
Finding the vertices of the convex hull, even unordered, takes

Ω(n log n) time—a proof by reduction from ε-closeness

Herman Haverkort∗

4 December 2018

Abstract

We consider the problem of computing, given a set S of n points in the plane, which points
of S are vertices of the convex hull of S. For certain variations of this problem, different
proofs exist that the complexity of this problem in the algebraic decision tree model is
Ω(n log n). This paper provides a relatively simple proof by reduction from ε-closeness.

The problem In the algebraic decision tree model of computation, it takes Ω(n log n) steps in
the worst case to compute the convex hull of a set of n points in the plane. In text books [2, 3]
this is proven by reduction from sorting as follows. Consider a set A = a1, ..., an of n distinct
real numbers that need to be sorted. Now let L = L1, ..., Ln be the set of points given by
Li = (ai, a

2
i). The convex hull of L, as a closed counterclockwise polygonal chain, contains

the points of L in order from left to right. Therefore, by computing the convex hull and then
reading the x-coordinates of its vertices in order, we can obtain A in sorted order. Hence, lower
bounds for sorting also apply to the computation of convex hulls.

However, if we do not require the convex hull to be produced as a counterclockwise sequence
of vertices (or edges), but settle for obtaining its vertices in arbitrary order, may we then be
able to do so in o(n log n) time, that is, less than Ω(n log n) time? The answer is no, as we will
see now, using a reduction from the ε-closeness problem.

The proof In its simplest form, the fixed-order algebraic decision tree model captures com-
puter programs that take as input a sequence of real numbers, and consist of a number of
instructions, each of which is of one of three types: 1. evaluate a polynomial function of the
input variables, and use the sign of the result to choose which instruction to execute next; 2.
output “yes”; 3. output “no”. The polynomial functions must have degree at most d, for some
constant d: that is, each function is a sum of terms, where each term is a product of a constant
and at most d factors, where each factor is an input variable.

The ε-closeness problem is the following: given an unordered multiset A of real numbers
a1, ..., an and a positive real number ε, decide whether A contains two numbers that differ less
than ε. In other words: is there a pair of indices i 6= j such that 0 ≤ aj−ai < ε, or equivalently,
ai ≤ aj < ai + ε? Any fixed-order algebraic decision tree algorithm that solves the ε-closeness
problem takes Ω(n log n) time in the worst case [3].

Let us define the any-point-inside problem as follows: given an unordered multiset S of n
points in the plane (given as 2n real coordinates), decide whether any point of S lies in the
interior of the convex hull of S. Let api(n) be the number of steps it takes in the worst case to
solve this problem in the fixed-order algebraic decision tree model.

∗Institut für Informatik, Universität Bonn, Germany, cs.herman@haverkort.net

1

ai aj ai aj

ε/2 ε/2 ε/2 ε/2 ε/2

ε/2 ε/2

y = x2

y = x2 + ε2/4

Li

Ti

LjRi

Tj

Li

Ti

Ri

Lj

Tj

Rj

`i
`i

`j

y = x2

y = x2 + ε2/4

Figure 1: Left: if all numbers in A are at least ε apart, then all points of L and T are on the
boundary of the convex hull. Right: if ai < aj < ai+ε, then Ti lies in the interior of the triangle
LiLjTj .

Lemma 1. Given a multiset of real numbers A = a1, ..., an and a real number ε, we can decide
in api(2n) time whether there are two indices i 6= j such that 0 < aj − ai < ε, or equivalently,
ai < aj < ai + ε.

Proof. Let S(A, ε) be L ∪ T , where L = L1, ..., Ln is the set of points given by Li = (ai, a
2
i),

and T = T1, ..., Tn is the set of points given by Ti = (ai + ε/2, (ai + ε/2)2 + ε2/4). We will see
shortly that S(A, ε) is constructed such that all of its points will appear on the boundary of
its convex hull, unless some point Ti is “hidden” by a nearby point Lj where 0 < aj − ai < ε.
Thus, to determine whether there are two indices i 6= j such that 0 < aj − ai < ε, we simply
solve the any-point-inside problem on S(A, ε) in api(2n) time.

To prove the correctness of this reduction, we start with the following observations. For
i ∈ {1, ..., n}, let Ri be the point (ai + ε, (ai + ε)2). Note that Li and Ri lie on the parabola
y = x2, which we call the outer parabola. The point Ti lies exactly half-way between Li and
Ri on the parabola y = x2 + ε2/4, which we call the inner parabola. Moreover, the slope of the
inner parabola at Ti is 2ai + ε, which is exactly the slope of the line `i through Li, Ti and Ri,
so `i is a tangent to the inner parabola.

Now I claim the following: (i) if there are no i and j such that ai < aj < ai + ε, then all
2n points of S(A, ε) are on the boundary of the convex hull of S(A, ε); (ii) if there are i and j
such that ai < aj < ai + ε, then S(A, ε) contains at least one point, namely Ti, that is not on
the boundary of the convex hull of S(A, ε). Both claims are illustrated in Figure 1.

Proof of (i): assume there are no i and j such that ai < aj < ai + ε. We will show that
both Li and Ti lie on the boundary of the convex hull for each i. Recall that the line `i through
Li, Ti and Ri is a lower tangent to the inner parabola and intersects the outer parabola in Li

and Ri. So, if S(A, ε) would contain any points that lie strictly below `i, these points would
have to be points Lj on the outer parabola strictly between Li and Ri. However, looking at
the x-coordinates of these points, we would then find ai < aj < ai + ε, contradicting our
assumptions. It follows that both Li and Ti lie on the boundary of the convex hull, as there is
a closed half-plane with Li and Ti on the boundary and all other points of S(A, ε) inside.

2

Proof of (ii): we will show that Ti lies in the interior of the triangle LiLjTj . First, because
ai < aj < ai + ε, the point Lj lies on the outer parabola strictly between Li and Ri, so Lj lies
strictly under the line `i through Li, Ti, and Ri, and vice versa, Ti lies strictly above the line
through Li and Lj . Second, recall that the line through Lj and Tj is a lower tangent to the
inner parabola, touching it in Tj , so Ti lies strictly above it. Third, the line through Li and
Ti is a lower tangent to the inner parabola, so Tj lies strictly above it, and vice versa, Ti lies
strictly below the line through Li and Tj . It follows that Ti lies in the interior of the triangle
LiLjTj , and thus, not on the boundary of the convex hull of S(A, ε).

Thus, S(A, ε) contains a point that lies in the interior of the convex hull of S(A, ε) if and
only if there are i and j such that ai < aj < ai + ε. This proves the correctness of the reduction
and thus proves the lemma.

Lemma 2. Given a multiset of real numbers A = a1, ..., an and a real number ε, we can decide
ε-closeness in api(2n) time, that is, we can decide in api(2n) time whether there are two indices
i 6= j such that 0 ≤ aj − ai < ε, or equivalently, ai ≤ aj < ai + ε.

Proof. We first decide, in api(2n) time by Lemma 1, whether there are two indices i 6= j such
that 0 < aj − ai < ε. If this is the case, we answer “yes”. Otherwise, we have now established
that each pair of numbers in A differs by either zero, or at least ε, and what is left to decide is
whether there is any pair with difference zero. Let A′ = a′1, ..., a

′
n be given by a′i = ai + εi/(2n).

Thus, |a′j − a′i| and |aj − ai| differ by less than ε/2 for any i and j. Observe that, given that
there are no i, j such that 0 < aj − ai < ε, we now have i 6= j and aj − ai = 0 if and only if
0 < |a′j − a′i| < ε/2. By Lemma 1, we can decide whether there is any pair i, j for which the
latter is the case in api(2n) time.

Since we have an Ω(n log n)-time lower bound for ε-closeness, we must now conclude api(2n) =
Ω(n log n), so api(n) = Ω(n2 log n

2) = Ω(n log n), and we obtain the following theorem:

Theorem 1. Given a multiset S of n points in the plane, any fixed-order algebraic decision
tree algorithm takes Ω(n log n) steps in the worst case to decide whether S contains any point
that lies in the interior of the convex hull of S.

If, in the ε-closeness problem, we replace < by ≤, then an Ω(n log n)-time lower bound can
be constructed in the same way as for the original ε-closeness problem. Furthermore, we can
adapt the proof of Lemma 1 to prove (i) if there are no i and j such that ai < aj ≤ ai + ε, then
all 2n points of S(A, ε) are extreme points (vertices) of the convex hull of S(A, ε); (ii) if there
are i and j such that ai < aj ≤ ai + ε, then S(A, ε) contains at least one point, namely Ti, that
is not an extreme point of the convex hull of S(A, ε). Thus, we also get the Ω(n log n)-time
lower bound for the following problem:

Theorem 2. Given a multiset S of n points in the plane, any fixed-order algebraic decision
tree algorithm takes Ω(n log n) steps in the worst case to decide whether S is in convex position
(that is, whether S is exactly the set of vertices of the convex hull of S).

To output the vertices of the convex hull of S, we would need to extend the model of
computation so that it admits other output than just “yes” or “no”. No matter how exactly we
do that, it is clear that we cannot output the vertices of the convex hull in less than Ω(n log n)
time, if we cannot even decide whether or not all of S should be output in less than Ω(n log n)
time.

3

Other proofs

Preparata and Shamos provide another proof that it takes Ω(n log n) steps to decide whether
a set of points is in convex position (Theorem 3.3 in Section 3.2 in their book [3]). Their proof is
based directly on the lower bounds for membership tests for a set W in high-dimensional space
with n! connected components—the same lower bounds that also underly the lower bounds for
ε-closeness that we used above. The core of their proof is therefore an analysis of the number of
connected components of W , the subset of possible inputs that corresponds to sets of points in
convex position ([3], p102–103). The key argument considers pairs of inputs in convex position
that must lie in different components, because they cannot be continuously transformed into
each other without passing through a configuration in which three points are collinear1. Note
that a triple of collinear points immediately rules out convex position, but it is does not imply
that one of the points lies in the interior of the convex hull (they could all lie on the edge).
Thus, the proof by Preparata and Shamos is a bit more specific than ours: they prove our
Theorem 2, but not our Theorem 1.

Kirkpatrick and Seidel [1] prove the following (Theorem 5.3): given a set S of n distinct
points and a natural number h ≤ n, any fixed-order algebraic decision tree algorithm requires,
in the worst case, Ω(n log h) steps to verify that the convex hull of S has h vertices. When
h is polynomial in n, this bound is equivalent to Ω(n log n). Clearly, if we could compute in
o(n log n) time which points of S are vertices of the convex hull, then we could also count them
in o(n log n) time. Thus, the theorem by Kirkpatrick and Seidel implies an Ω(n log n) lower
bound for the problem of computing the vertices of the convex hull.

Like the proof of our Lemma 2, the proof by Kirkpatrick and Seidel uses a reduction from a
problem on a multiset A of real numbers, namely the problem of verifying the number of distinct
numbers in the set (in the proof of Lemma 2, the problem is to verify that all numbers of the
set are distinct). To this end, each number ai in A is mapped to a point on a parabola and
perturbed by moving it over a distance that grows with i. Thus, whenever there are k > 1 points
that represent the same number, these points all become distinct; moreover, the perturbations
are carefully chosen such that k−1 of these points are no longer a vertex of the convex hull. The
perturbations could be implemented by adapting all nodes that evaluate the coordinates of the
input points in the decision tree, so that they evaluate the perturbed coordinates instead of the
original coordinates. The perturbations must be small enough, so that points that were distinct
already have no effect on each other—in our proof of Lemma 2, we ensure this by limiting the
perturbation in the horizontal direction to ε/2.

Of course, smaller perturbations would also work and lead to the same end result. This is
where Kirkpatrick and Seidel use a clever trick: rather than using perturbations of a fixed size,
they describe how to adapt the decision tree (making it only slightly higher) so that it effec-
tively takes the same decisions that it would take with any small enough perturbations. Thus,
Kirkpatrick and Seidel can realize a reduction from the multiset size verification problem, where
no prespecified difference threshold ε can be used to determine the size of the perturbations.

References

[1] D. G. Kirkpatrick and R. Seidel. The ultimate planar convex hull algorithm? SIAM J.
Comput. 15:287–299, 1986.

[2] R. Klein. Algorithmische Geometrie, 2nd edition, Springer, 2005.

[3] F. P. Preparata and M. I. Shamos, Computational Geometry, Springer, 1985.

1The reader who wants to verify the details of the proof should beware of minor typing mistakes that make
it look as if permutations on N integers are applied to integers from 0 to 2N − 1 or from 0 to N2 − 1.

4

