since
the tour may have to see points of high weight many
times.

1 Introduction

Visibility coverage of polygons with guards (mainly
known as Art Gallery problems) have been central ge-
ometric problems for many years. Usually guards are
defined as static points that see in any direction for
any distance and visibility is defined by the clearance
of straight lines between two features (in other words,
two features see each other if the segment that connects
them does not intersect (the interior of) any other fea-
ture of the input). Coverage is achieved if any point
inside the polygon is visible by at least one guard.
Several art gallery variants have been proposed for

different kind of settings. These include different classes
of polygons, such as rectilinear and monotone polygons,
and different types of guards, such as edge and segment
guards; see [7, 8, 9, 11].
Allowing a guard to move inside the polygons defines

a related problem but yet with very different properties.
Here, a set of mobile guards walk on closed cycles (also
called tours or routes) so that any point inside the poly-
gon is seen by at least one guard during its walk along
the tour. The number of guards is a parameter of the
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problem and the measure criteria relates to the length
of the tours (e.g., minimize the longest tour). Several
solutions have been proposed for the case of a single
mobile guard, a shortest watchman route in a simple
polygon. The currently fastest one combines algorithms
by Tan [10] and Dror et al. [3], to achieve asymptotic
running time O(n4 logn).
We want to guard a given simple polygon P, but

rather than finding a shortest tour that covers the points
ofP, we are interested in a tour that minimizes the max-
imum duration in which any of the points in P are not
guarded. We call such a tour an optimum surveillance

route for the polygon, abbreviated OSR. Kamphans
and Langetepe [5] study a similar concept (inspection
paths) but their optimization measure is the sum of the
durations where features are not covered rather than
the maximum duration.
We also consider a discrete version of the minimum

surveillance tour problem where a given finite subset
S of points in the polygon is to be guarded. We fur-
ther generalize this version of the problem by associat-
ing weights to the points of S.
We show a linear time 3/2-approximation algorithm

for the optimum surveillance tour problem in rectilin-
ear polygons using the L1-metric. We also present a
O(polylogwmax)-approximation algorithm for the opti-
mum weighted discrete surveillance route in a simple
polygon with weight values in the range [1, wmax].

2 Preliminaries

Let V(p) denote the visibility polygon of a point p ∈ P,
i.e., the set of all points q in P such that the segment
pq fully lies inside P. Obviously, the visibility polygon
V(p) is a simple polygon itself. A watchman route is
a closed tour within the polygon that sees all points of
the polygon. Hence, a tour T is a watchman route if
∀p ∈ P;V(p) ∩ T 6= ∅.
A reasonable extension of the concept of a watchman

route is to require that the tour minimizes the hiding
time of the points in the polygon, i.e., the maximum
time during which any point in the polygon is not seen
by an agent following the tour at unit speed. To for-
mally define this, we introduce the concept of hidden
pieces of a tour T.

Definition 1 Given a tour T and a point p, the hid-

den pieces, HT (p), of T with respect to p is the set of
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maximal paths HT (p)
def
= {T \V(p)}.

The visibility polygon V(p) of p subdivides the hidden
pieces of T into a number of subpaths X1, X2, . . . , Xm

that do not have any points seen from p. Hence,
HT (p) = {X1, X2, . . . , Xm}.

Definition 2 Given a tour T and a point p in P, the
hiding cost (Mitchell [4] calls it the dark cost), hcT (p),
of T with respect to p is the length of the longest path
X in HT (p) if p is visible from T, i.e.,

hcT (p)
def
=

{

∞, if V(p) ∩ T = ∅,
maxX∈HT (p){‖X‖}, if V(p) ∩ T 6= ∅,

where ‖X‖ denotes the length of X in a given metric.

Given the definition of the hiding cost, we can define
the surveillance cost or delay of a tour.

Definition 3 Given a tour T, the surveillance cost or
delay, d(T ), of T is given by

d(T )
def
= max

p∈P

{hcT (p)}. (1)

We say that the tour T is a surveillance route for P

if d(T ) is finite.

With this definition, it is clear that any surveillance
route is also a watchman route, since all points of the
polygon must be seen by the route for it to have finite
surveillance cost.
Given a finite set of points S in P to be guarded, we

define a discrete version of the surveillance cost or delay
of a tour.

Definition 4 Given a tour T , the discrete surveillance

cost or discrete delay, d(T ), of T with respect to a finite
point set S to be guarded is given by

dS(T )
def
= max

p∈S
{hcT (p)}. (2)

We say that the tour T is a discrete surveillance route
for S in P if dS(T ) is finite.

We make use of classical notation; see for example [2];
for the following definitions. To every reflex vertex in P

we can associate two extensions, i.e., the two maximal
line segments in P through the vertex and collinear to
the two edges adjacent to the vertex; see Figure 1(a).
We associate a direction to an extension e collinear to
an edge ev by giving e the same direction as ev has
when P is traversed in counterclockwise order. This
allows us to refer to the regions to the left and right of
an extension, meaning those point reached by a left turn
or a right turn respectively from the directed segment
e. Let L(e) denote the part of P to the left of e and
R(e) the part to the right of e.

L(e)L(e ′)
e
′

e

(a) v
L(e)

(b)

e
′

L(e ′) e

Figure 1: Illustrating definitions. (a) the two extensions
issuing from a reflex vertex. (b) e dominates e

′, e is
essential and v is an essential vertex.

We say that e is a visibility extension with respect to
a surveillance route T , if T has some point in R(e).
The visibility extensions capture visibility informa-

tion in the sense that a surveillance route must have
points to the left of each of them.
We say that an extension e dominates another exten-

sion e ′, if L(e) is properly contained in L(e ′).

Definition 5 A visibility extension e is essential, if e
is not dominated by any other visibility extension.

An essential extension e is collinear to an edge with
one reflex and one convex vertex, since if both vertices
are reflex, then there is another essential extension (is-
suing from the other reflex vertex) that dominates e,
giving us a contradiction.

Definition 6 Let v be the convex vertex of the edge
collinear to an essential extension e. We call the convex
vertex v an essential vertex; see Figure 1(b).

The essential vertices play an important role for surveil-
lance routes as we show in the next lemma.
For a polygon P, we let OSR denote an optimum

surveillance route, i.e., a tour T for which d(T ) is mini-
mal.

Lemma 7 If P is such such that d(OSR) > 0, then the

delay of OSR is attained at some essential vertex of P,

i.e., there is an essential vertex v such that

d(OSR) = hcOSR(v). (3)

Proof. Let p be a point in P such that d(OSR) =
hcOSR(p) > 0. Since d(OSR) > 0, the point p exists. Let
X be a path in HOSR(p) having the length of d(OSR).
The pathX starts and finishes at an edge e ofV(p) hav-
ing a reflex vertex r of P as one endpoint. The segment
e and the point p are collinear; see Figure 2. Thus, the
segment e subdivides P into two parts, PX , containing
the path X and P̄X , not containing the path X . The
part P̄X contains the point p and has e as a boundary
edge, the point r is a reflex vertex of both P and P̄X .
To prove that there is an essential vertex with hiding

cost at least as high as that of p, follow the boundary
of P̄X from r away from e until the first convex vertex
u is reached and let u′ be the last reflex vertex as we
move along the boundary from r. We note that we could
have u′ = r. Let e ′ be the extension collinear to the edge
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Figure 2: Illustrating the proof of Lemma 7.

[u, u′]. Since the sequence of vertices along P̄X from r
to u′ is reflex, the extension e ′ is completely interior
to P̄X and it is also a visibility extension since OSR

has points in R(e ′), e.g., the path X in PX . Therefore,
either e ′ is an essential extension or it is dominated by
an essential extension. Let v denote the essential vertex
for this essential extension, independently of whether
the essential extension is e ′ or some other dominating
extension. By construction, since e ′ is contained in P̄X ,
the visibility polygon V(v) does not see any point in in
PX , and hence hcOSR(v) ≥ ‖X‖ = hcOSR(p), proving
the lemma. �

Lemma 7 shows that the optimum surveillance route
in a simple polygon is the optimum discrete surveil-
lance route of the essential vertices of the polygon, i.e.,
d(OSR) = dV(OSR), where V is the set of essential ver-
tices of the polygon.

3 L1-Surveillance Routes in Rectilinear Polygons

In [6], the authors show that the shortest watchman
route and the optimum surveillance route are not nec-
essarily the same and that the shortest watchman route
is a 2-approximation to the optimum surveillance route
in a simple polygon. It is still an open question whether
the optimum surveillance route in a simple polygon can
be computed in polynomial time, assuming P 6= NP.
Even considering rectilinear polygons in the L1-

metric, a SWR is not necessarily the optimum surveil-
lance tour; see Figure 3(a) and (b). The rectilinear
polygon has five essential extensions, dotted lines, four
of which have unit length and the fifth (the top middle
one) is arbitrarily short. The length of a SWR is just
over 8 which is also the surveillance cost. However, by
revisiting the short extension we obtain a slightly longer
tour with surveillance cost of just over 7.
We define a particular L1-shortest watchman route.

Definition 8 In a rectilinear polygon, we call an L1-
shortest watchman route that has maximal interior area
a maximum shortest watchman route and denote it
by MSWR.

AMSWR has the special property that between any two
consecutive essential extensions e and e ′, the MSWR

(a)

SWR

(b)

Figure 3: Counterexample showing that an L1-optimal
SWR is not an L1-optimal OSR in rectilinear polygons.

follows a rectilinear shortest path between e and e ′. A
MSWR can be computed in linear time by a straight-
forward modification of the algorithm of Chin and
Ntafos [1].

Theorem 9 A MSWR is a 3/2-approximation for the

L1-optimal OSR in a rectilinear polygon.

Proof. According to Lemma 7, there is an essential ver-
tex v for which the hiding cost attains the delay of OSR.
Let X be the path in HOSR(v) with ‖X‖ = d(OSR). We
claim that ‖X‖ ≥ 2‖MSWR‖/3 thus giving us that

d(MSWR) ≤ ‖MSWR‖ ≤ 3

2
‖X‖ =

3

2
d(OSR). (4)

To prove that ‖X‖ ≥ 2‖MSWR‖/3, assume for a con-
tradiction that ‖X‖ < 2‖MSWR‖/3. Let e be the es-
sential extension of v and let p and q be the two end-
points of X on e. Since [p, q] ∪X is a watchman route
we have that ‖[p, q]‖ + ‖X‖ ≥ ‖MSWR‖ and therefore
‖[p, q]‖ > ‖MSWR‖/3. Without loss of generality, we
can assume that e is vertical. We construct the two
maximal horizontal line segments interior to the poly-
gon that go through the points p and q. The two seg-
ments subdivide the polygon into three pieces, PT the
top piece, PM the middle piece, and PB the bottom
piece; see Figure 4.

q

e

p

e
′

X

PM

PB

Y

PT

Figure 4: Illustrating the proof of Theorem 9.

Both PT and PB must contain essential extensions
since otherwise, the path X is not part of the optimum
surveillance route, giving us an immediate contradic-
tion.
Therefore, let e ′ be an essential extension in PT with

v′ as the essential vertex and consider the set HOSR(v
′).

Some path Y in this set must visit essential extensions
in PB and must therefore have length at least 2‖[p, q]‖ >
2‖MSWR‖/3; see Figure 4. Hence,

d(OSR)≥hcOSR(v
′)≥ 2

3
‖MSWR‖>‖X‖=d(OSR), (5)
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and we have a contradiction. �

Remark: Also in the case of the L1-metric in rectilin-
ear polygons, it is an open question whether the opti-
mum surveillance route can be computed in polynomial
time, assuming P 6= NP.

4 Weighted Discrete Surveillance Routes

In this section, we consider the weighted discrete surveil-
lance route problem in a simple polygon and define it as
follows. Let P be a simple polygon with n edges and let
S be a finite set of points inside P. To each point p ∈ S
is associated a weight w(p). The idea is that points
with higher weights have higher priority and need to be
guarded more often than ones with lower weights. Given
some tour T , we define the weighted discrete delay as

dwS (T )
def
= max

p∈S
{w(p) · hcT (p)}. (6)

We call a tour that achieves the minimum weighted de-
lay on a finite set of points S in P with weights w(·) an
optimum weighted discrete surveillance route, OWDSR.
For simplicity we assume that all weights are posi-

tive, that the smallest weight is equal to 1, and that the
largest weight value is wmax.
In [6], the authors show that the problem of comput-

ing an OWDSR is NP-hard already for the two weight
values 1 and 2, that the shortest watchman route lim-
ited to see the points in S is a 2wmax-approximation
of a OWDSR, and they present an O(|S|3n logn) time
constant-factor approximation algorithm for a OWDSR

in the case of two arbitrary weight values.

4.1 A Simple Approximation Algorithm

We can immediately improve on the 2wmax-approx-
imation in [6] as follows. Given the points in S and
the weight values 1 = w(p1) ≤ · · · ≤ w(p|S|) = wmax,
we scale all the weight values w(pi) ∈ [1,

√
wmax[ to 1,

where [x, y[ denotes the right open ended interval from x
to y, and all the weight values w(pi) ∈ [

√
wmax, wmax] to√

wmax. We next apply the c-approximation algorithm
for two weight values on the scaled problem instance,
giving us the following theorem.

Theorem 10 The algorithm above computes a

c
√
wmax-approximation of an OWDSR guarding the

points of S in P having arbitrary weight values in

O(|S|3n logn) time.

4.2 An Improved Approximation Algorithm

In the following, we abuse language somewhat and say
that a tour visits a point p, when we actually mean that
the tour intersects V(p).

For an discrete weighted surveillance tour V, visiting
the points in a finite weighted point set S in P (we
assume that V is the shortest tour that visits the points
in this order), we have the following inequality,

∀p ∈ S hcV (p) ≤ ‖V ‖. (7)

If V is such that it visits some point p′ only once, then

‖V ‖ ≤ 2 · hcV (p′). (8)

Given the points of S in P with weights in the range
w(p) ∈ [1, wmax], we partition the set S into disjoint
subsets S l, 0 ≤ l ≤ M , such that each point p ∈ S l

has w(p) ∈ [w
l/M
max, w

(l+1)/M
max [. We can scale the instance

so that each point has weight w
l/M
max. If we can find an

x-approximate solution for the scaled instance, we im-
mediately have an algorithm with approximation factor

x · w1/M
max (9)

for the original input instance.
We let Ii, 0 ≤ i ≤ m, be the nonempty sets of scaled

points so that for each point p ∈ Ii, the weight w(p) =

wi = w
l/M
max, for some l ≥ i. In fact, if p ∈ Ii and p′ ∈ Ii′

with 0 ≤ i < i′ ≤ m, then w(p) = wi = w
l/M
max and

w(p′) = wi′ = w
l′/M
max , with l < l′. Since the sets Ii,

0 ≤ i ≤ m, are nonempty, we have m ≤ |S|.
For each 0 ≤ i ≤ m, let Wi denote a shortest tour in

P that visits all the points in Ii. Each such tour can
be computed in O(|Ii|3n logn) time [3, 10], and hence,
all these tours can be computed in O(|S|3n logn) time.
Similarly, let Ti denote a tour in P with minimum delay
for the scaled points in Ii. From [6], we know that
dwIi

(Wi) = dIi
(Wi) ≤ 2dIi

(Ti) = 2dwIi
(Ti) since the

weights of the points in Ii are the same.
We furthermore define Ii,j =

⋃

i≤ι≤j Iι. Thus, the set
I0,m represents the scaled weight points of the original
instance S. Let Wi,j denote a shortest tour in P that
visits all the points in Ii,j and let Ti,j denote a tour in
P with minimum weighted delay for these points.
For each 0 ≤ i ≤ j ≤ m, we define a tour Si,j that

visits all the points in Ii,j at least once and has short
weighted delay. We have Si,i = Wi,i = Wi, when i =

j. For i < j, with l
def
= ⌊(i + j)/2⌋, let Ni,l denote

the number of times points from Ii,l are visited as we
follow the tour Si,l around once. We note that since
the same point can be visited several times, Ni,l can
be substantially larger than |Ii,l|. The tour Si,j is the
tour with smallest weighted delay out of a set of tours
{U k

i,j | 1 ≤ k ≤ Ni,l}, each tour U k
i,j defined recursively

from Si,l and Sl+1,j .
The tour U k

i,j is constructed as follows: let ri,j be
a point on Sl+1,j so that maxp∈Ii,l

{SP(ri,j ,V(p))}
is minimized. We denote this length by Di,j. Let
SP(Si,l, Sl+1,j) be the shortest path between Si,l and
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Sl+1,j

Il+1,j

U
k
i,j

q′i,j
qi,j Si,l

Ii,l

Figure 5: Schematic illustration of the construction of
the tour U

k
i,j , 1 ≤ k ≤ Ni,l. Red and blue regions

are the visibility polygons of points in Ii,l and Il+1,j

respectively.

Sl+1,j with endpoints qi,j on Si,l and q′i,j on Sl+1,j.
Evidently, ‖SP(Si,l, Sl+1,j)‖ ≤ Di,j . Let δi,j =
max{Di,j, ‖Si,l‖/2k}. We partition Si,l into at most
k subpaths Y1, . . . , Yk, each (except the last) of length
δi,j and with Y1 starting at qi,j . U k

i,j is the tour ob-
tained by first following Sl+1,j around from q′i,j back
to q′i,j , then moving to qi,j , following Y1, moving back
to q′i,j , doing one more tour around Sl+1,j , moving to
the first point of Y2 and following Y2, moving back to
q′i,j , make a tour around Sl+1,j , and continue alternat-
ing between following each subsequent subpath Yκ and
making a tour around Sl+1,j ; see Figure 5. U k

i,j makes
at most k rounds around Sl+1,j .

The tour among U 1
i,j , . . . ,U

Ni,l

i,j with the smallest
weighted delay becomes Si,j . We show that Si,j has
small weighted delay.

Lemma 11 There exists a positive constant a such that

dwIi,j
(Si,j) ≤ a1+log(j−i+1) · dwIi,j

(Ti,j),

for every 0 ≤ i ≤ j ≤ m.

Proof. We make a proof by induction on j − i. We
show the lemma to be true for i = j and then proceed
inductively for successively larger values of j − i.
From [6], we know that dIi

(Wi) ≤ 2dIi
(Ti), for 0 ≤

i ≤ m. Thus, all weights being equal,

dwIi
(Si,i) = dwIi

(Wi) ≤ 2dwIi
(Ti) ≤ a1 · dwIi

(Ti), (10)

if 2 ≤ a, proving the base case when i = j.

For the induction step, consider a tour Ti,j , an opti-
mal solution for OWDSR in P that sees all the scaled
points in Ii,j and has minimum weighted discrete delay.
We partition Ti,j into subpaths as follows: let H1

be the shortest subpath of Ti,j that sees each point of

Il+1,j at least once, with l
def
= ⌊(i + j)/2⌋ as usual, and

the first visits of points in Ii,j before and after H1 are
points in Ii,l. Follow Ti,j from an endpoint of H1 until
a point of Il+1,j is seen again. We let this subpath be
L1. Continue along Ti,j until each point of Il+1,j has
been seen again and the next visit is to a point in Ii,l,
giving the subpath H2, followed by the subpath L2 of
visits to points in Ii,l, and so on. Continue subdividing
Ti,j into 2K subpaths, H1, L1, . . . , HK , LK , for some

value K, such that LK connects back to H1 and each
Hk visits all the points of Il+1,j and each Lk, except
possibly LK , only visits points in Ii,l. The subpath LK

can visit some but not all points in Il+1,j .
For each path Hk, 1 ≤ k ≤ K, we shortcut any de-

tours that Hk makes to visit points in Ii,l, then go back
to the beginning of Hk giving us the tour H ′

k. From
there, we visit each (unvisited) point in Ii,l that was
shortcut from Hk in the same order and continue fol-
lowing Lk, giving the path L′

k. Let Z be the tour
Z =

⋃

1≤k≤K H ′
k ∪ L′

k. We have ‖H ′
k‖ ≤ 2‖Hk‖ and

‖L′
k‖ ≤ ‖Hk‖+ ‖Lk‖, for all 1 ≤ k ≤ K. Hence,

dwIi,j
(Z ) ≤ 3dwIi,j

(Ti,j) and ‖Z‖ ≤ 3‖Ti,j‖. (11)

Also, for any 0 ≤ i ≤ j ≤ m and l = ⌊(i + j)/2⌋, we
have by definition,

∀k ∀p ∈ Il+1,j hcTl+1,j
(p) ≤ ‖Wl+1,j‖ ≤ ‖H ′

k‖, (12)

∀p ∈ Ii,l hcTi,l
(p) ≤ ‖Wi,l‖ ≤

∑

1≤k≤K

‖L′
k‖. (13)

We compare the tour UK
i,j, constructed from Si,l and

Sl+1,j, with the tour Z constructed from an OWDSR

Ti,j for the point set Ii,j above. Note that we can as-
sume that we know the value of K since we compute
U k

i,j , for all 1 ≤ k ≤ Ni,l.

For a point p∈Il+1,j , the hiding cost of p is bounded by

hcUK
i,j

(p) ≤ hcSl+1,j
(p) + 2δi,j + ‖Si,l‖/K

≤ hcSl+1,j
(p) + 2‖Si,l‖/K

(8) ≤ hcSl+1,j
(p) + 4hcSi,l

(pi)/K

(ind.) ≤ a1+log(j−l) · hcTl+1,j
(p)

+ 4a1+log(l−i+1) · hcTi,l
(pi)/K

(13) ≤ a1+log(j−l) · hcTl+1,j
(p)

+ 4a1+log(l−i+1) ·
∑

1≤k≤K

‖L′
k‖/K

≤ 4a1+log(j−l) ·
(

hcTl+1,j
(p) + max

1≤k≤K
{‖L′

k‖}
)

≤ 8a1+log(j−l) ·max
{

hcTl+1,j
(p), max

1≤k≤K
{‖L′

k‖}
}

≤ 8a1+log(j−l) · hcZ (p)

(11) ≤ a1+log(j−i+1) · hcTi,j
(p), (14)

if a ≥ 24, where pi ∈ Ii is visited only once by Si,l.
For a point p ∈ Ii, the hiding cost of p is bounded by

hcUK
i,j

(p) ≤ K · ‖Sl+1,j‖+ 2K · δi,j + ‖Si,l‖

≤ K · ‖Sl+1,j‖+ 2‖Si,l‖

(8) ≤ 2K · hcSl+1,j
(pl+1) + 4hcSi,l

(p)

(ind.) ≤ 2Ka1+log(j−l) · hcTl+1,j
(pl+1)

+ 4a1+log(l−i+1) · hcTi,l
(p)

(12), (13) ≤ 2Ka1+log(j−l) · min
1≤k≤K

{‖H ′
k‖}

+ 4a1+log(l−i+1) ·
∑

1≤k≤K

‖L′
k‖
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≤ 4a1+log(j−l) ·
(

∑

1≤k≤K

‖H ′
k‖+ ‖L′

k‖
)

≤ 4a1+log(j−l) · ‖Z‖

(8) ≤ 8a1+log(j−l) · hcZ (p)

(11) ≤ a1+log(j−i+1) · hcTi,j
(p), (15)

if a ≥ 24, since p ∈ Ii is visited only once by Si,l and
has maximal hiding cost among the points in Ii.j , and
pl+1 ∈ Il+1 is visited only once by Sl+1,j .
For a point p ∈ Ii+1,l, the point p is in the

upper half of some recursive division of the sets
Ii,l, Ii,⌊(i+l)/2⌋, Ii,⌊(i+⌊(i+l)/2⌋)/2⌋, . . . , Ii,i+1, for which
an inequality similar to (14) and (15) applies. We omit
the details.
Thus, for any point p ∈ Ii,j , we have that there is a

constant a > 1 such that

hcSi,j
(p) ≤ a1+log(j−i+1) · hcTi,j

(p)

and the lemma is therefore proved. �

We compute S0,m by establishing U k
0,m, for every

1 ≤ k ≤ N0,⌊m/2⌋, and each of these are computed re-
cursively from S0,⌊m/2⌋ and S⌊m/2⌋+1,m. Given these

two tours, U k
0,m is constructed by copying S⌊m/2⌋+1,m

at most k times and connecting each tour to the at
most k subpaths of S0,⌊m/2⌋ using shortest paths. This

takes O(k|S| + kn) time for each U k
0,m. Note that

N0,⌊m/2⌋ ∈ |S|m, thus this takes O(|S|m+1n) time in to-
tal. At each level of the recursion we use this amount of
time and we have logm+1 levels, giving us O(|S|O(m)n)
time. The preprocessing step of computing all the
discrete watchman routes Wi, for 0 ≤ i ≤ m takes
O(|S|3n logn) time, and hence, the total complexity is
bounded by O(|S|O(m)n logn). We note that the com-
plexity is superpolynomial in |S| and n.
By carefully considering the weight ratios in the con-

struction, we could perhaps limit the computation to
the relevant values of k, reducing the necessity to com-
pute U k

i,j for all values of k up to Ni,l. We could thus
potentially make the algorithm take polynomial time in
the size of the output tour S0,m.

Theorem 12 There is an O(|S|O(logwmax) · n logn)
time algorithm that computes a O(polylogwmax)-
approximate weighted discrete surveillance tour to the

original unscaled weighted point set S in P having n
edges.

Proof. Apply the algorithm described above with

m = max { 3, ⌈logwmax/ log logwmax)⌉} ,

where a is the constant in Lemma 11 and m+ 1 is the
number of weight values, with all the original weights
scaled to the lowest value in their respective interval

[w
i/m
max, w

(i+1)/m
max [, for 0 ≤ i ≤ m.

From Lemma 11, we have that the scaled instance
is approximated within an approximation factor of
a1+log(m+1) ≤ a2mlog a and by our choice of the value

m, we have a2mlog a ≥ w
1/m
max and by (9), the approxi-

mation factor for the unscaled instance is bounded by

w
1/m
max · a2mlog a ≤ a4m2 log a ∈ O(polylogwmax).
The running time follows from the discussion

above. �

5 Conclusions

We present a linear time 3/2-approximation algorithm
for the optimum surveillance tour problem in rectilinear
polygons in the L1-metric. It is still an open problem
whether an optimum tour can be computed in polyno-
mial time assuming P 6= NP. We believe that the same
approach should also give a 3/2-approximation for gen-
eral simple polygons in the L1-metric.
We also present an O(polylogwmax)-approximation

algorithm for the optimum weighted discrete surveil-
lance route in a simple polygon with weight values in
the range [1, wmax].
The deeper complexity relationships of the optimum

weighted discrete surveillance tour problem in simple
polygons remains to be investigated. For two weight
values, the problem is NP-hard but constant factor ap-
proximable [6]. It is not evident that a polynomial time
constant factor approximation algorithm exists for the
general problem assuming P 6= NP.
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