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Expected number of vertices saved, Definitions

e G = (V,E) fixed number k of agents
@ k-surviving rate, sx(G):

Expectation of the proportion of vertices saved
@ Any vertex root vertex with probability ﬁ

o Classes, C, of graphs G:
For constant ¢, sx(G) > ¢
@ Given G, k,veV:
snk(G, v): Number of vertices that can be
protected by k agents, if the fire starts at v
e Goal: ﬁ Yovey Snk(G,v) > €| V|
@ Class C: Minimum number k that
guarantees s, (G) > e for any G € C
The firefighter-number, ffn(C), of C.
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Expected number of vertices saved

Firefighter-Number for a class C of graphs:

Instance: A class C of graphs G = (V, E).

Question: Assume that the fire breaks out at any vertex of a
graph G € C with the same probability. Compute ffn(C).
ffin(C) for trees? For stars?

Planar graph: ffn(C) > 2, bipartite graph Kz p—».

Main Theorem: For planar graphs we have 2 < ffn(C) < 4
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Idea for the upper bound ffn(C) < 4

Vertices subdivided into classes X and Y

r € X allows to save many (a linear number of) vertices
r € Y allows to save only few (almost zero) vertices
Finally, | Y| < c|X] gives the bound

Simpler result first!
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Simple proof!

Theorem 43: For planar graphs G with no 3- and 4-cycle, we have
9(G) > 1/22.

e Euler formula, c4+1=v — e+ f, for planar graphs, e edges,

v vertices, f faces and ¢ components

@ Planar graph with no 3- and 4-cycle has average degree less
than %
Assume v < 2el Which is v < e
Also conclude 5f < 2e.

Insert, contradiction!

Similar arguments: A graph with no 3-, 4 and 5-cylces has
average degree less than 3!
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Subdivision into X and Y

Theorem 46: For planar graphs G with no 3- and 4-cycle, we have
9(G) > 1/22.

Subdivide the vertices V of G into groups w.r.t. the degree and
the neighborship

@ Let X, denote the vertices of degree < 2.
@ Let Y, denote the vertices of degree > 4.

@ Let X3 denote the vertices of degree exactly 3 but with at
least one neighbor of degree < 3.

@ Let Y3 denote the vertices of degree exacly 3 but with all
neighbors having degree > 3 (degree 3 vertices not in X3).

Let x2,x3,y3 and y4 denote cardinality of the sets
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Counting the portion for X

Theorem 46: For planar graphs G with no 3- and 4-cycle, we have
5(G) > 1/22.

‘V’ =nXo+xXx3+y3+ya=n
v € Xo: save n — 2 vertices
v € X3: save n — 2 vertices

For starting vertices in Y3 and Ys, we assume that we can
save nothing!

o Show: 5(G)-n=1% _ sn(G,v)>e-n

1 1
=2 snu(G.v) = (et xs)(n—2) =
veV

n—2 X2 + X3
n X2+ X3+ Y3+ ya
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Relationsship between X and Y

Theorem 46: For planar graphs G with no 3- and 4-cycle, we have
5(G) > 1/22.

o Fixed relation between x» 4+ x3 and y3 + y4

o First: Correspondance between Y3 and Yj

Gy = (Vy, Ey): Edges of G with one vertex in Y3 and one
vertex in Yz (degree at least 4)

3ys edges, at most y3 + ya vertices, bipartite
Cylce: Forth and back from Y3 to Y,
No cycle of size 5!

Average degree of vertices of Gy is at most 3

Counting 3(y3 + y4), counts at least any edge twice, so
3(ys +ya) > 6y3
@ y3 <y
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Counting edges by vertex degrees

Theorem 46: For planar graphs G with no 3- and 4-cycle, we have
5(G) > 1/22.

@ Fixed relation between x> 4 x3 and y3 + ys4, y3 < y4

Counting %(Xz + x3 + y3 + ya) edges we have at least

counted 3x3 + 3y3 + 4y4 edges

9x3 + 9y3 + 12y4 < 10(x2 + x3 + y3 + y4)
2y — y3 < 10x2 + x3

By v3 < y4 we have y; < 10x2 + x3

Finally: y3 + ya < 20x2 + 2x3 < 20(x2 + x3)
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Use the inequality!

Theorem 46: For planar graphs G with no 3- and 4-cycle, we have
9(G) > 1/22.

Finally: y3 + ya < 20x2 + 2x3 < 20(x2 + x3)

n—2 X2 + X3 n—2 X2+x3  n—2
n xo+xstyst+ys  n 2l(x+x) 2ln

(1)

n = 2: one vertex distinct from the root
3 < n<44: at least 42—4
n>44: 5(G) > 512 = 2.

Expected value of saved vertices is always %n.
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Warm up for planar graphs

Theorem 47: Using four firefighters in the first step and then
always three firefighters in each step, for every planar graph G
there is a strategy such that s;(G) > 55 holds.

Maximal, planar without multi-edges.

Triangulation, any face has exactly 3 edges

Subdivide V of G into sets X and Y.

X set of vertices strategy that save at least n — 6 vertices

For Y we do not expect to save any vertex, for |V|=n

Final conclusion: For o = 573

3
Y| < (93+a> 1X| = 2709]X]. (2)
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Warm up for planar graphs

Theorem 47: Using four firefighters in the first step and then
always three firefighters in each step, for every planar graph G

there is a strategy such that s4(G) > ﬁ holds.

3
Y| < (93 + a) |X| =2709|X]. (3)
Thus from |X| + |Y| = |V| = n we conclude

n—=6 |X| >n—6 IX|  n—6

G) > - . — .
(C) = == XLV 2 a 2710/X] _ 2710

For n > 10846 we have

6> ] 6 _2110-3/2_ 1
S 25710 T 407102 27102 © 2712

For 2 < n < 10846 we save at least min(4, n — 1) in the first step,
which gives also 54(G) > 5.
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Subdivision into X and Y'!

@ For degree 3 < d < 6 let X, denote the vertices that
guarantee to save at least |V| — 6 vertices.

@ All other vertices form the set Y, for d > 5.

Vertex v of degree 1,2, 3,4 belongs to X!
Vertex v of degree 5 with neighbor u of degree at most 6:

v € X5 by construction, fire spreads to u and is stopped then!
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Vertices from Yj

Lemma 48: For a vertex v € Yj there is a path of length at most
3 from v to a vertex u that has degree distinct from v (i.e., # 6)
and the inner vertices of the path have degree exactly 6.

@ If not, vertex v belongs to Xg! Build a Hexagon!
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Vertices with degree at least 7

Lemma 49: A vertex with d(v) > 7 has at most |3d(v)]
neighbors in Ys.

@ neighbor u € Y5 has two neighbors n; and n;
in common with v
@ np or nyp, degree at most 6, then u € Xg

@ Vertices u from Y5 around v, separated by vertices of
degree > 7
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Potential for the vertices

Lemma 50: For a simple, maximal planar graph we have

> (d(v) —6) = —12. (4)

veVv

@ maximal, simple planar graph gives 3f = 2e
(all faces are triangles)

° Zvevd(v) =2e
o Euler formula: v—e+f =2

ov—e+3e=2<=2e—6v=-12
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Potential dsitribution!

e Intitial potential p1(v) := (d(v) — 6) of every vertex
e Distribute (cost neutral) to pa(v)

° Zvev pi(v) = Zvev pa(v) = =12

The rules for the distribution are as follows:
Rule A: A vertex v of degree at least 7 gives a value of % to
each neighbor vertex from Y5s.

Rule B: For a vertex v € Yg we choose exactly one vertex u
with d(u) # 6 and distance d(v,u) <6 as in
Lemma 48. The vertex u gives a value of a > 0 to v.

Lemma 48: For a vertex v € Yj there is a path of length at most
3 from v to a vertex u that has degree distinct from v (i.e., # 6)
and the inner vertices of the path have degree exactly 6.
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Potential distribution!

Rule A: A vertex v of degree at least 7 gives a value of % to
each neighbor vertex from Ys.

Rule B: For a vertex v € Y5 we choose exactly one vertex u
with d(u) # 6 and distance d(v,u) < 3 as in
Lemma 48. The vertex u gives a value of a > 0 to v.

Lemma 50: There is a constant « > 0 such that a distribution by

Rule A and B gives > .\ p1(v) = > ¢y p2(v) = —12 and for
every v € X we have pp(v) > —3 — 93« and for every v € Y we
have pa(v) > a.

Conclusion: a = ﬁ will do the job.
—12=) " py(v) = (=3 = 93a)[X| + o Y|
veV

3
Y| < (93 + a) IX| < 2790|X|
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Planar graphs!

Theorem 47: Using four firefighters in the first step and then
always three firefighters in each step, for every planar graph G
there is a strategy such that s;(G) > 55 holds.

Maximal, planar without multi-edges.

Triangulation, any face has exactly 3 edges

Subdivide V of G into sets X and Y.

X set of vertices strategy that save at least n — 6 vertices

For Y we do not expect to save any vertex, for |V|=n

Final conclusion: For o = 573

3
Y| < (93+a> 1X| = 2709]X]. (5)
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Planar graphs

Theorem 47: Using four firefighters in the first step and then
always three firefighters in each step, for every planar graph G

there is a strategy such that s4(G) > ﬁ holds.

3
Y| < (93 + a) |X| =2709|X]. (6)
Thus from |X| + |Y| = |V| = n we conclude

n—=6 |X| n—2 IX|  n—6

G) > - . — .
(C) = == XL V]~ n 2710/X] _ 2710

For n > 10846 we have

6> ] 6 _2110-3/2_ 1
S 25710 T 407102 27102 © 2712

For 2 < n < 10846 we save at least min(4, n — 1) in the first step,
which gives also 54(G) > 5.
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Rule B: Potential distribution!

Rule B: For a vertex v € Yg we choose exactly one vertex u
with d(u) # 6 and distance d(v,u) <6 as in
Lemma 48. The vertex u gives a value of a > 0 to v.

How often can a vertex u with d(u) # 6 give a potential of « to
some vertex v? Rough upper bound with respect to the maximal
distance < 3 from u.
e Distance 1: d(v) times to a direct neighbor,
if all of them are in Yg. This gives 1 - d(u).
@ Distance 2: For all d(v) neighbors of the first case, at most 5
times, if the d(v) neighbors of the above case have degree 6
and all 5 remaining neigbors are from Y. This gives 5 - d(u).
@ Distance 3: For all vertices of the second case, at most 5
times, if the vertices of the second case all have degree 6 and
the remaining neighbors are from Yg. This gives 25 - d(u).
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Rule B: Potential distribution!

Altogether, any vertex u with d(u) # 6 can give a potential « at
most (1 + 5+ 25)d(u) = 31d(u) times.

Upper bounds for the potential pa(v):

e v € X3: We have py(v) > —3 — 93«
because d(v) = 3 and p1(v) = -3.

e v € Xy: We have py(v) > —2 — 124«
because d(v) =4 and p1(v) = —2.

e v € X5: We have po(v) > —1 — 155«
because d(v) =5 and p;(v) = —1.

Vertices of degree 6:
@ v € Xg: po(v) = 0 because d(v) =6 and p1(v) =0.

eveYse p(v)=pi(v)+a=a
Rule B gives a single value « from some v to v, and by
Lemma 48 such a vertex has to exist.
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Rule B: Potential distribution!

Vertices of degree 6:
e v e Xp: p2(v) =0 because d(v) =6 and p1(v) = 0.

e veEYs p(v)=pi(v) +a=a
Rule B gives a single value o from some u to v, and by
Lemma 48 such a vertex has to exist.
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Rule A: Potential distribution!

Rule A: A vertex v of degree at least 7 gives a value of % to

each neighbor vertex from Ys.
(No more than |[3d(v)| by Lemma 49!)

Vertex v and d(v) > 7

po(v) > (d(v) —6) — Bd(v)J - 31d(v)a

So the remaining cases can be estimated by
o veEXUY with d(v) =7: pp(v) > 3 — 2170
o veXUY with d(v) >8: pp(v) > d(v) (§ —31la) — 6
by [3d(v)] - 7 < gd(v).
1 1

a:m:ﬁ giVeS p2(V)20[
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Remaining vertices!

1

= 2182 — 87%2 gives p2(v) > —a — 93«

Upper bounds for the potential pa(v):
e v € X3: We have px(v) > —3 — 93«
because d(v) = 3 and p1(v) = —3.
e v € X;: We have py(v) > —2 — 124«
because d(v) =4 and p1(v) = —2.
@ v € X5: We have po(v) > —1 — 155«
because d(v) =5 and p1(v) = —1.
Vertices of degree 6:
@ v € Xg: po(v) = 0 because d(v) =6 and p1(v) =0.
e veEYs p(v)=pi(v) +a=a
Rule B gives a single value o from some u to v, and by
Lemma 48 such a vertex has to exist.
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Proof of Lemma 50

Lemma 50: There is a constant « > 0 such that a distribution by
Rule A and B gives ) .\, p1(v) = > ¢y P2(v) = —12 and for
every v € X we have py(v) > —3 — 93« and for every v € Y we
have pa(v) > «a.

Overall conclusion:

Theorem 47: Using four firefighters in the first step and then
always three firefighters in each step, for every planar graph G
there is a strategy such that s;(G) > 5> holds.

Elmar Langetepe Theoretical Aspects of Intruder Search



Monotone Search vs. Non-monotone search

Lemma 50:
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Connnected Search vs. non-connected search

@ Non-connected, other rules!
@ Differ in a factor of 2

© Place a team of p guards on a vertex.
@ Move a team of m guards along an edge.

© Remove a team of r guards from a vertex.
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Connnected Search vs. non-connected search

Dy denote a tree with root r of degree three and three full binary
trees, Bi_1, of depth k — 1 connected to the r.

Lemma 31: For the graph Dy, we conclude cs(Dy) = k + 1.

@ Consider Ty, T» and T3 at r!
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Connnected Search vs. non-connected search

Dy denote a tree with root r of degree three and three full binary
trees, Bi_1, of depth k — 1 connected to the r.

Lemma 32: For Dy,_1 we conclude s(Dax—1) < k + 1.

@ k=1 s trivial. So assume k > 1

@ Place one agent at the root r and successively clean the
copies of Byi_» by k agents

@ This is shown by induction!

BQ(k+1)—2

o
B, 2/© B3 2()\ /C)\B% 2 /O\B% 2
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Connnected Search vs. non-connected search

Corollary 33: There exists a tree T so that cs(T) <2s(T) —2
holds.

T = ngfl, S(ngfl) < k + 1, CS(Dzkf]_) =2k

cs(T)
s(T)

< 2 for all trees T .

Elmar Langetepe Theoretical Aspects of Intruder Search



