Theoretical Aspects of Intruder Search Course Wintersemester 2015/16 Example Queries for the oral exams

Elmar Langetepe
University of Bonn
February 9th, 2016

General remarks!

- Repetition of the main statements:

Problem Def./Theorem/Lemmata

- Top-Down! Proof ideas and details!
- Explanation on examples! Algorithm/Lower Bound!
- Example Questions!
- Not all details are on the foils!
- First questions Q1/Q2 in detail!
- Walk-Through!

Graphs and Trees

- Model: Grid environment, static variant, moving agent
- Q: How many agents are required?
- Q1: Lower bound, proof in detail
- Q2: Upper bound, proof idea

Q1: Proof detail, Lower Bound $k=1$

Lemma 2: Catching an evader in a grid world by setting $k=1$ blocking cells after each movement of the evader cannot succeed

Step I: r_{l} blocked cells in D_{l+1}, D_{l+2}, \ldots
$B_{l} \subseteq D_{l}$ burning cells in D_{l}

Q1: Proof detail, Lower Bound $k=1$

Lemma 2: Catching an evader in a grid world by setting $k=1$ blocking cells after each movement of the evader cannot succeed

Step I: r_{l} blocked cells in D_{l+1}, D_{l+2}, \ldots
$B_{l} \subseteq D_{l}$ burning cells in D_{l}

Q1: Proof detail, Lower Bound $k=1$

Lemma 2: Catching an evader in a grid world by setting $k=1$ blocking cells after each movement of the evader cannot succeed in general.

Step I: r_{l} blocked cells in D_{l+1}, D_{l+2}, \ldots
$B_{l} \subseteq D_{l}$ burning cells in D_{l}

Q1: Proof detail, Lower Bound $k=1$

Lemma 2: Catching an evader in a grid world by setting $k=1$ blocking cells after each movement of the evader cannot succeed in general.

Step I: r_{l} blocked cells in D_{l+1}, D_{l+2}, \ldots
$B_{l} \subseteq D_{l}$ burning cells in D_{l}

Q1: Proof detail, Lower Bound $k=1$

Lemma 2: Catching an evader in a grid world by setting $k=1$ blocking cells after each movement of the evader cannot succeed in general.

Step I: r_{l} blocked cells in D_{l+1}, D_{l+2}, \ldots
$B_{l} \subseteq D_{l}$ burning cells in D_{l}

Q1: Proof detail, Lower Bound $k=1$

Lemma 2: Catching an evader in a grid world by setting $k=1$ blocking cells after each movement of the evader cannot succeed in general.

Step I: r_{l} blocked cells in D_{l+1}, D_{l+2}, \ldots
$B_{l} \subseteq D_{l}$ burning cells in D_{l}

Q1: Proof detail, Lower Bound $k=1$

Lemma 2: Catching an evader in a grid world by setting $k=1$ blocking cells after each movement of the evader cannot succeed in general.

Step I: r_{l} blocked cells in D_{l+1}, D_{l+2}, \ldots
$B_{l} \subseteq D_{l}$ burning cells in D_{l}

Q1: Proof detail, Lower Bound $k=1$

Lemma 2: Catching an evader in a grid world by setting $k=1$ blocking cells after each movement of the evader cannot succeed in general.

Show $B_{l} \geq 1+r_{l}$ by induction

Q1: Proof detail, Lower Bound $k=1$

Lemma 2: Catching an evader in a grid world by setting $k=1$ blocking cells after each movement of the evader cannot succeed in general.

Show $B_{l} \geq 1+r_{l}$ by induction

- Ind. base: $I=0, r_{0}=0 B_{0}=1$

Q1: Proof detail, Lower Bound $k=1$

Lemma 2: Catching an evader in a grid world by setting $k=1$ blocking cells after each movement of the evader cannot succeed in general.

Show $B_{l} \geq 1+r_{l}$ by induction

- Ind. base: $I=0, r_{0}=0 \quad B_{0}=1$
- Ind. step: Holds for $I \geq 0, x \leq r_{I}$ blocked cells in D_{I+1}

Q1: Proof detail, Lower Bound $k=1$

Lemma 2: Catching an evader in a grid world by setting $k=1$ blocking cells after each movement of the evader cannot succeed in general.

Show $B_{l} \geq 1+r_{l}$ by induction

- Ind. base: $I=0, r_{0}=0 B_{0}=1$
- Ind. step: Holds for $I \geq 0, x \leq r_{l}$ blocked cells in D_{l+1}
- Move of the evader: $B_{l+1}^{\prime}=1+r_{l}-x+1$

Q1: Proof detail, Lower Bound $k=1$

Lemma 2: Catching an evader in a grid world by setting $k=1$ blocking cells after each movement of the evader cannot succeed in general.

Show $B_{I} \geq 1+r_{l}$ by induction

- Ind. base: $I=0, r_{0}=0 B_{0}=1$
- Ind. step: Holds for $I \geq 0, x \leq r_{l}$ blocked cells in D_{I+1}
- Move of the evader: $B_{l+1}^{\prime}=1+r_{l}-x+1$
- Block of the guard in $D_{l_{1}}: l_{1} \leq I+1$

$$
\Rightarrow r_{I+1}=r_{I}-x, B_{I+1} \geq 1+r_{I+1}
$$

Q1: Proof detail, Lower Bound $k=1$

Lemma 2: Catching an evader in a grid world by setting $k=1$ blocking cells after each movement of the evader cannot succeed in general.

Show $B_{I} \geq 1+r_{l}$ by induction

- Ind. base: $I=0, r_{0}=0 \quad B_{0}=1$
- Ind. step: Holds for $I \geq 0, x \leq r_{l}$ blocked cells in D_{I+1}
- Move of the evader: $B_{l+1}^{\prime}=1+r_{l}-x+1$
- Block of the guard in $D_{l_{1}}: l_{1} \leq I+1$

$$
\Rightarrow r_{I+1}=r_{I}-x, B_{I+1} \geq 1+r_{I+1}
$$

- Block of the guard in $D_{l_{1}}: l_{1}>I+1$

$$
\Rightarrow r_{l+1}=r_{l}-x+1, B_{l+1} \geq 1+r_{l+1}
$$

Q2. Proof idea, Upper bound! $k=2$

Lemma 3: For $k=2$ there is a successful enclosement strategy, that encloses the evader after 8 steps. After 9 additional steps, the evader will be found.

Q2. Proof idea, Upper bound! $k=2$

Lemma 3: For $k=2$ there is a successful enclosement strategy, that encloses the evader after 8 steps. After 9 additional steps, the evader will be found.

Q2: Proof idea, Upper bound! $k=2$

Firefigthing interpretation! Outside the fire!
Lemma 3: For the outbreak of a fire on a single source in a grid and the usage of two firefighters per time step any successul strategy encloses an area of at least 18 burning vertices. This bound is tight.

Q2: Proof idea, Upper bound! $k=2$

Firefigthing interpretation! Outside the fire!
Lemma 3: For the outbreak of a fire on a single source in a grid and the usage of two firefighters per time step any successul strategy encloses an area of at least 18 burning vertices. This bound is tight.

- $L=\{(x, y)| | x \mid \leq I$ and $|y| \leq I\}$ and $0 \leq t \leq T$

Q2: Proof idea, Upper bound! $k=2$

Firefigthing interpretation! Outside the fire!
Lemma 3: For the outbreak of a fire on a single source in a grid and the usage of two firefighters per time step any successul strategy encloses an area of at least 18 burning vertices. This bound is tight.

- $L=\{(x, y)| | x \mid \leq I$ and $|y| \leq I\}$ and $0 \leq t \leq T$
- $b_{v, t}=\left\{\begin{array}{lll}1 & : & \text { vertex } v \in L \text { burns before or at time } t \\ 0 & : & \text { otherwise }\end{array}\right.$

Q2: Proof idea, Upper bound! $k=2$

Firefigthing interpretation! Outside the fire!
Lemma 3: For the outbreak of a fire on a single source in a grid and the usage of two firefighters per time step any successul strategy encloses an area of at least 18 burning vertices. This bound is tight.

- $L=\{(x, y)| | x \mid \leq I$ and $|y| \leq I\}$ and $0 \leq t \leq T$
- $b_{v, t}=\left\{\begin{array}{lll}1 & : & \text { vertex } v \in L \text { burns before or at time } t \\ 0 & : & \text { otherwise }\end{array}\right.$
- $d_{v, t}=\left\{\begin{array}{lll}1 & : & \text { vertex } v \in L \text { is defended before or at time } t \\ 0 & : & \text { otherwise }\end{array}\right.$

Q2: Proof idea, Upper bound! $k=2$

Firefigthing interpretation! Integer LP for $I \leq 8, T \leq 9$

$$
\begin{aligned}
& \operatorname{Min} \sum_{v \in L} b_{v, T} \\
& b_{v, t}+d_{v, t}-b_{w, t-1} \geq 0 \quad: \quad \forall v \in L, v \in N(w), 1 \leq t \leq T \\
& b_{v, t}+d_{v, t} \leq 1 \quad: \quad \forall v \in L, 1 \leq t \leq T \\
& b_{v, t}-b_{v, t-1} \geq 0 \quad: \forall v \in L, 1 \leq t \leq T \\
& d_{v, t}-d_{v, t-1} \geq 0 \quad: \quad \forall v \in L, 1 \leq t \leq T \\
& \sum_{v \in L}\left(d_{v, t}-d_{v, t-1}\right) \geq 2: \forall 1 \leq t \leq T \\
& b_{v, 0}=1 \quad: \quad v \in L \text { is the origin }(0,0) \\
& b_{v, 0}=0 \quad: v \in L \text { is not the origin }(0,0) \\
& d_{v, 0}=0 \quad: \quad \forall v \in L \\
& d_{v, t}, b_{v, t} \in\{0,1\} \quad: \quad \forall v \in L, 1 \leq t \leq T
\end{aligned}
$$

Graphs and Trees

- Same Model: static variant, moving agent, general graph
- How many agents are required?
- Q: Complexity of the problem?
- Q3: Explain the NP-hardness, present reduction in detail
- Q: Polynomial time in some cases?
- Q: Special graphs?
- Q: Greedy approximation for trees: Factor and proof!
- Q: Dynamic programming approach for trees! Explain!

Q3: Static general Graph, Reduction detail: k-Clique

Theorem 10: Firefighter decision problem in graphs: NP-hard.

k-Clique and $k^{\prime}=k+\left(\frac{k}{2}\right)+1$ protected vertices

- Static: Approximation Greedy, Dynamic Programming (exact)
- Q4: Advantage for trees? Dynammic Programming! Idea!

Dynamic configuration, structure!

1. Place a team of p guards on a vertex.
2. Move a team of m guards along an edge.
(3. Remove a team of q guards from a vertex)

- Contiguous search (1.+2.) number: $\operatorname{cs}(T) \leq k$
- Theorem 17: Monotone contiguous strategy with all $\operatorname{cs}(T)$ agents that starts in a single vertex.
- Corollary 33: Tree T exists with $c s(T) \leq 2 s(T)-2$.
- Q5 Definition: Progr. connected crusades, frontier at most k Q6 Proof idea: Progr. Conn. Crusades frontier k, T and T^{\prime}
- Q7 Rule 3. What is the difference? Jumping! $\mathrm{cs}(T)$ vs. $s(T)$

Dynamic configuration, trees, strategy

- Message sending algorithm! Q8 Explain the idea! Analysis!
- Correct only for unit weights! Q9 Explain the problem!

$$
\begin{aligned}
& \mu\left(v_{3}\right)=\max \left(\lambda_{v_{3}}\left(e_{1}\right), \lambda_{v_{3}}\left(e_{3}\right)+7\right)=12 \\
& \mu\left(v_{5}\right)=\max \left(\lambda_{v_{5}}\left(e_{4}\right), \lambda_{v_{5}}\left(e_{5}\right)+5\right)=10{ }_{10 \cdot \lambda_{v_{7}}}\left(e_{6}\right)=10
\end{aligned}
$$

$$
\text { 8. } \lambda_{v_{3}}\left(e_{1}\right)=7 \quad \text { 3. } \lambda_{v_{5}}\left(e_{6}\right)=1
$$

2. $\lambda_{v_{3}}\left(e_{3}\right)=5 \quad 1 \cdot \lambda_{v_{3}}\left(e_{2}\right)=3$
11. $\lambda_{v_{2}}\left(e_{3}\right)=1012 \cdot \lambda_{v_{1}}\left(e_{2}\right)=12$

Cop and Robber Problems

- Structural properties: Pitfalls, Classification, If-and-only-if! Q10 Explain the concepts/definitions!
- Number of cops required! $c(G)$
- Theorem 41: G max. degree 3, any two adjacent edges are contained in a cycle of length at most 5: $c(G) \leq 3$.
- Theorem 43: For planar graphs: $c(G) \leq 3$
- Q11/12: Explain the proof ideas!

Randomization: Tree, static!

- Greedy approximation: $\frac{1}{2}$, Expetcted: $1-\frac{1}{e}$
- Q13: Explain the idea, sketch the analysis!

Minimize $\sum_{v \in V} x_{v} w_{v}$
so that

$$
x_{r}=0=0
$$

$$
\begin{aligned}
& \sum_{v \leq u} x_{v} \leq 1 \quad: \quad \text { for every leaf } u \\
& \sum_{v \in L_{i}} x_{v} \leq 1 \quad: \quad \text { for every level } L_{i}, i \geq 1
\end{aligned}
$$

$$
x_{v} \in\{0,1\} \quad: \quad \forall v \in V
$$

$$
\operatorname{Pr}\left[y_{v}=1\right]=1-\prod_{i=1}^{k}\left(1-x_{v_{i}}^{F}\right) \geq\left(1-\frac{1}{e}\right) y_{v}^{F} .
$$

Randomization: Search number, random fire

- Minimal number k such that proportional part can be safed
- $s_{k}(G) \geq \epsilon: \frac{1}{|V|} \sum_{v \in V} \operatorname{sn}_{k}(G, v) \geq \epsilon|V|$
- Q14: Explain the definitions!
- Theorem 46: Planar graphs,no 3- and 4-cycle: $s_{2}(G) \geq 1 / 22$. Analysis:
- Let X_{2} denote the vertices of degree ≤ 2.
- Let Y_{4} denote the vertices of degree ≥ 4.
- Let X_{3} denote the vertices of degree exactly 3 but with at least one neighbor of degree ≤ 3.
- Let Y_{3} denote the vertices of degree exacly 3 but with all neighbors having degree >3 (degree 3 vertices not in X_{3}).
- Q15: Explain the analysis:

$$
s_{2}(G) \geq \frac{n-2}{n} \cdot \frac{x_{2}+x_{3}}{x_{2}+x_{3}+y_{3}+y_{4}} \geq \frac{n-2}{n} \cdot \frac{x_{2}+x_{3}}{21\left(x_{2}+x_{3}\right)}=\frac{n-2}{21 n}
$$

Geometric Fire Fighting: Polygons/Global Greedy

- Theorem 1: Computing optimal-enclosement-sequence: NP-hard. (Q: Present Reduction!)

Global Greedy! Q16: Explain the prerequisites/the idea!

- Sort remaining jobs b_{j} by $\frac{A_{j}\left(J_{n}\right)}{d_{j}}$, process largest!
(1) b_{j} can be scheduled somewhere in J_{n}. Insert $b_{j}: J_{n+1}$
(2) b_{j} cannot be processed, overlaps with jobs in J_{n}. Find sequence in J_{n} that overlaps:

1. Profits of these jobs smaller than μ times $A_{j}\left(J_{n}\right)$.
2. b_{j} can be scheduled after deletion of the jobs.

Then build J_{n+1} with b_{j}. Deleted jobs vanish forever!
(3) No such sequence exists in J_{n}. Reject b_{j} !

Geometric Fire Fighting: Global Greedy

Q16 Explain the analysis in detail!

$$
\begin{align*}
\left|J_{\text {opt }}\right| & \leq J_{m}(\text { blue })+J_{m}(\text { green })+J_{m}(\text { grey }) \tag{1}\\
& \leq\left(2+\frac{2}{\mu}\right)\left(J_{m}(\text { green })+J_{m}(\text { grey })\right) \tag{2}\\
& \leq \frac{2(\mu+1)}{\mu}\left(J_{m}(\text { green })+\frac{\mu}{1-\mu} J_{m}(\text { green })\right) \tag{3}\\
& \leq \frac{2(\mu+1)}{\mu} \frac{1}{1-\mu} J_{m}(\text { green }) \tag{4}\\
& \leq 2 \frac{\mu+1}{\mu(1-\mu)} J_{m}(\text { green }) \leq 2 \frac{\mu+1}{\mu(1-\mu)}\left|J_{m}\right| \tag{5}
\end{align*}
$$

Explain Inequalities: Grey vs. Green! (3)
Paying scheme: Blue vs. Grey and Green (2)!

Geometric Fire Fighting: Global Greedy

Theorem 55: Geometric firefighter problem inside a simple polygon with non-intersecting barriers, approximation algorithms saves at least $\frac{1}{6+4 \sqrt{2}}=\frac{3}{2}-\sqrt{2} \approx 0.086$ times area of the optimal solution.

Q17 Example/Problem with intersecting barriers! Explain!

Geometric Fire Fighting: Plane

Spiral strategy is reasonable!
Q18 Explain the relationship: Speed/Spiral!

Geometric Fire Fighting: Plane limit speed!

Theorem 56: Speed $v>v_{l} \approx 2.6145$ success of spiralling strat.

Q19 Explain the Strategy Idea!

Geometric Fire Fighting: Plane limit speed!

Q19 Explain the Strategy Idea!

Proof of lower speed bound: suppose $v \leq 1.618$

Theorem 58: Successf. spiralling strategy must be of speed $v>\frac{1+\sqrt{5}}{2} \approx 1.618$.
Q19 Explain the Lower Bound constr. in detail!

By induction:
On reaching p_{i}, interval of length A below p_{i-1} is on fire.
(Induction base!)

Proof of lower speed bound: suppose $v \leq 1.618$

Theorem 58: Successf. spiralling strategy must be of speed $v>\frac{1+\sqrt{5}}{2} \approx 1.618$.
Q19 Explain the Lower Bound constr. in detail!

Inductive Step:
After arriving p_{i+1} fire moves at least $x+A$

Proof of lower speed bound: suppose $v \leq 1.618$

Theorem 58: Successf. spiralling strategy must be of speed $v>\frac{1+\sqrt{5}}{2} \approx 1.618$.
Q19 Explain the Lower Bound constr. in detail!

Inductive Step:
After arriving p_{i+1} fire moves at least $x+A$

Proof of lower speed bound: suppose $v \leq 1.618$

Theorem 58: Successf. spiralling strategy must be of speed $v>\frac{1+\sqrt{5}}{2} \approx 1.618$.
Q19 Explain the Lower Bound constr. in detail!

On reaching p_{i+1} :

1. $A+\frac{x}{v} \leq p_{i} \leq x$ and
2. $A+\frac{x}{v}+\frac{y}{v} \leq p_{i+1} \leq y$
$\Longrightarrow \frac{1}{v(v-1)} x+\frac{1}{v-1} A \leq \frac{y}{v}$
$\Longrightarrow x+A \leq \frac{y}{v}$
from $v^{2}-v \leq 1$

Alternative Strategy FollowFire: Free String Wrapping!

Theorem 59: Strategy FF contains the fire if $v>v_{c} \approx 2.6144$. Q20 Explain the idea and sketch the proof!

- $v=5.27(\alpha=1.38)$
- $\log \left(\mathbf{p}_{\mathbf{0}}, \mathbf{p}_{\mathbf{1}}\right), \log \left(\mathbf{p}_{1}, \mathbf{p}_{2}\right)$
- Free string: $F_{1}(I)$:

Wrapping around $\log \left(\mathbf{p}_{\mathbf{0}}, \mathbf{p}_{\mathbf{1}}\right)$

- $v=3.07(\alpha=1.24)$
- Wrapping around $\log \left(\mathbf{p}_{1}, \mathbf{p}_{2}\right)$

Wrapping around wrappings!

Upper bound: Parameterize the free string (Linkage)

Q20 Explain the idea and sketch the proof!
FollowFire Drawing backwards tangents!
Free strings F_{j} / ϕ_{j} parameterized by lenght of starting spirals!

Upper bound: Parameterize the free string (Linkage)

Q20 Explain the idea and sketch the proof!
FollowFire Drawing backwards tangents!
Free strings F_{j} / ϕ_{j} parameterized by lenght of starting spirals!

2. Linkage: Structural Properties

Q20 Explain the idea and sketch the proof!
Parameterized by lenght / of starting spirals!
$L_{j}(I)$ length of the curve! $F_{j}(I)$ (and $\left.\phi_{j}(I)\right)$ length of the free string!

> Lemma 60:
> $L_{j-1}+F_{j}=\cos \alpha L_{j}$

Lemma 61:

$$
\frac{L_{j}^{\prime}}{L_{j-1}^{\prime}}=\frac{\dot{F}_{j}}{F_{j-1}}
$$

Upper bound by FollowFire

Theorem 59: FollowFire strategy is successful if $v>v_{c} \approx 2.6144$ Q21 Explain the meaning of these steps!

When gets the free string to zero?
(1) Parameterize free strings for coil j (Linkage)
(2) Structural properties
(3) Successive interacting differential equations
(9) Inserting end of parameter interval
(5) Coefficients of power series
(0) Ph. Flajolet: Singularities
(0) Pringsheim's Theorem and Cauchy's Residue Theorem

General lower bounds

Theorem 68: For $v>2$ there successful general strategy.
For $v \leq 1$ there is no such general strategy.
Q22 Present the proofs!

Escape path

Q23 Give the precise definition Q24 Explain the proof for Theorem 69-71

B

Escape path: Besicovitch triangles!

Theorem 72: There are examples where a Zig-Zag path is better than the diameter!
Q25 Sketch the construction, give the precise result!
i)

Alternative cost measure: List searching!

Q26 Present the idea and the definition! Proof Theorem 73!

(i) $s_{1} s_{2} s_{3} s_{4} s_{5} s_{6} s_{7}$

(ii) $s_{1} s_{2} s_{3} s_{4} s_{5} s_{6} s_{7}$

(iii) $s_{1} s_{2} s_{3} s_{4} s_{5} s_{6} s_{7}$

(iv) $f_{1} f_{2} f_{3} f_{4} f_{5} f_{6} f_{7}$

Theorem 73: For a set of sorted distances F_{m} (i.e. $f_{1} \geq f_{2} \geq \cdots \geq f_{m}$) we have $\operatorname{maxTrav}\left(F_{m}\right):=\min _{i} i \cdot f_{i}$.

Alternative cost measure: List searching!

Theorem 74/75: The hyperbolic traversal algorithm solves problem for any list F_{m} with maximum traversal cost bounded by
$D \cdot\left(\max \operatorname{Trav}\left(F_{m}\right) \ln \left(\min \left(m, \max \operatorname{Trav}\left(F_{m}\right)\right)\right)\right.$ for some constant D.
There is a lower bound of $d \cdot C \ln \min (C, m)$ with $\max \operatorname{Trav}\left(F_{m}(C, A)\right) \leq C$ for some constant d and arbitrarily large values C. Q27 Proof idea!

Alternative cost measure: Certificate path!

Q28 Present the idea and the definition for polygons!

Alternative cost measure: Certificate path!

Q29 Explain the extreme cases!

Alternative cost measure: Certificate path!

Sketch the proof for online approximation!
Theorem 76: There is a spiral strategy for any unknown starting point s in any unknown environment P that approximates the certificate for s and P within a ratio of 3.31864 .

$$
\begin{equation*}
f(\gamma)=\frac{\frac{a}{\cos \beta} \cdot e^{\phi \cot \beta}}{a \cdot e^{(\phi-\gamma) \cot \beta}(1+\gamma)}=\frac{e^{\gamma \cot \beta}}{\cos \beta(1+\gamma)} \text { for } \gamma \in[0,2 \pi] \tag{6}
\end{equation*}
$$

