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Design of a strategy: Example!

Startvertex v and order of the subtrees:

cs(T,(2)) = max{cs(T,(z1)),cs(T(22)) + w(z2)}
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Design of a strategy: Example! Barriere et al. Flaw!

Lemma 23: Let z1,...,z4 be the d > 2 children of a vertex z in
T, and assume that cs(T,(z;)) > cs(T,(zj4+1)) for
i=1,...,d —1. We have

cs(Ty(z)) = max{cs(T,(z1)),cs(Tv(22)) + w(z)} (1)
if the tree T is a tree with unit weights.

Proof:

e cs(Ty(z)) > cs(T,(z1)), order of cleaning
@ Case 1: cs(T,(z1)) > cs(Ty(2z) + w(z)

e Clear T,(z), set w(z) on z, clear all T,(z;) by cs(T,(z1)
agents but T,(z1) last

@ Case 2: cs(T,(z1)) < cs(Tv(2z2)) + w(z) is necessary!
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Design of a strategy: Example! Barriere et al. Flaw!

Lemma 23: Let z;,...,zq be the d > 2 children of a vertex z in
T, and assume that cs(T,(z;)) > cs(T,(zj4+1)) for
i=1,...,d —1. We have

cs(Ty(z)) = max{cs(T,(z1)),cs(Tv(z2)) + w(z)} (2)
if the tree T is a tree with unit weights.

Case 2: cs(Ty(z1)) < cs(Ty(22)) + w(z)

Show: ¢s(T,(2z2)) + w(z) — 1 not sufficient

1. T,(z) is cleared before T,(z1): While cs(T,(z2)) agents clear
T, (z2) there are only w(z) — 1 = 0 agents left for
blocking a vertex in T,(z1). Recontamination!

2. Ty(=z1) is cleared before T,(z2)): While cs(T,(z1)) agents clear
T,(z1) there are no more w(z) — 1 = 0 agents left
for blocking a vertex in T,(z2) (because
cs(Ty(z1)) = cs(T,(22))). Recontamination!

Elmar Langetepe Theoretical Aspects of Intruder Search



Design of a strategy: Example! Barriere et al. Flaw!

cs(Ty(2)) = max{cs(T,(z1)),cs(Tv(22)) + w(z)} (3)

max{cs(Tx(z1)), cs(Tx(22)) + w(v)} = max{8,7 + 5} =12
But 10 agents are also sufficient!
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Direct consequence for unit weighted trees

Corollary 24: For a unit weighted tree T of size n and for a given
starting vertex v we can compute the optimal monotone
contiguous strategy starting at v in O(n) time. An overall optimal
contiguous strategy can be computed in O(n?).

Proof: For any root v compute the values cs(T,(x)) starting from
the leafes. Do this for all v € T.
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Labels in the tree

Compute the information in one walkthrough!

Local recursive labeling: A, (e) for the links e = (x, y) adjacent to
X.

Let e = (x,y) be a link incident to x.

Q If y is a leaf, set \(e) = w(y).

@ Otherwise, let d be the degree of y and let xq,...,x4_1 b
the incident vertices of y different form x. Let A, (y, x;) =
and f; > li11. Then,

Ax(e) == max{h, b +w(y)}.
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Computed by message sending algorithm

@ Start with the leaves and for any leaf y and for e = (x,y)
send a message | = w(y) to x. After receiving this messages,
x sets \(e) = 1.

@ Consider a vertex y of degree d that has received at least
d — 1 messages /; from the incident certices x1,...,Xxq_1 and
let x be the remaining incident vertex. Let /; > [;11. Send a

message | = max{/i, h + w(y)} to x, after receiving the
message x, set Ax((x,y)) = 1.
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Example for general tree

10\ (eg) = 10
8 \us(e1) =7 3. \us () = 1

6.\, (e4) =6
Adgy(e1) =10 7 il @«

o9

7.\ 5 64 4&
4

5/ 3 ()
) @) 4 9. A\g(es) = 10

2'A'L’3(63> = 5 1)\@5(62) = 3
11 Ay (e3) = 10 12X, (e2) = 12
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Labeling by message sending!

Lemma 24: The links of a tree T can be labeled with labels A\, by
the above message sending algorithm by O(n) messages in total.

Proof by construction!
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Connection cs(Tx(y)) = A«(e)

Lemma 26: For a unit weighted tree T = (V, E) and an edge
e = (x,y) € E we have cs(Tx(y)) = Ax(e).

Proof: By induction!

e y leaf and A(e) = w(y) for h(y) =0

e Statement holds for 0 < h(y) < k and consider h(y) = k

e e=(x,y), x1,...,Xq the d > 1 children of y in T,(y)
Ty(xi) = Ay((y, x;) by induction hypothesis, T, (x;) = T.(x;)
by definition
cs(Tx(x;)) > cs(Tu(xj41)) fori=1,...,d — 1.
Recursion for T,(y) and A((x,y)) identical!
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Final computation!

Order all A, ((v,x;) forall i =1,...,d incident edges (v, x;) so
that Ay ((v,xi)) > Av((v, xi+1)), compute

p(v) = max{Av((v,x1)), A((v, x2)) + w(v)} . (4)
p(v) = cs(T,) and minyecy p(v) = cs(T).

Strategy: By the increasing order of the values A, at vertex x!
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Final computation! General example!

p(v3) = max(Avg(e1), Avy(e) +7) = 12
M(U5) = InaX()\UB( 4)7 >\U5(e5) 5) = 1q0~)\’u*(e6> =10
S Auyle1) = 7 3 Aus(eg) = 1

6.\ 64)—6
Adgy(e1) =10 7 “*( @«

// 5 )\Uo 64 4&
4

5/ .\ 3 ()
) @) 4 9. A\g(es) = 10

2'AU‘3(63> = 5 1)\1)5(62) = 3
11 Ay (e3) = 10 12X, (e2) = 12
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Final result for unit weighted trees!

Theorem 27: On optimal contiguous strategy for a unit weighted
tree T = (V, E) can be computed in O(n) time and space.

Proof:

e Calc. messages an p values in O(n) time

@ Register only three greatest values for every vertex

Example: Applet!
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Lower and upper bounds for the contiguous search

Theorem 28: For unit weights and for any number of vertices n,
we have |log, n| —1 < cs(n) < |log, n]|.

Two directions!
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Lower and upper bounds for the contiguous search

Lemma 29: For every n > 1 we find trees T, with
cs(Th) > [logy(5(n+1))] > [logo n] — 1.
Proof:

@ Case 1: n equals 2k _ 1
@ Choose complete binary tree
e cs(T))=k—1=logy(n+1)—1> |°€2L(%(n+ 1))]
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Lower and upper bounds for the contiguous search

e Case 1: n equals 2k — 1
o cs(T,)=k—1=logy(n+1)—1> |°€2L(%(”+ 1))
k=4andn=2"_—1

level 1
ﬁ level 2

O Q Q level 3
Mo((v,u)) = k — level(u)

)\u(( )) =k—1
p(r)=kand plu#r)=k —1
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Lower and upper bounds for the contiguous search

Lemma 29: For every n > 1 we find trees T, with
cs(T) > [logo(5(n+1))] > [logy n] — 1.

Proof:
e Case 1: n equals 2k — 1
@ Case 2: n does not equal 2k — 1
e n=> 7 ,2%witha; >ar> > aq.
@ n = 11010 in binary representation with a; = 4,ap = 3,
az = 2.
@ Chain of vertices x1,x2,...,X,

@ For any x; connect complete binary tree T, of size 2% — 1
@ 24 —1 < n< 2t _1 and require
cs(Tp) = a1 > logy(n+1) — 1 > log, [ (5(n+ 1))

Elmar Langetepe Theoretical Aspects of Intruder Search



Lower and upper bounds for the contiguous search

o Case 2: n does not equal 2k 1
o cs(Ty) = a1 > logy(n+1) — 1> log,|[(5(n+1))]

n=1-2241-2240-2241-21+0-20 = 11010

1 9

LA
{i% HAO
S

Ay ((v,91)) = a1 = 1
Ay((1,m1)) =g+ 1=y

OO
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Lower and upper bounds for the contiguous search

Lemma 30: For every n > 1 and unit weights, |log, n| agents are
sufficient for a contiguous search strategy.

Proof: Arbitrary tree T, with root r, cs(T), construct T}

© For a node x and its d > 2 children x3, x2, ..., Xq ordered by
cs(T,(x;)) > cs(T,(xi+1)) remove all T,(x;) for i > 2.

@ For a node x with two children x; and x» and
cs(T,(x1)) > cs(T,(x2)), remove T,(x2).

© For a node x # r with only one child x;, remove x and
connect x; to the parent of x.

@ If there are more than two vertices left, and r has only one
child xq1, remove x; and connect the children of x; to r.
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Lower and upper bounds for the contiguous search

Lemma 30: For every n > 1 and unit weights, |log, n| agents are
sufficient for a contiguous search strategy.

Proof:

@ Agents required for T and T, are the same, computation of
wu(r) in T, use the same values.

@ Weights restricted to one, rule 2. is correct by
cs(Tr(x1)) > es(T,(x2)) + 1.
o Complete binary tree? 1. Binary! 2. Complete
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Lower and upper bounds for the contiguous search

1. Binary: Any inner vertex has no more than 2 chidren! Rule 1
and 2!

Rule three deletes internal nodes with one child except for the
root. Rule 4 make the root have 2 or 0 children.

© For a node x and its d > 2 children x3, x2, ..., x4 ordered by
cs(T,(x;)) > cs(T,(xi+1)) remove all T,(x;) for i > 2.

© For a node x with two children x; and x» and
cs(T,(x1)) > cs(T,(x2)), remove T,(x2).

© For a node x # r with only one child x;, remove x and
connect xi to the parent of x.

@ If there are more than two vertices left, and r has only one
child xq1, remove x; and connect the children of x; to r.
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Lower and upper bounds for the contiguous search

1. Complete: T} not complete and no subtree in T incomplete

© For a node x and its d > 2 children x3, x2, ..., xq ordered by
cs(T,(x;)) > cs(T,(xi+1)) remove all T,(x;) for i > 2.

@ For a node x with two children x; and x> and
cs(Tr(x1)) > cs(T,(x2)), remove T,(x2).

© For a node x # r with only one child x;, remove x and
connect x; to the parent of x.

@ |If there are more than two vertices left, and r has only one
child x1, remove x; and connect the children of x; to r.
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