Theoretical Aspects of Intruder Search

Course Wintersemester 2015/16 Dynamic strategies on Trees

Elmar Langetepe

University of Bonn

November 10th, 2015

Design of a strategy: Example!

Startvertex v and order of the subtrees:

Startvertex v and order of the subtrees:

 $\operatorname{cs}(T_{\nu}(z)) = \max\{\operatorname{cs}(T_{\nu}(z_1)), \operatorname{cs}(T_{\nu}(z_2)) + w(z)\}$

DQ P

Lemma 23: Let z_1, \ldots, z_d be the $d \ge 2$ children of a vertex z in T_v and assume that $cs(T_v(z_i)) \ge cs(T_v(z_{i+1}))$ for $i = 1, \ldots, d-1$. We have

$$cs(T_{v}(z)) = max\{cs(T_{v}(z_{1})), cs(T_{v}(z_{2})) + w(z)\}$$
(1)

if the tree T is a tree with unit weights.

Proof:

- $cs(T_v(z)) \ge cs(T_v(z_1))$, order of cleaning
- Case 1: $\operatorname{cs}(T_v(z_1)) \ge \operatorname{cs}(T_v(z_2) + w(z))$
- Clear $T_v(z)$, set w(z) on z, clear all $T_v(z_i)$ by $cs(T_v(z_1)$ agents but $T_v(z_1)$ last
- Case 2: $cs(T_v(z_1)) < cs(T_v(z_2)) + w(z)$ is necessary!

Lemma 23: Let z_1, \ldots, z_d be the $d \ge 2$ children of a vertex z in T_v and assume that $cs(T_v(z_i)) \ge cs(T_v(z_{i+1}))$ for $i = 1, \ldots, d-1$. We have

$$cs(T_{v}(z)) = max\{cs(T_{v}(z_{1})), cs(T_{v}(z_{2})) + w(z)\}$$
(2)

if the tree T is a tree with unit weights.

Case 2: $cs(T_v(z_1)) < cs(T_v(z_2)) + w(z)$ Show: $cs(T_v(z_2)) + w(z) - 1$ not sufficient 1. $T_v(z_2)$ is cleared before $T_v(z_1)$: While $cs(T_v(z_2))$ agents clear $T_v(z_2)$ there are only w(z) - 1 = 0 agents left for blocking a vertex in $T_v(z_1)$. Recontamination! 2. $T_v(z_1)$ is cleared before $T_v(z_2)$): While $cs(T_v(z_1))$ agents clear $T_v(z_1)$ there are no more w(z) - 1 = 0 agents left for blocking a vertex in $T_v(z_2)$ (because $cs(T_v(z_1)) = cs(T_v(z_2))$). Recontamination!

 $\max{cs(T_x(z_1)), cs(T_x(z_2)) + w(v)} = \max{8, 7 + 5} = 12$ But 10 agents are also sufficient! **Corollary 24:** For a unit weighted tree T of size n and for a given starting vertex v we can compute the optimal monotone contiguous strategy starting at v in O(n) time. An overall optimal contiguous strategy can be computed in $O(n^2)$.

Proof: For any root v compute the values $cs(T_v(x))$ starting from the leafes. Do this for all $v \in T$.

Compute the information in one walkthrough! Local recursive labeling: $\lambda_x(e)$ for the links e = (x, y) adjacent to x.

Let e = (x, y) be a link incident to x.

• If y is a leaf, set
$$\lambda_x(e) = w(y)$$
.

Otherwise, let d be the degree of y and let x₁,..., x_{d-1} be the incident vertices of y different form x. Let λ_y(y, x_i) =: l_i and l_i ≥ l_{i+1}. Then,

$$\lambda_x(e) := \max\{l_1, l_2 + w(y)\}.$$

- Start with the leaves and for any leaf y and for e = (x, y) send a message l = w(y) to x. After receiving this messages, x sets λ_x(e) = l.
- Consider a vertex y of degree d that has received at least d − 1 messages l_i from the incident certices x₁,..., x_{d-1} and let x be the remaining incident vertex. Let l_i ≥ l_{i+1}. Send a message l = max{l₁, l₂ + w(y)} to x, after receiving the message x, set λ_x((x, y)) = l.

Example for general tree

Lemma 24: The links of a tree T can be labeled with labels λ_x by the above message sending algorithm by O(n) messages in total.

Proof by construction!

Lemma 26: For a unit weighted tree T = (V, E) and an edge $e = (x, y) \in E$ we have $cs(T_x(y)) = \lambda_x(e)$.

Proof: By induction!

- y leaf and $\lambda_x(e) = w(y)$ for h(y) = 0
- Statement holds for $0 \le h(y) < k$ and consider h(y) = k
- $e = (x, y), x_1, \dots, x_d$ the $d \ge 1$ children of y in $T_x(y)$
- $T_y(x_i) = \lambda_y((y, x_i)$ by induction hypothesis, $T_y(x_i) = T_x(x_i)$ by definition
- $cs(T_x(x_i)) \ge cs(T_x(x_{i+1}))$ for i = 1, ..., d 1.
- Recursion for $T_x(y)$ and $\lambda_x((x,y))$ identical!

医子宫下子 医下口

DQ P

Order all $\lambda_{v}((v, x_{i}) \text{ for all } i = 1, ..., d \text{ incident edges } (v, x_{i}) \text{ so that } \lambda_{v}((v, x_{i})) \geq \lambda_{v}((v, x_{i+1})), \text{ compute}$

$$\mu(v) = \max\{\lambda_{v}((v, x_{1})), \lambda_{v}((v, x_{2})) + w(v)\}.$$
 (4)

$$\mu(\mathbf{v}) = \operatorname{cs}(T_{\mathbf{v}}) \text{ and } \min_{\mathbf{v}\in V} \mu(\mathbf{v}) = \operatorname{cs}(T).$$

Strategy: By the increasing order of the values λ_x at vertex x!

Final computation! General example!

 $5 e_3 e_2$ v_2 5

 $2.\lambda_{v_3}(e_3) = 5 \quad 1.\lambda_{v_3}(e_2) = 3$ $11.\lambda_{v_2}(e_3) = 10 \quad 12.\lambda_{v_1}(e_2) = 12$

$$\mu(v_3) = \max(\lambda_{v_3}(e_1), \lambda_{v_3}(e_3) + 7) = 12$$

$$\mu(v_5) = \max(\lambda_{v_5}(e_4), \lambda_{v_5}(e_5) + 5) = 10$$

$$10.\lambda_{v_7}(e_6) = 10$$

$$8.\lambda_{v_3}(e_1) = 7$$

$$4.\lambda_{v_4}(e_1) = 10$$

$$7$$

$$6.\lambda_{v_4}(e_4) = 6$$

$$1$$

$$4.\lambda_{v_4}(e_1) = 10$$

$$7$$

$$6.\lambda_{v_4}(e_4) = 6$$

$$1$$

$$7$$

$$6.\lambda_{v_5}(e_6) = 1$$

$$10.\lambda_{v_5}(e_6) = 1$$

$$10.\lambda_{v_5}($$

Theorem 27: On optimal contiguous strategy for a unit weighted tree T = (V, E) can be computed in O(n) time and space.

Proof:

- Calc. messages an μ values in O(n) time
- Register only three greatest values for every vertex

Example: Applet!

Theorem 28: For unit weights and for any number of vertices n, we have $\lfloor \log_2 n \rfloor - 1 \leq cs(n) \leq \lfloor \log_2 n \rfloor$.

Two directions!

Lemma 29: For every $n \ge 1$ we find trees T_n with $cs(T_n) \ge \lfloor \log_2(\frac{2}{3}(n+1)) \rfloor \ge \lfloor \log_2 n \rfloor - 1$.

Proof:

- Case 1: n equals $2^k 1$
- Choose complete binary tree
- $cs(T_n) = k 1 = \log_2(n+1) 1 \ge \log_2\lfloor (\frac{2}{3}(n+1)) \rfloor$

•
$$cs(T_n) = k - 1 = \log_2(n+1) - 1 \ge \log_2\lfloor (\frac{2}{3}(n+1)) \rfloor$$

$$k = 4$$
 and $n = 2^k - 1$

$$\begin{split} \lambda_v((v,u)) &= k - \operatorname{level}(u) \\ \lambda_u((v,u)) &= k - 1 \\ \mu(r) &= k \text{ and } \mu(u \neq r) = k - 1 \\ & \quad \text{Energy Langetone} \\ \end{split}$$

Lemma 29: For every $n \ge 1$ we find trees T_n with $cs(T_n) \ge \lfloor \log_2(\frac{2}{3}(n+1)) \rfloor \ge \lfloor \log_2 n \rfloor - 1$.

Proof:

• Case 1: n equals $2^k - 1$

• Case 2: *n* does not equal $2^k - 1$

•
$$n = \sum_{i=1}^{r} 2^{\alpha_i}$$
 with $\alpha_1 > \alpha_2 > \cdots > \alpha_r$.

- n = 11010 in binary representation with $\alpha_1 = 4, \alpha_2 = 3$, $\alpha_3 = 2$.
- Chain of vertices x_1, x_2, \ldots, x_r
- For any x_i connect complete binary tree T_{α_i} of size $2^{\alpha_i} 1$

•
$$2^{\alpha_1} - 1 < n < 2^{\alpha_1+1} - 1$$
 and require
 $\operatorname{cs}(T_n) = \alpha_1 \ge \log_2(n+1) - 1 \ge \log_2\lfloor (\frac{2}{3}(n+1)) \rfloor$

$$\begin{split} \lambda_{y_1}((v,y_1)) &= \alpha_1 - 1 \\ \lambda_{y_1}((x_1,y_1)) &= \alpha_2 + 1 = \alpha_1 \end{split}$$

Lemma 30: For every $n \ge 1$ and unit weights, $\lfloor \log_2 n \rfloor$ agents are sufficient for a contiguous search strategy.

Proof: Arbitrary tree T_r with root r, cs(T), construct T'_r

- For a node x and its d > 2 children x_1, x_2, \ldots, x_d ordered by $cs(T_r(x_i)) \ge cs(T_r(x_{i+1}))$ remove all $T_r(x_i)$ for i > 2.
- For a node x with two children x_1 and x_2 and $cs(T_r(x_1)) > cs(T_r(x_2))$, remove $T_r(x_2)$.
- For a node x ≠ r with only one child x₁, remove x and connect x₁ to the parent of x.
- If there are more than two vertices left, and r has only one child x₁, remove x₁ and connect the children of x₁ to r.

Lemma 30: For every $n \ge 1$ and unit weights, $\lfloor \log_2 n \rfloor$ agents are sufficient for a contiguous search strategy.

Proof:

- Agents required for T and T_r are the same, computation of $\mu(r)$ in T_r use the same values.
- Weights restricted to one, rule 2. is correct by $cs(T_r(x_1)) \ge cs(T_r(x_2)) + 1.$
- Complete binary tree? 1. Binary! 2. Complete

1. Binary: Any inner vertex has no more than 2 chidren! Rule 1 and 2!

Rule three deletes internal nodes with one child except for the root. Rule 4 make the root have 2 or 0 children.

- For a node x and its d > 2 children x_1, x_2, \ldots, x_d ordered by $cs(T_r(x_i)) \ge cs(T_r(x_{i+1}))$ remove all $T_r(x_i)$ for i > 2.
- For a node x with two children x_1 and x_2 and $cs(T_r(x_1)) > cs(T_r(x_2))$, remove $T_r(x_2)$.
- For a node x ≠ r with only one child x₁, remove x and connect x₁ to the parent of x.
- If there are more than two vertices left, and r has only one child x₁, remove x₁ and connect the children of x₁ to r.

- 1. Complete: T'_x not complete and no subtree in T'_x incomplete
 - For a node x and its d > 2 children x_1, x_2, \ldots, x_d ordered by $cs(T_r(x_i)) \ge cs(T_r(x_{i+1}))$ remove all $T_r(x_i)$ for i > 2.
 - For a node x with two children x_1 and x_2 and $cs(T_r(x_1)) > cs(T_r(x_2))$, remove $T_r(x_2)$.
 - Solution For a node x ≠ r with only one child x₁, remove x and connect x₁ to the parent of x.
 - If there are more than two vertices left, and r has only one child x₁, remove x₁ and connect the children of x₁ to r.