Theoretical Aspects of Intruder Search

Course Wintersemester 2015/16 **Example** Queries for the oral exams

Elmar Langetepe

University of Bonn

February 9th, 2016

Elmar Langetepe Theoretical Aspects of Intruder Search

- Repetition of the main statements: Problem Def./Theorem/Lemmata
- Top-Down! Proof ideas and details!
- Explanation on examples! Algorithm/Lower Bound!
- Example Questions!
- Not all details are on the foils!
- First questions Q1/Q2 in detail!
- Walk-Through!

Graphs and Trees

- Model: Grid environment, static variant, moving agent
- Q: How many agents are required?
- Q1: Lower bound, proof in detail
- Q2: Upper bound, proof idea

Elmar Langetepe Theoretical Aspects of Intruder Search

Lemma 2: Catching an evader in a grid world by setting k = 1 blocking cells after each movement of the evader cannot succeed in general.

Lemma 2: Catching an evader in a grid world by setting k = 1 blocking cells after each movement of the evader cannot succeed in general.

Lemma 2: Catching an evader in a grid world by setting k = 1 blocking cells after each movement of the evader cannot succeed in general.

Lemma 2: Catching an evader in a grid world by setting k = 1 blocking cells after each movement of the evader cannot succeed in general.

Lemma 2: Catching an evader in a grid world by setting k = 1 blocking cells after each movement of the evader cannot succeed in general.

Lemma 2: Catching an evader in a grid world by setting k = 1 blocking cells after each movement of the evader cannot succeed in general.

Lemma 2: Catching an evader in a grid world by setting k = 1 blocking cells after each movement of the evader cannot succeed in general.

Show $B_l \ge 1 + r_l$ by induction

• Ind. base: l = 0, $r_0 = 0$ $B_0 = 1$

- Ind. base: l = 0, $r_0 = 0$ $B_0 = 1$
- Ind. step: Holds for $l \ge 0$, $x \le r_l$ blocked cells in D_{l+1}

- Ind. base: l = 0, $r_0 = 0$ $B_0 = 1$
- Ind. step: Holds for $l \ge 0$, $x \le r_l$ blocked cells in D_{l+1}
- Move of the evader: $B'_{l+1} = 1 + r_l x + 1$

- Ind. base: l = 0, $r_0 = 0$ $B_0 = 1$
- Ind. step: Holds for $l \ge 0$, $x \le r_l$ blocked cells in D_{l+1}
- Move of the evader: $B'_{l+1} = 1 + r_l x + 1$
- Block of the guard in D_{l_1} : $l_1 \le l+1$ $\Rightarrow r_{l+1} = r_l - x$, $B_{l+1} \ge 1 + r_{l+1}$

- Ind. base: l = 0, $r_0 = 0$ $B_0 = 1$
- Ind. step: Holds for $l \ge 0$, $x \le r_l$ blocked cells in D_{l+1}
- Move of the evader: $B'_{l+1} = 1 + r_l x + 1$
- Block of the guard in D_{l_1} : $l_1 \le l+1$ $\Rightarrow r_{l+1} = r_l - x$, $B_{l+1} \ge 1 + r_{l+1}$
- Block of the guard in D_{l_1} : $l_1 > l + 1$ $\Rightarrow r_{l+1} = r_l - x + 1$, $B_{l+1} \ge 1 + r_{l+1}$

Q2. Proof idea, Upper bound! k = 2

Lemma 3: For k = 2 there is a successful enclosement strategy, that encloses the evader after 8 steps. After 9 additional steps, the evader will be found.

Q2. Proof idea, Upper bound! k = 2

Lemma 3: For k = 2 there is a successful enclosement strategy, that encloses the evader after 8 steps. After 9 additional steps, the evader will be found.

•
$$L = \{(x, y) | |x| \le l \text{ and } |y| \le l\}$$
 and $0 \le t \le T$

•
$$L = \{(x, y) | |x| \le l \text{ and } |y| \le l\}$$
 and $0 \le t \le T$
• $b_{v,t} = \begin{cases} 1 & : & \text{vertex } v \in L \text{ burns before or at time } t \\ 0 & : & \text{otherwise} \end{cases}$

•
$$L = \{(x, y) | |x| \le l \text{ and } |y| \le l\}$$
 and $0 \le t \le T$
• $b_{v,t} = \begin{cases} 1 & : & \text{vertex } v \in L \text{ burns before or at time } t \\ 0 & : & \text{otherwise} \end{cases}$
• $d_{v,t} = \begin{cases} 1 & : & \text{vertex } v \in L \text{ is defended before or at time } t \\ 0 & : & \text{otherwise} \end{cases}$

Q2: Proof idea, Upper bound! k = 2

Firefigthing interpretation! Integer LP for $I \leq 8$, $T \leq 9$

Min $\sum_{v \in L} b_{v,T}$

 $: \forall v \in L, v \in N(w), 1 \leq t \leq T$ $b_{v,t} + d_{v,t} - b_{w,t-1} \geq 0$ $b_{v,t} + d_{v,t} \leq 1$: $\forall v \in L, 1 \leq t \leq T$ $b_{v,t}-b_{v,t-1} \geq 0$: $\forall v \in L, 1 \leq t \leq T$ $d_{v,t} - d_{v,t-1} \geq 0$: $\forall v \in L, 1 \leq t \leq T$ $\sum_{v \in I} (d_{v,t} - d_{v,t-1}) \geq 2$: $\forall 1 < t < T$ $b_{\rm v,0} = 1$: $v \in L$ is the origin (0,0) $b_{v,0} = 0$: $v \in L$ is not the origin (0,0) $d_{v,0} = 0$: $\forall v \in L$ $d_{v,t}, b_{v,t} \in \{0,1\} : \forall v \in L, 1 \le t \le T$

- Same Model: static variant, moving agent, general graph
- How many agents are required?
- Q: Complexity of the problem?
- Q3: Explain the NP-hardness, present reduction in detail
- Q: Polynomial time in some cases?
 - Q: Special graphs?
 - Q: Greedy approximation for trees: Factor and proof!
 - Q: Dynamic programming approach for trees! Explain!

Q3: Static general Graph, Reduction detail: k-Clique

Theorem 10: Firefighter decision problem in graphs: NP-hard.

Trees, simple algorithms

- Static: Approximation Greedy, Dynamic Programming (exact)
- Q4: Advantage for trees? Dynammic Programming! Idea!

Dynamic configuration, structure!

- 1. Place a team of p guards on a vertex.
- 2. Move a team of m guards along an edge.
- (3. Remove a team of q guards from a vertex)
- Contiguous search (1.+2.) number: $cs(T) \le k$
- Theorem 17: Monotone contiguous strategy with all cs(T) agents that starts in a single vertex.
- Corollary 33: Tree T exists with $cs(T) \leq 2s(T) 2$.
- Q5 Definition: Progr. connected crusades, frontier at most k
 Q6 Proof idea: Progr. Conn. Crusades frontier k, T and T'
- Q7 Rule 3. What is the difference? Jumping! cs(T) vs. s(T)

Dynamic configuration, trees, strategy

 Message sending algorithm! Q8 Explain the idea! Analysis!
 Correct only for unit weights! Q9 Explain the problem!
 μ(v₃) = max(λ_{v₃}(e₁), λ<sub>v₃(e₃) + 7) = 12
 μ(v₅) = max(λ_{v₅}(e₄), λ<sub>v₅(e₅) + 5) = 10 10.λ_{v₇}(e₆) = 10
</sub></sub>

Cop and Robber Problems

- Structural properties: Pitfalls, Classification, If-and-only-if! Q10 Explain the concepts/definitions!
- Number of cops required! c(G)
- Theorem 41: G max. degree 3, any two adjacent edges are contained in a cycle of length at most 5: c(G) ≤ 3.
- Theorem 43: For planar graphs: $c(G) \leq 3$
- Q11/12: Explain the proof ideas!

Randomization: Tree, static!

- Greedy approximation: $\frac{1}{2}$, Expetcted: $1 \frac{1}{e}$
- Q13: Explain the idea, sketch the analysis!

Minimize
$$\sum_{v \in V} x_v w_v$$

so that $x_r = 0 = 0$

$$\begin{split} \sum_{\substack{v \leq u \\ v \leq L_i}} x_v &\leq 1 & : \quad \text{for every leaf } u \\ \sum_{\substack{v \in L_i \\ x_v \\ v \in \{0,1\}}} x_v &\leq 1 & : \quad \text{for every level } L_i, i \geq 1 \\ x_v &\in \{0,1\} & : \quad \forall v \in V \\ \mathbf{Pr}[y_v = 1] = 1 - \prod_{i=1}^k (1 - x_{v_i}^F) \geq \left(1 - \frac{1}{e}\right) y_v^F \,. \end{split}$$

DQ P

Randomization: Search number, random fire

• Minimal number k such that proportional part can be safed

•
$$s_k(G) \ge \epsilon$$
: $\frac{1}{|V|} \sum_{v \in V} \operatorname{sn}_k(G, v) \ge \epsilon |V|$

- Q14: Explain the definitions!
- Theorem 46: Planar graphs, no 3- and 4-cycle: $s_2(G) \ge 1/22$. Analysis:
 - Let X_2 denote the vertices of degree ≤ 2 .
 - Let Y_4 denote the vertices of degree ≥ 4 .
 - Let X₃ denote the vertices of degree exactly 3 but with at least one neighbor of degree ≤ 3.
 - Let Y₃ denote the vertices of degree exacly 3 but with all neighbors having degree > 3 (degree 3 vertices not in X₃).
- Q15: Explain the analysis:

$$s_2(G) \geq \frac{n-2}{n} \cdot \frac{x_2 + x_3}{x_2 + x_3 + y_3 + y_4} \geq \frac{n-2}{n} \cdot \frac{x_2 + x_3}{21(x_2 + x_3)} = \frac{n-2}{21n}$$

Geometric Fire Fighting: Polygons/Global Greedy

• Theorem 1: Computing optimal-enclosement-sequence: NP-hard. (Q: Present Reduction!)

Global Greedy! Q16: Explain the prerequisites/the idea!

- Sort remaining jobs b_j by $\frac{A_j(J_n)}{d_j}$, process largest!
- b_j can be scheduled somewhere in J_n . Insert b_j : J_{n+1}
- b_j cannot be processed, overlaps with jobs in J_n.
 Find sequence in J_n that overlaps:

1. Profits of these jobs smaller than μ times $A_j(J_n)$.

2. b_i can be scheduled after deletion of the jobs.

Then build J_{n+1} with b_j . Deleted jobs vanish forever!

• No such sequence exists in J_n . Reject b_j !

Q16 Explain the analysis in detail!

$$|J_{opt}| \leq J_m(blue) + J_m(green) + J_m(grey)$$
 (1)

$$\leq \left(2+\frac{2}{\mu}\right)\left(J_m(green)+J_m(grey)\right)$$
 (2)

$$\leq \frac{2(\mu+1)}{\mu}(J_m(green) + \frac{\mu}{1-\mu}J_m(green))$$
 (3)

$$\leq \frac{2(\mu+1)}{\mu} \frac{1}{1-\mu} J_m(green) \tag{4}$$

$$\leq 2rac{\mu+1}{\mu(1-\mu)}J_m(green) \leq 2rac{\mu+1}{\mu(1-\mu)}|J_m|.$$
 (5)

Explain Inequalities: Grey vs. Green! (3) Paying scheme: Blue vs. Grey and Green (2) !

Geometric Fire Fighting: Global Greedy

Theorem 55: Geometric firefighter problem inside a simple polygon with non-intersecting barriers, approximation algorithms saves at least $\frac{1}{6+4\sqrt{2}} = \frac{3}{2} - \sqrt{2} \approx 0.086$ times area of the optimal solution.

Q17 Example/Problem with intersecting barriers! Explain!

Elmar Langetepe Theoretical Aspects of Intruder Search

Geometric Fire Fighting: Plane

Geometric Fire Fighting: Plane limit speed!

Q19 Explain the Strategy Idea!

Geometric Fire Fighting: Plane limit speed!

Elmar Langetepe Theoretical Aspects of Intruder Search

Theorem 58: Successf. spiralling strategy must be of speed $v > \frac{1+\sqrt{5}}{2} \approx 1.618$. Q19 Explain the Lower Bound constr. in detail!

Theorem 58: Successf. spiralling strategy must be of speed $v > \frac{1+\sqrt{5}}{2} \approx 1.618$. Q19 Explain the Lower Bound constr. in detail!

Theorem 58: Successf. spiralling strategy must be of speed $v > \frac{1+\sqrt{5}}{2} \approx 1.618$. Q19 Explain the Lower Bound constr. in detail!

Theorem 58: Successf. spiralling strategy must be of speed $v > \frac{1+\sqrt{5}}{2} \approx 1.618$. Q19 Explain the Lower Bound constr. in detail!

On reaching p_{i+1} : 1. $A + \frac{x}{v} \le p_i \le x$ and 2. $A + \frac{x}{v} + \frac{y}{v} \le p_{i+1} \le y$ $\implies \frac{1}{v(v-1)}x + \frac{1}{v-1}A \le \frac{y}{v}$ $\implies x + A \le \frac{y}{v}$

from
$$v^2 - v \leq 1$$

Alternative Strategy FollowFire: Free String Wrapping!

Theorem 59: Strategy FF contains the fire if $v > v_c \approx 2.6144$. Q20 Explain the idea and sketch the proof!

•
$$v = 5.27 \ (\alpha = 1.38)$$

- $\mathsf{Log}(\mathsf{p}_0,\mathsf{p}_1)$, $\mathsf{Log}(\mathsf{p}_1,\mathsf{p}_2)$
- Free string: F₁(I):
 Wrapping around Log(p₀, p₁)

• $v = 3.07 \ (\alpha = 1.24)$

• Wrapping around Log(p₁, p₂)

Upper bound: Parameterize the free string (Linkage)

Q20 Explain the idea and sketch the proof! FollowFire Drawing backwards tangents!

Free strings F_j/ϕ_j parameterized by lenght of starting spirals!

Upper bound: Parameterize the free string (Linkage)

Q20 Explain the idea and sketch the proof! FollowFire Drawing backwards tangents!

Free strings F_j/ϕ_j parameterized by lenght of starting spirals!

Elmar Langetepe Theoretical Aspects of Intruder Search

2. Linkage: Structural Properties

Q20 Explain the idea and sketch the proof! Parameterized by lenght / of starting spirals!

 $L_j(I)$ length of the curve! $F_j(I)$ (and $\phi_j(I)$) length of the free string!

 L_{i-1}

 F_{i-1}

Lemma 60: $L_{j-1} + F_j = \cos \alpha L_j$

Lemma 61: $\frac{L'_j}{L'_{j-1}} = \frac{F_j}{F_{j-1}}$ Theorem 59: FollowFire strategy is successful if $v > v_c \approx 2.6144$ Q21 Explain the meaning of these steps!

When gets the free string to zero?

- Parameterize free strings for coil j (Linkage)
- Structural properties
- Successive interacting differential equations
- Inserting end of parameter interval
- Ocception Coefficients of power series
- Ph. Flajolet: Singularities
- Pringsheim's Theorem and Cauchy's Residue Theorem

General lower bounds

Theorem 68: For v > 2 there successful general strategy. For $v \le 1$ there is no such general strategy. Q22 Present the proofs!

Q23 Give the precise definition Q24 Explain the proof for Theorem 69-71

Escape path: Besicovitch triangles!

Theorem 72: There are examples where a Zig-Zag path is better than the diameter!

Q25 Sketch the construction, give the precise result!

Alternative cost measure: List searching!

Theorem 73: For a set of sorted distances F_m (i.e. $f_1 \ge f_2 \ge \cdots \ge f_m$) we have maxTrav $(F_m) := \min_i i \cdot f_i$.

Alternative cost measure: List searching!

Theorem 74/75: The hyperbolic traversal algorithm solves problem for any list F_m with maximum traversal cost bounded by $D \cdot (\max \operatorname{Trav}(F_m) \ln(\min(m, \max \operatorname{Trav}(F_m)))$ for some constant D. There is a lower bound of $d \cdot C \ln \min(C, m)$ with $\max \operatorname{Trav}(F_m(C, A)) \leq C$ for some constant d and arbitrarily large values C. Q27 Proof idea!

Alternative cost measure: Certificate path!

Elmar Langetepe Theoretical Aspects of Intruder Search

Alternative cost measure: Certificate path!

5900

∃ ⊳

Alternative cost measure: Certificate path!

Sketch the proof for online approximation!

Theorem 76: There is a spiral strategy for any unknown starting point s in any unknown environment P that approximates the certificate for s and P within a ratio of 3.31864.

$$f(\gamma) = \frac{\frac{a}{\cos\beta} \cdot e^{\phi \cot\beta}}{a \cdot e^{(\phi-\gamma)\cot\beta}(1+\gamma)} = \frac{e^{\gamma \cot\beta}}{\cos\beta(1+\gamma)} \text{ for } \gamma \in [0, 2\pi] \quad (6)$$

