Grundlagen der alg. Geometrie Wintersemester 2018/2019

Abgabe: optional in Übungen Besprechung: 14.11.

Dr. Herman Haverkort Dr. Anne Driemel Institut für Informatik

Übungsblatt 4

Aufgabe 4.1: Amortisierte Kosten Beispiel: Binärzähler

(4 Punkte)

Betrachten Sie einen Binärzähler, der in Einer-Inkrement-Zählschritten von 0 bis n hochzählt. Dabei treten pro Zählschritt unterschiedlich viele Überträge im Binärsystem auf. Ein Elementarschritt sei definiert als die Umschaltung genau eines Bits ('0 \rightarrow 1' oder '1 \rightarrow 0').

Zeigen Sie: Beim Hochzählen eines Binärzählers von 0 bis n braucht man im Mittel pro Zählschritt höchstens konstant viele Elementarschritte. Wie groß ist diese Konstante?

Aufgabe 4.2: Bereichsbaum

(4 Punkte)

Sei D die Punktmenge $\{(1,1),(2,4),(3,3),(3,5),(4,6),(5,7),(6,2)\}$ in der Ebene. Geben Sie alle Teilbäume eines 2-dimensionalen Bereichsbaumes für D an, die zur Beantwortung der Bereichsanfrage $q=[x_1,x_2]\times[y_1,y_2]=[1.5,6.5]\times[4.5,6.5]$ benötigt werden und skizzieren Sie die Bereichsanfrage.

Aufgabe 4.3: Zerlegbare Anfragen

(4 Punkte)

Die in der Vorlesung vorgestellte generische Dynamisierung setzt voraus, dass Anfragen an die Datenstruktur zerlegbar sind. Das heißt, wir verlangen, dass ein binärer Operator \otimes existiert, sodass für jede Binärdarstellung $V_1, ..., V_{\lfloor \log n \rfloor}$ von V gilt:

$$\operatorname{query}(V,q) = \otimes \left(\operatorname{query}(V_1,q), \ldots \otimes \left(\operatorname{query}(V_{\lfloor \log n \rfloor - 1},q), \operatorname{query}(V_{\lfloor \log n \rfloor},q)\right) \ldots\right)$$

wobei \otimes in konstanter Zeit ausgewertet werden kann.

Zeigen oder widerlegen Sie jeweils die Zerlegbarkeit der folgenden vier Anfragetypen:

Lineare Programmierung: Ist q eine zulässige Lösung? Das heißt, erfüllt $q \in \mathbb{R}^n$ die gespeicherten linearen Nebenbedingungen

Extrempunktberechnung: Sei $f: \mathbb{R}^2 \to \mathbb{R}$ eine lineare Funktion. Welcher gespeicherte Punkt maximiert f?

Konvexe Hülle – Elementtest: Liegt q innerhalb der konvexen Hülle der gespeicherten Punkte?

Konvexe Hülle – Lokale Sicht: In welchem kleinsten Winkelfeld mit Scheitel q liegt die konvexe Hülle der gespeicherten Punkte?