
Competitive Search in Symmetric Trees

David Kirkpatrick1 and Sandra Zilles2

1 Department of Computer Science, University of British Columbia, Canada
kirk@cs.ubc.ca

2 Department of Computer Science, University of Regina, Canada
zilles@cs.uregina.ca

Abstract. We consider the problem of searching for one of possibly many goals
situated at unknown nodes in an unknown treeT . We formulate a universal search
strategy and analyse the competitiveness of its average (over all presentations
of T) total search cost with respect to strategies that are informed concerning
the number and location of goals in T . Our results generalize earlier work on
the multi-list traversal problem, which itself generalizes the well-studied m-lane
cow-path problem. Like these earlier works our results have applications in areas
beyond geometric search problems, including the design of hybrid algorithms and
the minimization of expected completion time for Las Vegas algorithms.

1 Introduction

The m-lane cow-path problem specifies a sequence of m rays (lanes) of unbounded
length incident on a common origin (crossroad). A goal (pasture) lies at some unknown
distance d from the origin along some (unknown) ray. The objective is to formulate a
provably good strategy (minimizing the total search cost) for an agent (cow) to reach
the goal, starting from the origin.

The cow-path problem is a special instance of a family of problems called search
games, in which a searcher tries to minimize the time needed to find a hidden goal. For a
detailed study of search games, the reader is referred to [1]. The cow-path problem itself
has been studied in several variations, including directionally dependent traversal costs,
turnaround penalties, shortcuts and dead-ends [4,6,11,12,15]. It has also been analysed
in terms of worst-case and average-case competitive ratio (using d as a benchmark), as
well as in a game-theoretic framework [3,8,16,17,18].

Essentially the same ideas as those used in solving the cow-path problem have been
used in the synthesis of deterministic and randomized hybrid algorithms with (near)
optimal competitive ratios [2,7]. Given are a number of basic algorithms each of which
might (or might not) be useful in solving some problem. The goal is to synthesize a
hybrid algorithm from these basic components by some kind of dovetailing process.
Memory limitations may restrict the number of processes that can be suspended at any
given time (the alternative being a complete restart with successively larger computation
bounds).

More recently, the cow-path problem has been generalized in a new and fundamen-
tally different direction. The multi-list traversal problem [10] assumes that every ray
leads to a goal, and the objective is to minimize the total search cost in finding a goal on

F. Dehne, J. Iacono, and J.-R. Sack (Eds.): WADS 2011, LNCS 6844, pp. 560–570, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Competitive Search in Symmetric Trees 561

at least one path. (Conventional one-goal cow-path problems correspond to the special
case in which all goals but one are located arbitrarily far from the origin). Essentially
the same problem has been studied by McGregor et al. [14] as an “oil searching prob-
lem”, where the objective is to maximize the number of goals (wells) discovered for a
specified budget. Even earlier, similar results were presented by Luby et al. [13] for the
problem of minimizing the expected execution time of Las Vegas algorithms (viewed
as an infinite sequence of deterministic algorithms with unknown completion times.)

The m-lane cow paths problem, the multi-list traversal problem, and its variants can
all be thought of as search-with-backtracking problems, in which backtracking always
brings the algorithm back to the origin of search, from where a new path can be chosen
or search in a previously visited path can be resumed. In many real-world search prob-
lems, it is often the case that part of the search effort invested into one search path eases
the search along another path. Backtracking would then allow the search algorithm to
return to a fork part-way along the current path and to search along a new path branch-
ing from the current one (without repeating the search effort to reach the fork from the
origin). The simplest search domain allowing this kind of backtracking is a tree.

Motivated by the desire to understand the limitations of oblivious backtracking al-
gorithms, we consider a generalization of the multi-list traversal problem in which the
search domain is an unknown unbounded fully-symmetric tree T with goals at one or
more nodes. Fleischer et al. [5] considered search problems on trees as part of a more
general study of algorithms that minimize the optimal search ratio: essentially the worst
case ratio of the cost of finding a goal in a search domain to the length of the shortest
path to that goal. For our competitive analysis we compare uninformed algorithms to
those that know T , including the locations of all goals, but not the specific presentation
of T (i.e. the ordering of the children at each of its internal nodes). In fact, McGregor et
al. [14] already introduced a generalization of their oil-searching problem to symmetric
trees in an appendix to their paper. Unfortunately, their algorithm exhibits a rather poor
competitive ratio for general symmetric trees, motivating a more in-depth treatment of
the symmetric tree search problem. Note that while it is possible to study backtrack-
ing in asymmetric trees (or more general graphs), it is natural to restrict attention to
search domains in which all search paths are equivalent up to relabeling: as McGre-
gor et al. [14] point out, asymmetries serve to amplify the knowledge (concerning goal
locations) of informed algorithms, making competitive analysis simultaneously more
difficult and less meaningful.

1.1 Symmetric Tree Traversal

In many respects our treatment of search in symmetric trees parallels and generalizes
earlier work on the multi-list search problem. Where previously an algorithm would be
evaluated with respect to possible input presentations ranging over all possible permu-
tations of a multi-set of list lengths, we are now interested in inputs that correspond
to presentations of some fixed symmetric tree. Thus an instance of our symmetric tree
traversal problem is an unbounded rooted unordered fully-symmetric1 tree T , one or
more nodes of which are distinguished as goal nodes, called goals for short. We assume,

1 All nodes at the same level ! have the same number of children d!.

562 D. Kirkpatrick and S. Zilles

without loss of generality, that the path from the root to any goal does not contain any
other goal. We denote by Π(T) the set of all presentations of the problem instance T .
Each such presentation is an ordering of T , i.e. for each internal node x of T , a bijec-
tion from the set {1, . . . , dx} to the edges joining x to the dx children of x. In this way,
every presentation of T assigns to every node x, and in particular every goal, in T a
labeled path from the root to x. We interpret the concatenation of labels on this path as
the index of x in the given presentation.

We assume that in general algorithms take an arbitrary presentation π of T as input,
and know nothing about the number or location of goals in T . Algorithms proceed in a
stepwise fashion. In the first step the root node is explored, and in every subsequent step
a specified child of some previously explored node is explored, continuing until some
goal node is reached. We denote by search cost(A, π) the total search cost (number of
explored nodes) of algorithm A on input presentation π.2 We analyse this search cost
of algorithms (both deterministic and randomized) for specific problem instances T in
both the worst and average cases (over all presentations of T). For worst-case behaviour
we can think of an adversary choosing the least favorable presentation of T , knowing
the search strategy of the algorithm. We view randomized (Las Vegas) algorithms as
probability distributions over deterministic algorithms; in this case we are interested in
expected search cost.

For the purpose of competitive analysis we contrast general uninformed algorithms
with several informed variants that are only required to behave correctly on problem
instances that satisfy certain constraints on the number or location of the goals. A
instance-informed algorithm knows the problem instance, i.e. the location of goals in
T , but not their index in the given input presentation. A level-count-informed algorithm
knows the number of goals at each level of T , but not their location. A cost-informed
algorithm knows an upper bound on the worst-case search cost that is realizable by the
best instance-informed algorithm for the given instance.

We start by restricting our attention to the case where T is a full binary tree (i.e.
d! = 2, at every level). Section 2 considers the situation where all goals are known to
lie on one fixed level of T , and results are developed for both the full search cost as well
as the search cost restricted to the goal level. These results are extended, in Section 3, to
the general situation where goals may appear on multiple levels. Finally, the restriction
to binary trees is relaxed in Section 4. (Most of the proofs in this last section are most
easily understood as elaborations of the proofs of corresponding results for binary trees;
full details of these proofs are presented in [19].)

In general, our oblivious search algorithms not only significantly improve the search
bounds provided by the tree-searching algorithm of McGregor et al. [14], but they also
are arguably close to optimal in the competitive ratio of their search cost with that of
non-oblivious counterparts. For example, for binary trees with k goals on one fixed
level h, our algorithm guarantees an average search cost that is within a factor h of that
achievable by any algorithm that is only required to perform efficiently on presentations
of one fixed tree. In the same situation, the strategy proposed in [14] is only claimed to

2 Our results apply equally well when the cost of backtracking is taken into account, i.e., when
the search cost includes the cost of re-visiting nodes.

Competitive Search in Symmetric Trees 563

have a corresponding competitive ratio which is bounded by the square of the number
of nodes in the tree!

2 The Case Where All Goals Are Known to Lie at the Same Level

In the multi-list traversal problem the best uninformed strategy employs a non-uniform
interleaving (dubbed “hyperbolic dovetailing” in [10]) of strategies each of which
searches all lists uniformly to some fixed depth. Motivated by that, we first consider
the case where all goals are known to lie at some fixed level h. In this case, it does not
make any sense for an algorithm to explore paths in T to a level more or less than h.
Therefore we initially consider T to be truncated at level h and count just the number
of probes an algorithm makes of nodes at the leaf level h, ignoring the cost associated
with reaching those nodes. In this restricted setting, a level-count-informed algorithm
knows the number k of goals at level h in T , but not their location. We denote by
probe cost(A, π) the total number of nodes on level h explored by algorithm A on
input presentation π.

Since every presentation of the full binary tree T of height h fixes, for each of its
2h − 1 internal nodes x, one of two possible labelings on the pair of edges leading to
the children of x , we have the following:

Observation 1. If T is a full binary tree of height h then |Π(T)| = 22h−1.

2.1 Worst-Case Probe Cost

It is clear that an arbitrary uninformed probing algorithm will never need to make more
than 2h − k + 1 probes at level h, when faced with a problem instance T with exactly
k goals at level h. On the other hand, an adversary can force this many probes by any
fixed (even count-informed) algorithm by choosing a suitable problem instance T with
exactly k goals at level h and a suitable presentation π ∈ Π(T). Thus,

Observation 2. For every deterministic level-count-informed algorithmA, there exists
a problem instance T with exactly k goals at level h such that
maxπ∈Π(T) probe cost(A, π) = 2h − k + 1.

As we observe next, fully informed probing algorithms can, at least for some prob-
lem instances, have significantly lower worst-case probe cost. In the next section, we
show that similar reductions are always achievable if we measure instead the average
or expected probe cost.

Observation 3. There exists a deterministic instance-informed algorithm A and, for
every j ≥ 0, a problem instance Tj with exactly 2j goals at level h, such that
maxπ∈Π(Tj) probe cost(A, π) ≤ 2h−j .

Proof. If tree Tj has goals at all 2j leaves of some subtree rooted at an internal node at
level h− j, then it suffices to probe one leaf in each of the 2h−j subtrees rooted at level
h − j, in any presentation of Tj . As a second example, if Tj has one goal in each of its
2j subtrees rooted at internal nodes at level j, it suffices to explore all 2h−j leaves in
any one of these subtrees, in any presentation of Tj . %&

564 D. Kirkpatrick and S. Zilles

It follows from Theorem 4 below that instances like Tj above are the least complex, in
terms of their worst-case probe cost, for fully informed algorithms. As Theorem 5 and
its corollary demonstrate, the most complex such instances have a significantly higher
worst-case probe cost.

Theorem 4. For every deterministic instance-informed algorithm A, and every prob-
lem instance T with exactly k goals at level h,
maxπ∈Π(T) probe cost(A, π) ≥ 2h/k.

Proof. For any node x in T and any index i of a fixed probe location at level h, x is

assigned index i in exactly 22h−1

2h presentations of T , since any presentation that maps x
to a fixed probe location fixes the labels associated with the h edges on the path to that

goal, and only those edges. Thus, for any i, there are exactly k 22h−1

2h presentations that
assign one of k goals to the probe with location index i. It follows that any deterministic
algorithm that uses fewer than 2h

k probes at level h fails to detect a goal for at least one
presentation of T . %&

Theorem 5. For any r, 0 ≤ r ≤ h, there exists a problem instance Tr,h with k =∑h
j=r

(
h
j

)
goals at level h, such that for every deterministic instance-informed algo-

rithm A, maxπ∈Π(Tr,h) probe cost(A, π) ≥ 2r.

Proof. (Sketch) The tree Tr,h is defined recursively for 0 ≤ r ≤ h: (i) T0,h is the
complete tree with 2h leaves, all of which are goals; (ii) Th,h is the complete tree with
2h leaves, exactly one of which is a goal; and (iii) Tr,h is the complete tree whose root
has subtrees Tr,h−1 and Tr−1,h−1, when 0 < r < h.

One can show, by induction on r and h, that (i) Tr,h has k =
∑h

j=r

(h
j

)
goals at level

h and (ii) for any set of fewer than 2r probes in Tr,h there is a presentation of Tr,h for
which no probe detects a goal. (See [19] for details.) %&

2.2 Average and Expected-Case Probe Cost

Theorem 4 extends to average case behaviour of fully informed algorithms:

Theorem 6. For every deterministic instance-informed algorithm A, and every prob-
lem instance T with exactly k goals at level h,
avgπ∈Π(T)probe cost(A, π) ≥ 2h−2/k.

Proof. As shown in the proof of Theorem 4, for any i, there are exactly k 22h−1

2h pre-
sentations that assign one of k goals to the location index i. Thus, any deterministic
algorithm using fewer than 2h−1

k probes at level h fails to detect a goal in at least half of

the presentations of T . Hence every deterministic algorithm uses at least 2h−1

k probes
at level h on at least half of its input presentations. %&

Theorem 6 can be strengthened to apply to the expected case behaviour of random-
ized instance-informed algorithms A, by viewing A as a probability distribution over
deterministic algorithms in the standard way (see [19] for details).

Competitive Search in Symmetric Trees 565

Theorem 7. For every randomized instance-informed algorithm A, and every problem
instance T with exactly k goals at level h,
avgπ∈Π(T)E[probe cost(A, π)] ≥ 2h−2/k.

The following theorem, whose proof embodies the central idea of our general oblivious
tree-searching strategy, shows that the lower bound of Theorem 6 is realizable to within
a constant factor, even by an uninformed algorithm.

Theorem 8. There is a deterministic uninformed algorithm A0 such that, for every
problem instance T with exactly k goals at level h,
avgπ∈Π(T)probe cost(A0, π) ≤ 2h+2/k.

Proof. For any r, 0 ≤ r ≤ h, we can interpret an arbitrary presentation of T as a bottom
tree T ′, consisting of all nodes of T at level at most r, together with 2r top trees, each
with 2h−r leaves.

The algorithm A0 proceeds in rounds: at the completion of round r ≥ 0, exactly one
leaf in each of the 2r trees rooted at nodes on level r has been probed. The algorithm
terminates if a goal is discovered in at least one of its probe locations. The total number
of probes in round r is just 2r − 2r−1 = 2r−1.

We count the fraction Φr of presentations of T for which algorithm A0 terminates
by the end of round r. Each goal resides in one of the 2r top trees with 2h−r leaves, and
coincides with the probed leaf in that tree in exactly 1

2h−r of the presentations of that
top tree. Thus each individual goal is probed in 1

2h−r of the presentations of T , by the
end of round r.

Of course, some presentations map two or more goals to probe positions. So to count
Φr we number the goals arbitrarily and, for 1 ≤ i ≤ k, we count, among the presenta-
tions of T that map none of the first i − 1 goals to a probe position, the fraction fi that
map the i-th goal to a probe position. Clearly, Φr =

∑
1≤i≤k fi · [

∏
1≤j<i(1 − fj)].

Furthermore, fi ≥ 1
2h−r , where equality holds just when none of the first i − 1 goals

occupy the same top tree as the i-th goal.
If we define Fx =

∑
x≤i≤k fi · [

∏
x≤j<i(1−fj)], for 1 ≤ x ≤ k, then Fk = fk and,

for 1 ≤ x < k, Fx = fx + (1 − fx)Fx+1. It is straightforward to confirm by induction
that Fx ≥ 1 − (1 − 1

2h−r)k−x+1. Thus Φr = F1 ≥ 1 − (1 − 1
2h−r)k > 1 − (1

e)k/2h−r
.

Now if 2h−j ≤ k < 2h+1−j , then at most (1
e)k/2h−j−i ≤ (1

e)2
i

of the presentations
of T have not terminated after r = j + i rounds. Hence the average, over all presenta-
tions of T , of the number of probes of algorithm A0 is at most
2j +

∑
i≥1(2

j+i−1(1
e)2

i−1
) < 2j(1 +

∑
s≥1(s(

1
e)s)) < 2j(1 + e

(e−1)2) < 4 2h

k . %&

Remark 1. Choosing k = 2h−1 in Theorem 8 and r = h/2 in Theorem 5 demonstrates
a large gap between the average and worst-case behaviours of deterministic instance-
informed algorithms. Specifically, the problem instance Th/2,h with 2h−1 goals at level
h has the property that algorithmA0 has average probe cost of at most 8, whereas every
deterministic instance-informed algorithm requires at least 2h/2 probes in the worst
case.
Remark 2. It is easy to see that the total additional search cost in round r of Algorithm
A0 is 2r−1(h − r + 1). Thus if 2h−j ≤ k < 2h+1−j the proof above implies that the

566 D. Kirkpatrick and S. Zilles

average total search cost is at most 2j(h− j)+
∑

i≥1(2
j+i−1(h− j− i+1)(1

e)2
i−1

) <

2j(h − j)(1 +
∑

s≥1(s(
1
e)s)) = O((h − j)2h

k) = O(2h

k (1 + lg k)).
By simply randomizing the given presentation before running algorithm A0 the

average-case bound of Theorem 8 can be realized as the worst-case expected cost, pro-
viding a tight complement to the lower bound of Theorem 7:

Corollary 9. There is a randomized uninformed algorithm A1 such that, for every
problem instance T with exactly k goals at level h,
maxπ∈Π(T) E[probe cost(A1, π)] ≤ 2h+2/k.

2.3 Taking Full Search Cost into Consideration

As noted above, the algorithmA0 outlined in Section 2.2 has probe cost O(2h

k) but total

search cost O(2h

k (1 + lg k)). For some problem instances, e.g., the tree Tj (described
in Theorem 3) with goals at its leftmost k = 2j leaves, even fully informed algorithms
require average total search cost Ω(2h

k (1+lg k)), since at least one probe must be made
in at least half of the top-level trees of size k, or the algorithm will fail on at least half of
the permutations. Hence this additional lg k factor is unavoidable in some cases, even
when k = o(2h)).

Nevertheless, we have not been able to formulate a notion of intrinsic total search
cost that would permit a tighter general competitive bound than that given by the fol-
lowing:

Theorem 10. The uninformed algorithm A0 has the property that, for every problem
instance T , avgπ∈Π(T)search cost(A0, π) = O(cinf(T) · (h + 1 − lg(cinf(T)))),
where cinf(T) denotes the minimum, over all informed algorithms B, of avgπ∈Π(T)

probe cost(B, π).

Proof. Suppose that input T has k goals. By Theorem 6, cinf(T) is Ω(2h/k). Further-
more, it is easy to see from the proof of Theorem 8 that the average, over all presenta-
tions π ∈ Π(T), of the total search cost of A0 on presentation π is
O(2h

k (1 + h − lg(2h

k))) = O(cinf(T) · (h + 1 − lg(cinf(T)))). %&

Following Corollary 9, it is easy to see that the competitive bound in Theorem 10 holds
for the expected search cost of Algorithm A1 as well. This should be contrasted with the
O(cinf(T) · 4h) bound, given by Theorem 23 of McGregor et al. [14], for the expected
cost of their uninformed search strategy in this same situation.

3 The Case Where Goals May Appear on Many Different Levels

To this point we have assumed that all problem instances have the property that all goals
lie on one fixed level h. In this section we develop a dovetailing strategy that allows us
to relax this assumption.

We have already noted that the uninformed algorithm A0 described in Theorem 8
is competitive (in terms of expected total search cost), to within a factor of at most h,

Competitive Search in Symmetric Trees 567

with the best fully informed algorithm, for input instances all of whose goals lie on
level h. For more general instances, we first generalize Theorem 6, establishing a lower
bound on the intrinsic total expected search cost, and then show how algorithm A0 can
be modified to minimize its competitive ratio with this bound. We then argue that the
competitive ratio achieved by this modified uninformed algorithm cannot be improved,
by more than a logarithmic factor, even by an algorithm that is cost-informed (that is, is
constrained only to work correctly for problem instances of a known bounded intrinsic
cost).

Theorem 11. For every deterministic instance-informed algorithm A, and every prob-
lem instance T with exactly kt goals at level t,
avgπ∈Π(T)search cost(A, π) ≥ mint≥0{t + 2t

2kt
}/2.

Proof. Let T be any problem instance with exactly kt goals at level t and let A be
any informed goal-searching algorithm. Suppose A makes pt probes at level t, and let
m = max{t | pt > 0} and p =

∑
t≥0 pt. We consider the fraction of the presentations

of T that take some goal to some probe location. We can restrict our attention to the
22m−1 presentations of T truncated at level m. By the argument in Theorem 4, at most
ptkt

22m−1

2t presentations take a goal on level t to a probe on level t. Thus at most a frac-
tion

∑m
t=0

ptkt

2t ≤ p/ mint≤m{ 2t

kt
} of the presentations of T take some goal to some

probe location. It follows that if p < mint≤m{ 2t

kt
}/2 then A fails to detect a goal for

at least half of the presentations of T . Thus, any deterministic algorithm must make at
least minm≥0 max{m, mint≤m{ 2t

kt
}/2} = mint≥0 max{t, 2t

2kt
} ≥ mint≥0{t+ 2t

2kt
}/2

probes on at least half of the presentations of T . %&

AlgorithmA0, as described in the proof of Theorem 8, makes 2r equally spaced probes,
for increasing values of r, at one fixed level h, at a total cost of 2r(h− r+1). To spread
the cost equitably among levels we formulate a modification A2 of algorithm A0 that,
for increasing values of r, probes all 2r nodes at level r, and makes 2r−i equally spaced
probes at all 2i levels in the interval (r − 2 + 2i, r − 2 + 2i+1], for 1 ≤ i < r.

Algorithm A2 effectively simulates algorithm A0, for all values of h. The total
cost of algorithm A2, up to a fixed value r0 of the parameter r, is (r0 + 1)2r0 . Let
t0 = argmint≥0{(t + 1)2t/kt}. Then, from the proof of Theorem 8, we know that the
fraction of presentations for which algorithm A2 requires more than 2j2t0/kt0 probes
on level t0 before hitting a goal is less than (1

e)2
j
. It follows that the average num-

ber of probes made on level t0 before hitting a goal on that level is O(2t0/kt0) and
the average total search cost of algorithm A2 is O((r0 + 1)2r0+1), provided 2r0 ≥
(t0 − r0 + 1)2t0/kt0 .

We summarize this result in the following:

Theorem 12. The uninformed algorithm A2 has the property that, for every problem
instance T with exactly kt goals at level t,
avgπ∈Π(T)search cost(A2, π) ≤ mint≥0{(t + 1) 2t

kt
} · lg(mint≥0{(t + 1) 2t

kt
}).

When kt0 = 2t0/t0 and kt = 0, when t '= t0, the ratio of the O(t20 lg t0) average
search cost of Algorithm A2 (given by Theorem 12) and the Ω(t0) lower bound on the

568 D. Kirkpatrick and S. Zilles

same cost for any instance-informed algorithm (given by Theorem 11), is maximized.
It turns out that at least a quadratic cost inflation is unavoidable, even for cost-informed
algorithms:

Theorem 13. For every cost c ≥ 0, there is a family F of problem instances, each
member of which can be searched with worst-case total search cost at most c by some
fully informed deterministic search algorithm, such that any cost-informed search al-
gorithm A must have average, over all input presentations, total search cost at least
Ω(c2), on at least half of the instances in the family.

Proof. (Sketch) F includes instances Ti with 2i+1/(c − i) goals equally-spaced on
level i. For each such instance (c − i)/2 probes at level i (and at most c total search
cost) suffices in the worst case, by a instance-informed algorithm (cf. Theorem 3), and
(c − i)/8 probes at level i are necessary on average (by Theorem 6). %&

4 General Symmetric Trees

To this point we have restricted our attention to full binary trees. Not surprisingly, all of
our results generalize to arbitrary symmetric trees. There are some subtleties, however,
arising both from nodes with just one child, which can be used to form trees whose
number of leaves is significantly smaller than the number of internal nodes, and nodes
with a very large number of children, which complicate our round-based algorithms. In
the remainder of this section, we outline our generalized results.

We denote by Di,j the expression
∏j

!=i d!, where d!, recall, denotes the number of
children of all internal nodes at level %. Clearly, the number of nodes at level h is now
D0,h−1, and Observation 1 generalizes to the following:

Observation 14. If T is a general symmetric tree of height h then |Π(T)| =∏h−1
j=0 d

D0,j−1
j .

Using this, Theorems 4, 6 and 7 generalize directly to arbitrary symmetric trees, with
2h replaced by D0,h−1. Theorem 8 generalizes in the same way, by a relatively straight-
forward modification of algorithm A0:

Theorem 15. There is a deterministic uninformed algorithm A0 such that, for every
problem instance T with exactly k goals at level h,
avgπ∈Π(T)probe cost(A0, π) = O(D0,h−1/k).

The next theorem gives a generalization of Theorem 11. It should be noted that our
analysis presented here sacrifices comprehensiveness for brevity; it is possible to tighten
the analysis to better exploit the situation where the degrees on many successive levels
are all one (giving rise to subtrees whose number of leaves is far exceeded by their
number of internal nodes).

Theorem 16. For every deterministic instance-informed algorithm A, and every prob-
lem instance T with exactly kt goals at level t,
avgπ∈Π(T)search cost(A, π) = Ω(mint≥0{t + D0,t−1/kt}).

Competitive Search in Symmetric Trees 569

Next, we give a generalization of Theorem 12. We begin by describing algorithm A3,
the general tree variant of binary tree search algorithm A2. We dovetail, as in Theo-
rem 12, but in rounds that are partitioned into sub-rounds. Let σr =

∑
0≤j≤r D0,j−1,

the total number of nodes of T on levels 0 through r. After round r ≥ 0, the tree T
has been completely searched up to level r, at a cost of σr . In addition, for 0 ≤ j <
lg D0,r−1, D0,r−1/2j nodes on all levels in the interval (r− 1+ σr/D0,r−12j , r− 1+
σr/D0,r−12j+1] have been searched, at an additional total cost of σr lg D0,r−1.

More generally, after sub-round s of round r, s + 1 of the dr−1 children of each
node on level r − 1 have been probed, at a cost of σr−1 + (s + 1)D0,r−2. In addi-
tion, for 0 ≤ j < lg((s + 1)D0,r−2), (s + 1)D0,r−2/2j nodes on all levels in the
interval (r − 2 + (σr−1 + (s + 1)D0,r−2)/((s + 1)D0,r−2)2j , r − 2 + (σr−1 + (s +
1)D0,r−2)/((s + 1)D0,r−2)2j+1] have been searched, at an additional total cost of
(σr−1 + (s + 1)D0,r−2) lg((s + 1)D0,r−2).

Theorem 17. The uninformed algorithm A3 has the property that, for every problem
instance T with exactly kt goals at level t, avgπ∈Π(T)search cost(A3, π)
= O(mint≥0{(t + 1)D0,t−1

kt
} · lg(mint≥0{(t + 1)D0,t−1

kt
})).

Contrasting Theorems 16 and 17, we obtain competitive bounds comparable to those
achieved in the case of binary trees; of course, the competitive limit captured by Theo-
rem 13 still applies.

Acknowledgements

This work was supported by the Natural Sciences and Engineering Research Council of
Canada (NSERC).

References

1. Alpern, S., Gal, S.: The Theory of Search Games and Rendezvous. Kluwer Academic Pub-
lishers, Dordrecht (2003)

2. Azar, Y., Broder, A.Z., Manasse, M.S.: On-line choice of on-line algorithms. In: Proc. 4th
Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 432–440 (1993)

3. Baeza-Yates, R.A., Culberson, J.C., Rawlins, G.J.E.: Searching in the plane. Inform. Com-
put. 106(2), 234–252 (1993)

4. Demaine, E., Fekete, S., Gal, S.: Online searching with turn cost. Theoret. Comput. Sci. 361,
342–355 (2006)

5. Fleischer, R., Kamphans, T., Klein, R., Langetepe, E., Trippen, G.: Competitive online ap-
proximation of the optimal search ratio. In: Proc. 12th Annual European Symposium on
Algorithms, pp. 335–346 (2004)

6. Kao, M.-Y., Littman, M.L.: Algorithms for informed cows. In: AAAI 1997 Workshop on
On-Line Search (1997)

7. Kao, M.-Y., Ma, Y., Sipser, M., Yin, Y.: Optimal constructions of hybrid algorithms. J. Al-
gorithms 29(1), 142–164 (1998)

8. Kao, M.-Y., Reif, J.H., Tate, S.R.: Searching in an unknown environment: An optimal ran-
domized algorithm for the cow-path problem. Inform. Comput. 131(1), 63–79 (1996)

570 D. Kirkpatrick and S. Zilles

9. Kenyon, C.: Best-fit bin-packing with random order. In: Proc. 7th Annual ACM-SIAM Sym-
posium on Discrete Algorithms, pp. 359–364 (1996)

10. Kirkpatrick, D.: Hyperbolic dovetailing. In: Proc. 17th Annual European Symposium on
Algorithms, pp. 516–527 (2009)

11. Koutsoupias, E., Papadimitriou, C., Yannakakis, M.: Searching a fixed graph. In: Proc. 23rd
International Colloquium on Automata, Languages and Programming, pp. 280–289 (1996)

12. Lopez-Ortiz, A., Schuierer, S.: The ultimate strategy to search on ı̈ rays. Theoret. Comput.
Sci. 261, 267–295 (2001)

13. Luby, M., Sinclair, A., Zuckerman, D.: Optimal speedup of Las Vegas algorithms. In: Proc.
Second Israel Symposium on Theory of Computing and Systems, Jerusalem, pp. 128–133
(June 1993)

14. McGregor, A., Onak, K., Panigrahy, R.: The oil searching problem. In: Proc. 17th Annual
European Symposium on Algorithms, pp. 504–515 (2009)

15. Papadimitriou, C.H., Yannakakis, M.: Shortest paths without a map. In: Ronchi Della Rocca,
S., Ausiello, G., Dezani-Ciancaglini, M. (eds.) ICALP 1989. LNCS, vol. 372, pp. 610–620.
Springer, Heidelberg (1989)

16. Schönhage, A.: Adaptive raising strategies optimizing relative efficiency. In: Proc. 30th In-
ternational Colloquium on Automata, Languages and Programming, pp. 611–623 (2003)

17. Schuierer, S.: Lower bounds in on-line geometric searching. Comp. Geom. 18, 37–53 (2001)
18. Schuierer, S.: A lower bound for randomized searching on ı̈ rays. In: Klein, R., Six, H.-W.,

Wegner, L. (eds.) Computer Science in Perspective. LNCS, vol. 2598, pp. 264–277. Springer,
Heidelberg (2003)

19. http://www2.cs.uregina.ca/˜zilles/kirkpatrickZ11b.pdf

http://www2.cs.uregina.ca/~zilles/kirkpatrickZ11b.pdf

	Competitive Search in Symmetric Trees
	Introduction
	Symmetric Tree Traversal

	The Case Where All Goals Are Known to Lie at the Same Level
	Worst-Case Probe Cost
	Average and Expected-Case Probe Cost
	Taking Full Search Cost into Consideration

	The Case Where Goals May Appear on Many Different Levels
	General Symmetric Trees

