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Design of a strategy: Example!

Startvertex v and order of the subtrees:

cs(Tv (z)) = max{cs(Tv (z1)), cs(Tv (z2)) + w(z)}

e1

e2

e4

e3

e6

e5

v1v2

z1

z
z2

z′1

z′2

10

7 5

1

4

1

5

815

v

Tv(z)8

Tv(z1)

Tv(z2)

15

1510

Tv(z
′
2)

Tv(z
′
1)

4

Elmar Langetepe Theoretical Aspects of Intruder Search



Design of a strategy: Example! Barriere et al. Flaw!

Startvertex v and order of the subtrees:

cs(Tv (z)) = max{cs(Tv (z1)), cs(Tv (z2)) + w(z)}
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Design of a strategy: Example! Barriere et al. Flaw!

Lemma 23: Let z1, . . . , zd be the d ≥ 2 children of a vertex z in
Tv and assume that cs(Tv (zi )) ≥ cs(Tv (zi+1)) for
i = 1, . . . , d − 1. We have

cs(Tv (z)) = max{cs(Tv (z1)), cs(Tv (z2)) + w(z)} (1)

if the tree T is a tree with unit weights.

Proof:

cs(Tv (z)) ≥ cs(Tv (z1)), order of cleaning

Case 1: cs(Tv (z1)) ≥ cs(Tv (z2) + w(z)

Clear Tv (z), set w(z) on z , clear all Tv (zi ) by cs(Tv (z1)
agents but Tv (z1) last

Case 2: cs(Tv (z1)) < cs(Tv (z2)) + w(z) is necessary!
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Design of a strategy: Example! Barriere et al. Flaw!

Lemma 23: Let z1, . . . , zd be the d ≥ 2 children of a vertex z in
Tv and assume that cs(Tv (zi )) ≥ cs(Tv (zi+1)) for
i = 1, . . . , d − 1. We have

cs(Tv (z)) = max{cs(Tv (z1)), cs(Tv (z2)) + w(z)} (2)

if the tree T is a tree with unit weights.

Case 2: cs(Tv (z1)) < cs(Tv (z2)) + w(z)
Show: cs(Tv (z2)) + w(z)− 1 not sufficient

1. Tv (z2) is cleared before Tv (z1): While cs(Tv (z2)) agents clear
Tv (z2) there are only w(z)− 1 = 0 agents left for
blocking a vertex in Tv (z1). Recontamination!

2. Tv (z1) is cleared before Tv (z2)): While cs(Tv (z1)) agents clear
Tv (z1) there are no more w(z)− 1 = 0 agents left
for blocking a vertex in Tv (z2) (because
cs(Tv (z1)) = cs(Tv (z2))). Recontamination!
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Design of a strategy: Example! Barriere et al. Flaw!

cs(Tv (z)) = max{cs(Tv (z1)), cs(Tv (z2)) + w(z)} (3)

max{cs(Tx(z1)), cs(Tx(z2)) + w(v)} = max{8, 7 + 5} = 12
But 10 agents are also sufficient!
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Direct consequence for unit weighted trees

Corollary 24: For a unit weighted tree T of size n and for a given
starting vertex v we can compute the optimal monotone
contiguous strategy starting at v in O(n) time. An overall optimal
contiguous strategy can be computed in O(n2).

Proof: For any root v compute the values cs(Tv (x)) starting from
the leafes. Do this for all v ∈ T .
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Labels in the tree

Compute the information in one walkthrough!
Local recursive labeling: λx(e) for the links e = (x , y) adjacent to
x .
Let e = (x , y) be a link incident to x .

1 If y is a leaf, set λx(e) = w(y).

2 Otherwise, let d be the degree of y and let x1, . . . , xd−1 be
the incident vertices of y different form x . Let λy (y , xi ) =: li
and li ≥ li+1. Then,

λx(e) := max{l1, l2 + w(y)} .
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Computed by message sending algorithm

1 Start with the leaves and for any leaf y and for e = (x , y)
send a message l = w(y) to x . After receiving this messages,
x sets λx(e) = l .

2 Consider a vertex y of degree d that has received at least
d − 1 messages li from the incident certices x1, . . . , xd−1 and
let x be the remaining incident vertex. Let li ≥ li+1. Send a
message l = max{l1, l2 + w(y)} to x , after receiving the
message x , set λx((x , y)) = l .
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Example for general tree
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1.λv3(e2) = 32.λv3(e3) = 5

5.λv5(e5) = 4

3.λv5(e6) = 1
6.λv4(e4) = 6

4.λv4(e1) = 10

7.λv5(e4) = 10

8.λv3(e1) = 7

9.λv6(e5) = 10

10.λv7(e6) = 10

12.λv1(e2) = 1211.λv2(e3) = 10
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Labeling by message sending!

Lemma 24: The links of a tree T can be labeled with labels λx by
the above message sending algorithm by O(n) messages in total.

Proof by construction!
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Connection cs(Tx(y)) = λx(e)

Lemma 26: For a unit weighted tree T = (V ,E ) and an edge
e = (x , y) ∈ E we have cs(Tx(y)) = λx(e).

Proof: By induction!

y leaf and λx(e) = w(y) for h(y) = 0

Statement holds for 0 ≤ h(y) < k and consider h(y) = k

e = (x , y), x1, . . . , xd the d ≥ 1 children of y in Tx(y)

Ty (xi ) = λy ((y , xi ) by induction hypothesis, Ty (xi ) = Tx(xi )
by definition

cs(Tx(xi )) ≥ cs(Tx(xi+1)) for i = 1, . . . , d − 1.

Recursion for Tx(y) and λx((x , y)) identical!
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Final computation!

Order all λv ((v , xi ) for all i = 1, . . . , d incident edges (v , xi ) so
that λv ((v , xi )) ≥ λv ((v , xi+1)), compute

µ(v) = max{λv ((v , x1)), λv ((v , x2)) + w(v)} . (4)

µ(v) = cs(Tv ) and minv∈V µ(v) = cs(T ).

Strategy: By the increasing order of the values λx at vertex x!
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Final computation! General example!
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1.λv3(e2) = 32.λv3(e3) = 5

5.λv5(e5) = 4

3.λv5(e6) = 1
6.λv4(e4) = 6

4.λv4(e1) = 10

7.λv5(e4) = 10

8.λv3(e1) = 7

9.λv6(e5) = 10

10.λv7(e6) = 10

12.λv1(e2) = 1211.λv2(e3) = 10

µ(v3) = max(λv3(e1), λv3(e3) + 7) = 12

µ(v5) = max(λv5(e4), λv5(e5) + 5) = 10
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Final result for unit weighted trees!

Theorem 27: On optimal contiguous strategy for a unit weighted
tree T = (V ,E ) can be computed in O(n) time and space.

Proof:

Calc. messages an µ values in O(n) time

Register only three greatest values for every vertex

Example: Applet!
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Lower and upper bounds for the contiguous search

Theorem 28: For unit weights and for any number of vertices n,
we have blog2 nc − 1 ≤ cs(n) ≤ blog2 nc.

Two directions!
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Lower and upper bounds for the contiguous search

Lemma 29: For every n ≥ 1 we find trees Tn with
cs(Tn) ≥ blog2(23(n + 1))c ≥ blog2 nc − 1.

Proof:

Case 1: n equals 2k − 1

Choose complete binary tree

cs(Tn) = k − 1 = log2(n + 1)− 1 ≥ log2b(23(n + 1))c
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Lower and upper bounds for the contiguous search

Case 1: n equals 2k − 1

cs(Tn) = k − 1 = log2(n + 1)− 1 ≥ log2b(23(n + 1))c

r

v

u

level 1

level 2

level 3

k = 4 and n = 2k − 1

λv((v, u)) = k − level(u)

λu((v, u)) = k − 1

µ(r) = k and µ(u 6= r) = k − 1
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Lower and upper bounds for the contiguous search

Lemma 29: For every n ≥ 1 we find trees Tn with
cs(Tn) ≥ blog2(23(n + 1))c ≥ blog2 nc − 1.

Proof:

Case 1: n equals 2k − 1

Case 2: n does not equal 2k − 1

n =
∑r

i=1 2αi with α1 > α2 > · · · > αr .

n = 11010 in binary representation with α1 = 4,α2 = 3,
α3 = 2.

Chain of vertices x1, x2, . . . , xr

For any xi connect complete binary tree Tαi of size 2αi − 1

2α1 − 1 < n < 2α1+1 − 1 and require
cs(Tn) = α1 ≥ log2(n + 1)− 1 ≥ log2b(23(n + 1))c
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Lower and upper bounds for the contiguous search

Case 2: n does not equal 2k − 1

cs(Tn) = α1 ≥ log2(n + 1)− 1 ≥ log2b(23(n + 1))c

x1 x2 x3

y1 y2 y3

n = 1 · 24 + 1 · 23 + 0 · 22 + 1 · 21 + 0 · 20 = 11010

λy1((v, y1)) = α1 − 1

v

λy1((x1, y1)) = α2 + 1 = α1
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Lower and upper bounds for the contiguous search

Lemma 30: For every n ≥ 1 and unit weights, blog2 nc agents are
sufficient for a contiguous search strategy.

Proof: Arbitrary tree Tr with root r , cs(T ), construct T ′r

1 For a node x and its d > 2 children x1, x2, . . . , xd ordered by
cs(Tr (xi )) ≥ cs(Tr (xi+1)) remove all Tr (xi ) for i > 2.

2 For a node x with two children x1 and x2 and
cs(Tr (x1)) > cs(Tr (x2)), remove Tr (x2).

3 For a node x 6= r with only one child x1, remove x and
connect x1 to the parent of x .

4 If there are more than two vertices left, and r has only one
child x1, remove x1 and connect the children of x1 to r .

Elmar Langetepe Theoretical Aspects of Intruder Search



Lower and upper bounds for the contiguous search

Lemma 30: For every n ≥ 1 and unit weights, blog2 nc agents are
sufficient for a contiguous search strategy.

Proof:

Agents required for T and Tr are the same, computation of
µ(r) in Tr use the same values.

Weights restricted to one, rule 2. is correct by
cs(Tr (x1)) ≥ cs(Tr (x2)) + 1.

Complete binary tree? 1. Binary! 2. Complete
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Lower and upper bounds for the contiguous search

1. Binary: Any inner vertex has no more than 2 chidren! Rule 1
and 2!

Rule three deletes internal nodes with one child except for the
root. Rule 4 make the root have 2 or 0 children.

1 For a node x and its d > 2 children x1, x2, . . . , xd ordered by
cs(Tr (xi )) ≥ cs(Tr (xi+1)) remove all Tr (xi ) for i > 2.

2 For a node x with two children x1 and x2 and
cs(Tr (x1)) > cs(Tr (x2)), remove Tr (x2).

3 For a node x 6= r with only one child x1, remove x and
connect x1 to the parent of x .

4 If there are more than two vertices left, and r has only one
child x1, remove x1 and connect the children of x1 to r .
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Lower and upper bounds for the contiguous search

1. Complete: T ′x not complete and no subtree in T ′x incomplete

1 For a node x and its d > 2 children x1, x2, . . . , xd ordered by
cs(Tr (xi )) ≥ cs(Tr (xi+1)) remove all Tr (xi ) for i > 2.

2 For a node x with two children x1 and x2 and
cs(Tr (x1)) > cs(Tr (x2)), remove Tr (x2).

3 For a node x 6= r with only one child x1, remove x and
connect x1 to the parent of x .

4 If there are more than two vertices left, and r has only one
child x1, remove x1 and connect the children of x1 to r .

Elmar Langetepe Theoretical Aspects of Intruder Search


