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Organisation

Lecture: Tuesday 16:15 to 17:45

Exercise groups: Starting next week 28/29th
Wednesday: 14-16
Thursday: 10-12

Sign in

Manuscipt on the webpage

Slides on the webpage

Exercises

Today: Introduction, different topics
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Main problems and intention

Evader/Intruder versus Searcher/Guard

Escaping/Intruding versus Catching/Avoidance

Game, Competition

Different Scenarios: Environment, Facilities, Goal, Model

Discrete, Continuous, Geometry, Combinatorics

Interpretation: Possible Position of the Intruder,
Decontamination, Firefighting
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Theoretical Aspects

Algorithmic track

Computational complexity

Correctness or Failure

Efficiency

Optimality

Prerequisites: Algorithms, Datastructure, Analysis,
Complexity, Computability

Models, Methods, Proof Techniques, Tools

Today Introduction
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Example I: Polygon, Safe an Area, Complexity

Continuous Problem

Complexity Result

NP-hardness

Reduction

Optimal-Closing-Sequence:
Instance: Simple polygon, set of n intruders, set of m doors to be
closed successively time ci , safes area Ai .
Output: Compute the optimal sequence of doors that has to be
closed for maximizing the are the area safed.
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Reduction: Subset-Sum with treshhold

Subset-Sum:
Instance: n integer numbers a1, a2, . . . , an, integer treshhold t
Output: Sum of a subset of a1, a2, . . . , an as close as possible to t,
not exceeding t.

Reduction to Optimal-Closing-Sequence

Construct Instance in polynomial time

Solution for Optimal-Closing-Sequence ⇔
Solution for Subset-Sum

Elmar Langetepe Theoretical Aspects of Intruder Search



Reduction: Subset-Sum with treshhold

Circle radius r , center s, intruder start at s

Chords of length ai , polygonal chain: Ai ,Bi ,C
′
i ,Di

Door di safes Area Ai = hai
4

Speed v(t + 0.5) = r for every Intruder

Choose r so that vt < xi =
√

r2 −
(
ai
2

)2

Substituting v by r
(t+0.5) :

(ai
2

)2
<

(
1− t2

(t + 0.5)2

)
r2
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Reduction: Subset-Sum with treshhold

ai
2

Ai
Bi

Ci

Di

s

r

Ai+1

ai+1
2

di√

r2 −
(
ai
2

)2
= xi

C ′i
h

h

Reach C ′i after t + 0.5 steps, do not reach Bi after t steps.
Maximize!
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Reduction: Subset-Sum with treshhold

Theorem 1: Computing an optimal-enclosement-sequence is
NP-hard.

Proof: Reduction from Subset-Sum, Equivalence!
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Example II: Grid Graph

Discrete Problem

Correctness/Failure

Structural Properties

Evader-Enclosement in Grid-Graphs

Instance: A rectangular grid, a start vertex s of the evader and k
protecting guards per time step.
Output: Compute an efficient protection strategy that encloses
the evader (and finally find the evader).

A Two Player Game!
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Example II: Grid Graph, k = 2

Evader moves (4Neighborship), Guards will be placed

s

k = 2

Example Applet! Enclosing the Evader first!
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Example II: Grid Graph, k = 1

Lemma 2: Catching an evader in a grid world by setting k = 1
blocking cells after each movement of the evader cannot succeed
in general.

s

1

2

D1 D4

Step l: rl blocked cells in Dl+1,Dl+2, . . .
Bl ⊆ Dl burning cells in Dl
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Example II: Grid Graph, k = 1

Lemma 2: Catching an evader in a grid world by setting k = 1
blocking cells after each movement of the evader cannot succeed
in general.
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Step l: rl blocked cells in Dl+1,Dl+2, . . .
Bl ⊆ Dl burning cells in Dl
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Example II: Grid Graph, k = 1

Lemma 2: Catching an evader in a grid world by setting k = 1
blocking cells after each movement of the evader cannot succeed
in general.

Show Bl ≥ 1 + rl by induction

Ind. base: l = 0, r0 = 0 B0 = 1

Ind. step: Holds for l ≥ 0, x ≤ rl blocked cells in Dl+1

Move of the evader: B ′l+1 = 1 + rl − x + 1

Block of the guard in Dl1 : l1 ≤ l + 1
⇒ rl+1 = rl − x , Bl+1 ≥ 1 + rl+1

Block of the guard in Dl1 : l1 > l + 1
⇒ rl+1 = rl − x + 1, Bl+1 ≥ 1 + rl+1
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Example II: Grid Graph, k = 2

Lemma 3: For k = 2 there is a successful enclosement strategy,
that encloses the evader after 8 steps. After 9 additional steps, the
evader will be found.
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Example II: Grid Graph, k = 2

Firefigthing interpretation! Outside the fire!

Lemma 3: For the outbreak of a fire on a single source in a grid
and the usage of two firefighters per time step any successul
strategy encloses an area of at least 18 burning vertices. This
bound is tight.

L = {(x , y)||x | ≤ l and |y | ≤ l} and 0 ≤ t ≤ T

bv ,t =

{
1 : vertex v ∈ L burns before or at time t
0 : otherwise

dv ,t =

{
1 : vertex v ∈ L is defended before or at time t
0 : otherwise

Elmar Langetepe Theoretical Aspects of Intruder Search



Example II: Grid Graph, k = 2

Firefigthing interpretation! Outside the fire!

Lemma 3: For the outbreak of a fire on a single source in a grid
and the usage of two firefighters per time step any successul
strategy encloses an area of at least 18 burning vertices. This
bound is tight.

L = {(x , y)||x | ≤ l and |y | ≤ l} and 0 ≤ t ≤ T

bv ,t =

{
1 : vertex v ∈ L burns before or at time t
0 : otherwise

dv ,t =

{
1 : vertex v ∈ L is defended before or at time t
0 : otherwise

Elmar Langetepe Theoretical Aspects of Intruder Search



Example II: Grid Graph, k = 2

Firefigthing interpretation! Outside the fire!

Lemma 3: For the outbreak of a fire on a single source in a grid
and the usage of two firefighters per time step any successul
strategy encloses an area of at least 18 burning vertices. This
bound is tight.

L = {(x , y)||x | ≤ l and |y | ≤ l} and 0 ≤ t ≤ T

bv ,t =

{
1 : vertex v ∈ L burns before or at time t
0 : otherwise

dv ,t =

{
1 : vertex v ∈ L is defended before or at time t
0 : otherwise

Elmar Langetepe Theoretical Aspects of Intruder Search



Example II: Grid Graph, k = 2

Firefigthing interpretation! Outside the fire!

Lemma 3: For the outbreak of a fire on a single source in a grid
and the usage of two firefighters per time step any successul
strategy encloses an area of at least 18 burning vertices. This
bound is tight.

L = {(x , y)||x | ≤ l and |y | ≤ l} and 0 ≤ t ≤ T

bv ,t =

{
1 : vertex v ∈ L burns before or at time t
0 : otherwise

dv ,t =

{
1 : vertex v ∈ L is defended before or at time t
0 : otherwise

Elmar Langetepe Theoretical Aspects of Intruder Search



Example II: Grid Graph, k = 2

Firefigthing interpretation! Integer LP for l ≤ 8, T ≤ 9

Min
∑

v∈L bv ,T

bv ,t + dv ,t − bw ,t−1 ≥ 0 : ∀v ∈ L, v ∈ N(w), 1 ≤ t ≤ T

bv ,t + dv ,t ≤ 1 : ∀v ∈ L, 1 ≤ t ≤ T

bv ,t − bv ,t−1 ≥ 0 : ∀v ∈ L, 1 ≤ t ≤ T

dv ,t − dv ,t−1 ≥ 0 : ∀v ∈ L, 1 ≤ t ≤ T
∑

v∈L(dv ,t − dv ,t−1) ≥ 2 : ∀1 ≤ t ≤ T

bv ,0 = 1 : v ∈ L is the origin (0, 0)

bv ,0 = 0 : v ∈ L is not the origin (0, 0)

dv ,0 = 0 : ∀v ∈ L

dv ,t , bv ,t ∈ {0, 1} : ∀v ∈ L, 1 ≤ t ≤ T
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Example II: Grid Graph, k = 2

Lemma 4: For the outbreak of a fire on a single source in a grid
and the usage of two firefighters per time step any successul
strategy encloses an area of at least 18 burning vertices. This
bound is tight.

Optimal solution by LP solver:
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Example III: Continuous Firefigthing

Geometric Firefigther Problem
Instance: A circle with center C of radius A that grows with unit
speed. An agent who builds a firebreak with speed v > 1
Output: Compute a strategy that finally fully enclose the
spreading fire.

A circular strategy!
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Example III: Continuous Firefigthing

Lemma 5: Enclosing a fire of extension A with a single circular
loop around the source of the fire is possible, if and only if the
speed v of the firefigther is larger than 2π.

Proof:

Choose p = (A + x , 0) away from the fire

Loop around origin: 2π(A+x)
v time

Circle expands 2π(A+x)
v , smaller than x?

Equivalent to 2πA
x + 2π ≤ v

If and only if v > 2π

GeoGebra Simulation
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Example IV: Firefigthing Grid-World Simulation

Discrete Firefigther Problem
Instance: Grid contamination of size B, spreads 4Neighborship
after n time steps. Agent cleans a cell, builds a wall cell and leaves
the cell within b time steps.
Output: Compute a strategy that finally fully enclose the
spreading fire.

Example: n = 30, b = 5, B = 3× 3
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Example IV: Firefigthing Grid-World Simulation

Conjecture 1: For a grid fire thats spreads after n time steps and
an agent that builds a wall within b time steps, the spiral strategy
only succeeds if b < n−1

2 holds.

By simulation!
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