Offline Bewegungsplanung: Berechnung ZAZ

Elmar Langetepe University of Bonn

- $\hat{P}(X_n) := P_{x_1,...,x_{n-1}}(X_n)$ $r := \operatorname{grad}_{X_n}(\hat{P}(X_n))$ Grad Variable X_n
- ullet Anzahl versch. reellw. Nullst. in $\hat{P}(X_n)$
- $r \operatorname{grad}_{X_n} \left(\operatorname{ggT} \left(\hat{P}(X_n), \underbrace{\hat{P}'(X_n)}_{\text{Ableitung nach } X_n} \right) \right)$
- ullet Also Grad von $\hat{P}(X_n) := P_{x_1, \dots, x_{n-1}}(X_n)$ konstant halten und Anzahl der gemeinsamen Nullst. von $\hat{P}(X_n)$ und $\hat{P}'(X_n)$ konstant halten!

- Allgemeiner: Anzahl gemeinsamer Nullstellen zweier Polynome
- A(X) und B(X) mit Grad a respektive Grad b
- ullet Betrachte dazu für $(0 \le j \le \min\{a,b\}-1)$ Polynome $U_j(X)$ mit Grad b-j-1, und $V_j(X)$ mit Grad a-j-1
- Sollen Gleichung $A(X)U_j(X) B(X)V_j(X) = 0$ genügen
- U_j hat b-j Koeffizienten u_i
- V_i hat a-j Koeffizienten v_i
- Polynom $A(X)U_j(X) B(X)V_j(X)$ Grad a+b-j-1

Lemma 3.11: Genau dann wenn $A(X)U_j(X) - B(X)V_j(X) = 0$ (für kleinstes j) eine nicht-triviale Lösung hat, haben die Polynome A(X) und B(X) j+1 gemeinsame Nullstellen.

Beweis!

Beweis Lemma 3.11!

"⇒"

- $A(X) = (X \alpha_1) \cdots (X \alpha_a), B(X) = (X \beta_1) \cdots (X \beta_b)$
- $U_j(X) = (X \mu_1) \cdots (X \mu_{b-j-1}),$ $V_j(X) = (X - \nu_1) \cdots (X - \nu_{a-j-1}).$
- j kleinste Zahl: $A(X)U_j(X) B(X)V_j(X) = 0$ nicht-triviale Lsg.
- ullet Dann gilt $\mu_r
 eq
 u_s$, $r \in [1, b-j-1]$, $s \in [1, a-j-1]$
- Sonst Linearfaktor abspalten, Widerspruch kleinstes
- Faktorisierung von $A(X)U_j(X)$ und $B(X)V_j(X)$
- Jede Nullstelle U_j/V_j ist Nullstelle von B/A
- A und B haben noch j+1 gemeinsame (Gleichung)!

Beweis Lemma 3.11!

"⇐"▮

- A(X) und B(X) haben j+1 gemeinsame Nullstellen
- Restlichen a (j + 1) Nullstellen von A bilden V_j
- Restlichen b (j + 1) Nullstellen von A bilden U_j
- $A(X)U_i(X) B(X)V_i(X) = 0$ hat eine nicht-triviale Lösung

- LGS: $A(X)U_{i}(X) B(X)V_{i}(X) = 0$
- ullet a+b-j Gleichungen, a+b-2j Unbekannte
- Betrachte erste a + b 2j Koeffizienten
- LGS mit a + b 2j Unbekannten und a + b 2j Gleichungen
- $\psi_i(A,B)$ die Determinante der Matrix dieses LGS

Theorem 3.12: Die Anzahl der gemeinsamen Nullstellen von A und B ist die kleinste Zahl j, so dass $\psi_i(A,B) \neq 0$ gilt.

Beispiel: Polynom. Bedingungen!

 $A(X) = X^3 - 6X^2 + 11X - 6$ und $B(X) = 2X^2 - 6X + 4$, dann ist $\{0 \le j \le \min\{a, b\} - 1 = 1\}.$

Zeige: $\psi_0(A,B)=0$ und $\psi_1(A,B)=0$, dann mindestens zwei gemeinsame Nullstellen: •

$$(X-3)(X-2)(X-1) = A(X)$$
 und $2(X-2)(X-1) = B(X)$

Theorem 3.12: Die Anzahl der gemeinsamen Nullstellen von A und B ist die kleinste Zahl j, so dass $\psi_j(A,B) \neq 0$ gilt.

Beweis: Tafel!

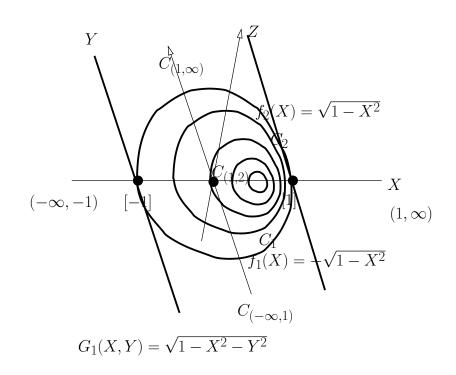
Beispiel: ZAZ berechnen!

- $P(X, Y, Z) = X^2 + Y^2 + Z^2 1$, 3 dimensional
- ▶ Grad von $\hat{P}(X_n) := P_{x_1,...,x_{n-1}}(X_n)$ und Anzahl der gemeinsamen Nullstellen von $\hat{P}(X_n)$ und $\hat{P}'(X_n)$ konstant halten
- $P_{X,Y}(Z)$ konstant Grad 2
- $P_{X,Y}(Z) = Z^2 + (X^2 + Y^2 1) =: A(Z)$ und $P'_{X,Y}(Z) = 2Z =: B(Z)$
- Anzahl gemeinsamer Nullstellen?
- $(0 \le j \le \min\{a,b\} 1 = 0)$, j = 0: $U_0(Z) = u_0$, Grad b j 1 = 0 und $V_0(Z) = v_1 Z + v_0$, Grad a j 1 = 1
- $A(Z)U_j(Z) B(Z)V_j(Z) = u_0(Z^2 + (X^2 + Y^2 1)) (v_1Z + v_0)2Z = (u_0 2v_1)Z^2 2v_0Z + u_0(X^2 + Y^2 1) = 0$
- Bedingung: $Q(X,Y) = (X^2 + Y^2 1)$

Beispiel: ZAZ berechnen!

Wie sieht die ZAZ für $P(X,Y,Z)=Z^2+X^2+Y^2-1$ nun aus?

ZAZ für $Q(X,Y)=(X^2+Y^2-1)$ hatten wir schon berechnet!



Bedingungen allgemein aufstellen!

Theorem 3.13:

Sei $P_{(X_1,\ldots,X_{n-1})}(X_n)$ gegeben und der Grad X_n in P sei k. Für $j=0,\ldots,k$ sei $Q_j(X_1,\ldots,X_{n-1})$ der Koeffizient von $P_{(X_1,\ldots,X_{n-1})}(X_n)$ mit Grad j. Sei $P_{(j,(X_1,\ldots,X_{n-1}))}(X_n)$ die Summe aller Terme des Polynoms $P_{(X_1,\ldots,X_{n-1})}(X_n)$ mit Grad $\leq j$ in X_n . Wir definieren weiterhin

 $R_{(j,l)} := \psi_l \left(P_{(j,(X_1,\ldots,X_{n-1}))}(X_n), P'_{(j,(X_1,\ldots,X_{n-1}))}(X_n) \right)$ für $l=0,\ldots,j-2$. Sei $\mathcal Q$ die Menge der Polynome aus Q_j und $R_{(j,l)}$. Dann gilt: Die Anzahl der verschiedener Nullstellen von $P_{(X_1,\ldots,X_{n-1})}(X_n)$ ist konstant falls alle Polynome aus $\mathcal Q$ ein konstantes Vorzeichen haben.

Weiteres Beispiel dazu!

$$P(X, Y, Z) = (Y^2 - 1)Z^2 + XZ + X^2 + Y^2 - 1$$