Theoretical Aspects of Intruder Search Course Wintersemester 2015/16 Dynamic strategies on Trees

Elmar Langetepe
University of Bonn

November 10th, 2015

Design of a strategy: Example!

Startvertex v and order of the subtrees:
$\operatorname{cs}\left(T_{v}(z)\right)=\max \left\{\operatorname{cs}\left(T_{v}\left(z_{1}\right)\right), \operatorname{cs}\left(T_{v}\left(z_{2}\right)\right)+w(z)\right\}$

Design of a strategy: Example! Barriere et al. Flaw!

Startvertex v and order of the subtrees:
$\operatorname{cs}\left(T_{v}(z)\right)=\max \left\{\operatorname{cs}\left(T_{v}\left(z_{1}\right)\right), \operatorname{cs}\left(T_{v}\left(z_{2}\right)\right)+w(z)\right\}$

Design of a strategy: Example! Barriere et al. Flaw!

Lemma 23: Let z_{1}, \ldots, z_{d} be the $d \geq 2$ children of a vertex z in T_{v} and assume that $\operatorname{cs}\left(T_{v}\left(z_{i}\right)\right) \geq \operatorname{cs}\left(T_{v}\left(z_{i+1}\right)\right)$ for $i=1, \ldots, d-1$. We have

$$
\begin{equation*}
\operatorname{cs}\left(T_{v}(z)\right)=\max \left\{\operatorname{cs}\left(T_{v}\left(z_{1}\right)\right), \operatorname{cs}\left(T_{v}\left(z_{2}\right)\right)+w(z)\right\} \tag{1}
\end{equation*}
$$

if the tree T is a tree with unit weights.
Proof:

- $\operatorname{cs}\left(T_{v}(z)\right) \geq \operatorname{cs}\left(T_{v}\left(z_{1}\right)\right)$, order of cleaning
- Case 1: $\operatorname{cs}\left(T_{v}\left(z_{1}\right)\right) \geq \operatorname{cs}\left(T_{v}\left(z_{2}\right)+w(z)\right.$
- Clear $T_{v}(z)$, set $w(z)$ on z, clear all $T_{v}\left(z_{i}\right)$ by $\operatorname{cs}\left(T_{v}\left(z_{1}\right)\right.$ agents but $T_{v}\left(z_{1}\right)$ last
- Case 2: $\operatorname{cs}\left(T_{v}\left(z_{1}\right)\right)<\operatorname{cs}\left(T_{v}\left(z_{2}\right)\right)+w(z)$ is necessary!

Design of a strategy: Example! Barriere et al. Flaw!

Lemma 23: Let z_{1}, \ldots, z_{d} be the $d \geq 2$ children of a vertex z in T_{v} and assume that $\operatorname{cs}\left(T_{v}\left(z_{i}\right)\right) \geq \operatorname{cs}\left(T_{v}\left(z_{i+1}\right)\right)$ for $i=1, \ldots, d-1$. We have

$$
\begin{equation*}
\operatorname{cs}\left(T_{v}(z)\right)=\max \left\{\operatorname{cs}\left(T_{v}\left(z_{1}\right)\right), \operatorname{cs}\left(T_{v}\left(z_{2}\right)\right)+w(z)\right\} \tag{2}
\end{equation*}
$$

if the tree T is a tree with unit weights.
Case 2: $\operatorname{cs}\left(T_{v}\left(z_{1}\right)\right)<\operatorname{cs}\left(T_{v}\left(z_{2}\right)\right)+w(z)$ Show: $\operatorname{cs}\left(T_{v}\left(z_{2}\right)\right)+w(z)-1$ not sufficient

1. $T_{v}\left(z_{2}\right)$ is cleared before $T_{v}\left(z_{1}\right)$: While $\operatorname{cs}\left(T_{v}\left(z_{2}\right)\right)$ agents clear $T_{v}\left(z_{2}\right)$ there are only $w(z)-1=0$ agents left for blocking a vertex in $T_{v}\left(z_{1}\right)$. Recontamination!
2. $T_{v}\left(z_{1}\right)$ is cleared before $\left.T_{v}\left(z_{2}\right)\right)$: While $\operatorname{cs}\left(T_{v}\left(z_{1}\right)\right)$ agents clear $T_{v}\left(z_{1}\right)$ there are no more $w(z)-1=0$ agents left for blocking a vertex in $T_{v}\left(z_{2}\right)$ (because $\left.\operatorname{cs}\left(T_{v}\left(z_{1}\right)\right)=\operatorname{cs}\left(T_{v}\left(z_{2}\right)\right)\right)$. Recontamination!

Design of a strategy: Example! Barriere et al. Flaw!

$$
\begin{equation*}
\operatorname{cs}\left(T_{v}(z)\right)=\max \left\{\operatorname{cs}\left(T_{v}\left(z_{1}\right)\right), \operatorname{cs}\left(T_{v}\left(z_{2}\right)\right)+w(z)\right\} \tag{3}
\end{equation*}
$$

$\max \left\{\operatorname{cs}\left(T_{x}\left(z_{1}\right)\right), \operatorname{cs}\left(T_{x}\left(z_{2}\right)\right)+w(v)\right\}=\max \{8,7+5\}=12$
But 10 agents are also sufficient!

Direct consequence for unit weighted trees

Corollary 24: For a unit weighted tree T of size n and for a given starting vertex v we can compute the optimal monotone contiguous strategy starting at v in $O(n)$ time. An overall optimal contiguous strategy can be computed in $O\left(n^{2}\right)$.

Proof: For any root v compute the values $\operatorname{cs}\left(T_{v}(x)\right)$ starting from the leafes. Do this for all $v \in T$.

Compute the information in one walkthrough!
Local recursive labeling: $\lambda_{x}(e)$ for the links $e=(x, y)$ adjacent to x.
Let $e=(x, y)$ be a link incident to x.
(1) If y is a leaf, set $\lambda_{x}(e)=w(y)$.
(2) Otherwise, let d be the degree of y and let x_{1}, \ldots, x_{d-1} be the incident vertices of y different form x. Let $\lambda_{y}\left(y, x_{i}\right)=: l_{i}$ and $I_{i} \geq I_{i+1}$. Then,

$$
\lambda_{x}(e):=\max \left\{I_{1}, I_{2}+w(y)\right\} .
$$

Computed by message sending algorithm

(1) Start with the leaves and for any leaf y and for $e=(x, y)$ send a message $I=w(y)$ to x. After receiving this messages, x sets $\lambda_{x}(e)=1$.
(2) Consider a vertex y of degree d that has received at least $d-1$ messages l_{i} from the incident certices x_{1}, \ldots, x_{d-1} and let x be the remaining incident vertex. Let $l_{i} \geq l_{i+1}$. Send a message $I=\max \left\{I_{1}, l_{2}+w(y)\right\}$ to x, after receiving the message x, set $\lambda_{x}((x, y))=1$.

Example for general tree

$$
\begin{aligned}
& \text { 10. } \lambda_{v_{7}}\left(e_{6}\right)=10 \\
& \text { 8. } \lambda_{v_{3}}\left(e_{1}\right)=7 \\
& \text { 3. } \lambda_{v_{5}}\left(e_{6}\right)=1 \\
& \text { 6. } \lambda_{v_{4}}\left(e_{4}\right)=6 \\
& \text { 4. } \lambda_{v_{4}}\left(e_{1}\right)=10 \quad 7 \\
& \text { 2. } \lambda_{v_{3}}\left(e_{3}\right)=5 \quad 1 . \lambda_{v_{3}}\left(e_{2}\right)=3 \\
& \text { 11. } \lambda_{v_{2}}\left(e_{3}\right)=10 \text { 12. } \lambda_{v_{1}}\left(e_{2}\right)=12
\end{aligned}
$$

Labeling by message sending!

Lemma 24: The links of a tree T can be labeled with labels λ_{x} by the above message sending algorithm by $O(n)$ messages in total.

Proof by construction!

Connection $\operatorname{cs}\left(T_{x}(y)\right)=\lambda_{x}(e)$

Lemma 26: For a unit weighted tree $T=(V, E)$ and an edge $e=(x, y) \in E$ we have $\operatorname{cs}\left(T_{x}(y)\right)=\lambda_{x}(e)$.

Proof: By induction!

- y leaf and $\lambda_{x}(e)=w(y)$ for $h(y)=0$
- Statement holds for $0 \leq h(y)<k$ and consider $h(y)=k$
- $e=(x, y), x_{1}, \ldots, x_{d}$ the $d \geq 1$ children of y in $T_{x}(y)$
- $T_{y}\left(x_{i}\right)=\lambda_{y}\left(\left(y, x_{i}\right)\right.$ by induction hypothesis, $T_{y}\left(x_{i}\right)=T_{x}\left(x_{i}\right)$ by definition
- $\operatorname{cs}\left(T_{x}\left(x_{i}\right)\right) \geq \operatorname{cs}\left(T_{x}\left(x_{i+1}\right)\right)$ for $i=1, \ldots, d-1$.
- Recursion for $T_{x}(y)$ and $\lambda_{x}((x, y))$ identical!

Order all $\lambda_{v}\left(\left(v, x_{i}\right)\right.$ for all $i=1, \ldots, d$ incident edges $\left(v, x_{i}\right)$ so that $\lambda_{v}\left(\left(v, x_{i}\right)\right) \geq \lambda_{v}\left(\left(v, x_{i+1}\right)\right)$, compute

$$
\begin{equation*}
\mu(v)=\max \left\{\lambda_{v}\left(\left(v, x_{1}\right)\right), \lambda_{v}\left(\left(v, x_{2}\right)\right)+w(v)\right\} . \tag{4}
\end{equation*}
$$

$\mu(v)=\operatorname{cs}\left(T_{v}\right)$ and $\min _{v \in V} \mu(v)=\operatorname{cs}(T)$.
Strategy: By the increasing order of the values λ_{x} at vertex x !

Final computation! General example!

$$
\begin{aligned}
& \mu\left(v_{3}\right)=\max \left(\lambda_{v_{3}}\left(e_{1}\right), \lambda_{v_{3}}\left(e_{3}\right)+7\right)=12 \\
& \mu\left(v_{5}\right)=\max \left(\lambda_{v_{5}}\left(e_{4}\right), \lambda_{v_{5}}\left(e_{5}\right)+5\right)={ }_{10}{ }_{10} \cdot \lambda_{v_{7}}\left(e_{6}\right)=10 \\
& \text { 8. } \lambda_{v_{3}}\left(e_{1}\right)=7 \\
& \text { 6. } \lambda_{v_{4}}\left(e_{4}\right)=6 \\
& \text { 4. } \lambda_{v_{4}}\left(e_{1}\right)=10 \quad 7 \\
& \text { 2. } \lambda_{v_{3}}\left(e_{3}\right)=5 \quad 1 . \lambda_{v_{3}}\left(e_{2}\right)=3 \\
& \text { 11. } \lambda_{v_{2}}\left(e_{3}\right)=1012 \cdot \lambda_{v_{1}}\left(e_{2}\right)=12
\end{aligned}
$$

Theorem 27: On optimal contiguous strategy for a unit weighted tree $T=(V, E)$ can be computed in $O(n)$ time and space.

Proof:

- Calc. messages an μ values in $O(n)$ time
- Register only three greatest values for every vertex

Example: Applet!

Lower and upper bounds for the contiguous search

Theorem 28: For unit weights and for any number of vertices n, we have $\left\lfloor\log _{2} n\right\rfloor-1 \leq \operatorname{cs}(n) \leq\left\lfloor\log _{2} n\right\rfloor$.

Two directions!

Lower and upper bounds for the contiguous search

Lemma 29: For every $n \geq 1$ we find trees T_{n} with $\operatorname{cs}\left(T_{n}\right) \geq\left\lfloor\log _{2}\left(\frac{2}{3}(n+1)\right)\right\rfloor \geq\left\lfloor\log _{2} n\right\rfloor-1$.

Proof:

- Case 1: n equals $2^{k}-1$
- Choose complete binary tree
- $\operatorname{cs}\left(T_{n}\right)=k-1=\log _{2}(n+1)-1 \geq \log _{2}\left\lfloor\left(\frac{2}{3}(n+1)\right)\right\rfloor$

Lower and upper bounds for the contiguous search

- Case 1: n equals $2^{k}-1$
- $\operatorname{cs}\left(T_{n}\right)=k-1=\log _{2}(n+1)-1 \geq \log _{2}\left\lfloor\left(\frac{2}{3}(n+1)\right)\right\rfloor$

$$
k=4 \text { and } n=2^{k}-1
$$

$$
\begin{aligned}
& \lambda_{v}((v, u))=k-\operatorname{level}(u) \\
& \lambda_{u}((v, u))=k-1 \\
& \mu(r)=k \text { and } \mu(u \neq r)=k-1
\end{aligned}
$$

Lower and upper bounds for the contiguous search

Lemma 29: For every $n \geq 1$ we find trees T_{n} with $\operatorname{cs}\left(T_{n}\right) \geq\left\lfloor\log _{2}\left(\frac{2}{3}(n+1)\right)\right\rfloor \geq\left\lfloor\log _{2} n\right\rfloor-1$.

Proof:

- Case 1: n equals $2^{k}-1$
- Case 2: n does not equal $2^{k}-1$
- $n=\sum_{i=1}^{r} 2^{\alpha_{i}}$ with $\alpha_{1}>\alpha_{2}>\cdots>\alpha_{r}$.
- $n=11010$ in binary representation with $\alpha_{1}=4, \alpha_{2}=3$, $\alpha_{3}=2$.
- Chain of vertices $x_{1}, x_{2}, \ldots, x_{r}$
- For any x_{i} connect complete binary tree $T_{\alpha_{i}}$ of size $2^{\alpha_{i}}-1$
- $2^{\alpha_{1}}-1<n<2^{\alpha_{1}+1}-1$ and require

$$
\operatorname{cs}\left(T_{n}\right)=\alpha_{1} \geq \log _{2}(n+1)-1 \geq \log _{2}\left\lfloor\left(\frac{2}{3}(n+1)\right)\right\rfloor
$$

Lower and upper bounds for the contiguous search

- Case 2: n does not equal $2^{k}-1$
- $\operatorname{cs}\left(T_{n}\right)=\alpha_{1} \geq \log _{2}(n+1)-1 \geq \log _{2}\left\lfloor\left(\frac{2}{3}(n+1)\right)\right\rfloor$

$$
n=1 \cdot 2^{4}+1 \cdot 2^{3}+0 \cdot 2^{2}+1 \cdot 2^{1}+0 \cdot 2^{0}=11010
$$

$$
\begin{aligned}
& \lambda_{y_{1}}\left(\left(v, y_{1}\right)\right)=\alpha_{1}-1 \\
& \lambda_{y_{1}}\left(\left(x_{1}, y_{1}\right)\right)=\alpha_{2}+1=\alpha_{1}
\end{aligned}
$$

Lower and upper bounds for the contiguous search

Lemma 30: For every $n \geq 1$ and unit weights, $\left\lfloor\log _{2} n\right\rfloor$ agents are sufficient for a contiguous search strategy.

Proof: Arbitrary tree T_{r} with root $r, \operatorname{cs}(T)$, construct T_{r}^{\prime}
(1) For a node x and its $d>2$ children $x_{1}, x_{2}, \ldots, x_{d}$ ordered by $\operatorname{cs}\left(T_{r}\left(x_{i}\right)\right) \geq \operatorname{cs}\left(T_{r}\left(x_{i+1}\right)\right)$ remove all $T_{r}\left(x_{i}\right)$ for $i>2$.
(2) For a node x with two children x_{1} and x_{2} and $\operatorname{cs}\left(T_{r}\left(x_{1}\right)\right)>\operatorname{cs}\left(T_{r}\left(x_{2}\right)\right)$, remove $T_{r}\left(x_{2}\right)$.
(3) For a node $x \neq r$ with only one child x_{1}, remove x and connect x_{1} to the parent of x.
(9) If there are more than two vertices left, and r has only one child x_{1}, remove x_{1} and connect the children of x_{1} to r.

Lower and upper bounds for the contiguous search

Lemma 30: For every $n \geq 1$ and unit weights, $\left\lfloor\log _{2} n\right\rfloor$ agents are sufficient for a contiguous search strategy.

Proof:

- Agents required for T and T_{r} are the same, computation of $\mu(r)$ in T_{r} use the same values.
- Weights restricted to one, rule 2 . is correct by $\operatorname{cs}\left(T_{r}\left(x_{1}\right)\right) \geq \operatorname{cs}\left(T_{r}\left(x_{2}\right)\right)+1$.
- Complete binary tree? 1. Binary! 2. Complete

Lower and upper bounds for the contiguous search

1. Binary: Any inner vertex has no more than 2 chidren! Rule 1 and 2 !

Rule three deletes internal nodes with one child except for the root. Rule 4 make the root have 2 or 0 children.
(1) For a node x and its $d>2$ children $x_{1}, x_{2}, \ldots, x_{d}$ ordered by $\operatorname{cs}\left(T_{r}\left(x_{i}\right)\right) \geq \operatorname{cs}\left(T_{r}\left(x_{i+1}\right)\right)$ remove all $T_{r}\left(x_{i}\right)$ for $i>2$.
(2) For a node x with two children x_{1} and x_{2} and $\operatorname{cs}\left(T_{r}\left(x_{1}\right)\right)>\operatorname{cs}\left(T_{r}\left(x_{2}\right)\right)$, remove $T_{r}\left(x_{2}\right)$.
(3) For a node $x \neq r$ with only one child x_{1}, remove x and connect x_{1} to the parent of x.
(9) If there are more than two vertices left, and r has only one child x_{1}, remove x_{1} and connect the children of x_{1} to r.

Lower and upper bounds for the contiguous search

1. Complete: T_{x}^{\prime} not complete and no subtree in T_{x}^{\prime} incomplete
(1) For a node x and its $d>2$ children $x_{1}, x_{2}, \ldots, x_{d}$ ordered by $\operatorname{cs}\left(T_{r}\left(x_{i}\right)\right) \geq \operatorname{cs}\left(T_{r}\left(x_{i+1}\right)\right)$ remove all $T_{r}\left(x_{i}\right)$ for $i>2$.
(2) For a node x with two children x_{1} and x_{2} and $\operatorname{cs}\left(T_{r}\left(x_{1}\right)\right)>\operatorname{cs}\left(T_{r}\left(x_{2}\right)\right)$, remove $T_{r}\left(x_{2}\right)$.
(3) For a node $x \neq r$ with only one child x_{1}, remove x and connect x_{1} to the parent of x.
(4) If there are more than two vertices left, and r has only one child x_{1}, remove x_{1} and connect the children of x_{1} to r.
