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Figure 5.14: Proof of Theorem 57.

The running time of the overall last spiral is smaller than 1

cos�m
e2⇡ cot�m . Additionally, moving

to point (1, 0) yields e2⇡ cot�m � 1. For reaching point (1, 0) the fire also has to a distance
arbitrarily close to 1

cos�m
for following the last spiral, this follows from scaling. If �

m

grows,
there will be some �

m

that finally fulfills

1

cos�
m

>
1

cos�
1

✓
1

cos�
m

e2⇡ cot�m + (e2⇡ cot�m � 1)

◆
(5.14)

which gives the conclusion. For example for �
1

⇡ 1.191388 . . . and 1

cos�1
= 2.7 we require

�
m

> 1.4268.

Theorem 56 (Bressan et al. 2008) For any speed v > v
l

⇡ 2.614430844 there is a spiralling
strategy that finally encloses an expanding circle that expands with unit speed.

5.5 A simple lower bound for spiralling strategies

The following results stem from Klein et al. 2015. A barrier building strategy S is called
spiralling if it starts on the boundary of a fire of radius A, and visits the four coordinate half-
axes in counterclockwise order and at increasing distances from the origin.

Now let S be any spiralling strategy of maximum speed v  (1 +
p
5)/2 ⇡ 1.618, the golden

ratio. We can assume that S proceeds at constant speed v. Let p
0

, p
1

, p
2

, . . . denote the points
on the coordinate axes visited, in this order, by S. The following Lemma shows that S cannot
succeed because there is still fire burning outside the barrier on the axis previously visited.

Lemma 57 Let A be the initial fire radius. When S visits point p
i+1

, the interval [p
i

, p
i

+
sign(p

i

)A] on the axis visited before is on fire.

Proof. The proof is by induction on i. Suppose strategy S builds a barrier of length x between
p
0

and p
1

, as shown in Figure 5.14 (i). During this time the fire advances x/v along the positive
X-axis, so that A+ x/v  p

1

 x must hold, or

x

v
� 1

v � 1
A > A;

the last inequality follows from v < 2. Thus, the fire has enough time to move a distance of A
from p

0

downwards along the negative Y -axis.
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Figure 5.15: The race between the fire and the fighter. When the fighter arrives at point p
2

,
having constructed a firebreak from p

0

to p
2

, the fire has expanded along the outer side of the
barrier up to point q. Will the fire fighter be able to contain the fire?

Now let us assume that strategy S builds a barrier of length y between p
i

and p
i+1

, as shown
in Figure 5.14 (ii). By induction, the interval of length A below p

i�1

is on fire. Also, when the
fighter moves on from p

i

, there must be a burning interval of length at least A + x/v on the
positive Y -axis which is not bounded by a barrier from above. This is clear if p

i+1

is the first
point visited on the positive Y -axis, and it follows by induction, otherwise. Thus, we must have
A+ x/v + y/v  p

i+1

 y, hence

y

v
� 1

v � 1
A +

1

v(v � 1)
x > A+ x.

The rightmost inequality follows since v is supposed to be smaller than the golden ratio, which
satisfies X2�X � 1 = 0; hence, v2� v < 1. This shows that the fire has time to crawl along the
barrier from p

i�1

to p
i

, and a distance A to the right, as the fighter moves to p
i+1

, completing
the proof of Theorem 58. 2

Theorem 58 In order to enclose the fire, a spiralling strategy must be of speed

v >
1 +

p
5

2
⇡ 1.618,

the golden ratio.

5.6 An alternative approach: The firefighter curve

In this section we describe an alternative approach and a special strategy for the upper bound
v ⇡ 2.614430844. The result also stems from Klein et al. 2015. We construct a barrier curve
that always keeps as close as possible to the fire. In the beginning this gives a logarithmic spiral
of excentricity ↵ for speed v = 1

cos↵

.

In our case while the fighter keeps building the barrier, the fire is coming after her along the
outside of the barrier, as shown in Figure 5.15. Intuitively, the fighter can only win this race,
and contain the fire, if the last coil of the barrier hits the previous coil. In the example in
Figure 5.16, this happens in the second round if v = 4.1932; but for smaller values of v, more
rounds may be necessary. In this section we prove the following result.
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Figure 5.16: At speed v = 4.1932 the fire will be fully contained by the fire fighter’s barrier in
the second round. Angle ↵ is constant because v cos↵ equals 1, the fire’s expansion speed, by
definition of strategy FF.

Theorem 59 Strategy FF contains the fire if v > v
c

⇡ 2.6144 holds.

5.6.1 The first rounds

Let p be a point on the barrier curve’s first round, as depicted in Figure 5.16, (ii). If ↵ denotes
the angle between the fighter’s velocity vector at p and the ray from 0 through p, the fighter
moves at speed v cos↵ away from 0. This implies v cos↵ = 1, because the fire expands at unit
speed and the fighter stays on its frontier, by definition of strategy FF. Since the fighter is
operating at constant speed v, angle ↵ is constant, and given by ↵ = cos�1(1/v).

Consequently, the first part of the barrier curve, between points p
0

and p
1

shown in Figure 5.17,
(i), is part of a logarithmic spiral of excentricity ↵ centered at 0. In polar coordinates, this
segment can be desribed by (', A · e' cot↵), where ' 2 [0, 2⇡], and A denotes the distance from
the origin to p

0

, i.e., the fire’s intitial radius.

In general, the curve length of a logarithmic spiral of excentricity ↵ between two points at
distance d

1

< d
2

to its center is known to be 1

cos↵

(d
2

� d
1

). Thus, we have for the length l
1

of
the barrier curve from p

0

to p
1

the equation

l
1

=
A

cos(↵)
· (e2⇡ cot(↵) � 1) (5.15)

From point p
1

on, the geodesic shortest path, along which the fire spreads from 0 to the fighter’s
current position, p, is no longer straight. It starts with segment 0p

0

, followed by segment p
0

p,
until, for p = p

2

, segment p
0

p becomes tangent to the barrier curve at p
0

; see Figure 5.17, (ii).
By the same arguments as above, between p

1

and p
2

the barrier curve constructed by FF is also
part of a logarithmic spiral of excentricity ↵, but now centered at p

0

. This spiral segment starts
at p

1

at distance A0 = A(e2⇡ cot↵ � 1) from its center p
0

. Since p
2

and p
1

form an angle ↵ at
p
0

, the distance from p
2

to p
0

equals A0e↵ cot↵. Thus, the curce length from p
1

to p
2

is given by
l0
2

= A

0

cos↵

(e↵ cot↵ � 1) = A

cos↵

(e2⇡ cot↵ � 1)(e↵ cot↵ � 1). Consequently, the overall curve length l
2

from p
0

to p
2

equals

l
2

= l
1

+ l0
2

=
A

cos↵
(e2⇡ cot↵ � 1)e↵ cot↵ (5.16)
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Figure 5.17: The barrier curve starts with two parts of logarithmic spirals of excentricity ↵,
centered at 0 and p

0

, respectively.

Figure 5.18: From point p
2

on the barrier curve results from a wrapping around the already
constructed barrier. The last segment, free string F , of the shortest path from the fire source
to the current barrier point p shrinks, by wrapping, and simultaneously grows by cos↵. The
barrier curve starting from p

2

is no longer a logarithmic spiral. The strategy will be successful
if F shrinks to zero.
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Figure 5.19: Repeatedly constructing backwards tangents may end in 0 or in p
0

. This way, two
types of linkages are defined.

From point p
2

on, the geodesic shortest path from 0 to the fighter’s current position, p, starts
wrapping around the existing spiral part of the curve, beginning at p

0

; see Figure 5.18. The
last segment of this path is tangent to the previous round of the curve. As mentioned in the
Introduction, we shall endeavor to determine its length, F , because the fire will be contained if
and only if F ever attains the value 0.

One could think of this tangent as a string (named the free string) at whose endpoint, p, a pencil
is attached that draws the barrier curve. But unlike an involute, here the string is not normal
to the outer layer. Rather, its extension beyond p forms an angle ↵ with the barrier’s tangent at
p. This causes the string to grow in length by cos↵ for each unit drawn. At the same time, the
inner part of the string gets wrapped around the previous coil of the barrier. It is this interplay
between growing and wrapping that we will investigate below.

One can show that after p
2

the barrier curve is no longer segment of a logarithmic spiral. But
to give a closed form representation for the second round, leave alone for subsequent rounds
recursively constructed, seems to be out of reach.

At the end of this subsection, let us recall the following fact. As the fighter is building the
barrier at speed v = 1/ cos↵, the fire is coming after her at unit speed along the outside of the
barrier, as indicated in Figure 5.15. Thus, each barrier point p is caught by fire twice, once from
the inside, when the fighter passes through p, and a second time from the outside, if the fire is
not stopped before.

5.6.2 Structural properties

In this subsection we assume that the fighter has built quite a few rounds of the barrier curve
without yet containing the fire. That the first two rounds of the curve involve two di↵erent
spiral segments, around 0 and around p

0

, carries over to subsequent layers. The structure of
the curve can be described as follows. Let l

1

and l
2

denote the curve lengths from p
0

to p
1

and p
2

, respectively, as in Equations 5.15 and 5.16. For l 2 [0, l
1

] let F
0

(l) denote the segment
connecting 0 to the point of curve length l; see the sketch given in Figure 5.19. At the endpoint
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of F
0

(l) we construct the tangent and extend it until it hits the next layer of the curve, creating
a segment F

1

(l), and so on. This construction gives rise to a “linkage” connecting adjacent
layers of the curve. Each edge of the linkage is turned counterclockwise by ↵ with respect to its
predecessor. The outermost edge of a linkage is the free string mentioned above. As parameter
l increases from 0 to l

1

, edge F
0

(l), and the whole linkage, rotate counterclockwise. While F
0

(0)
equals the line segment from the origin to p

0

, edge F
0

(l
1

) equals segment 0p
1

.

Analogously, let l0 2 [l
1

, l
2

], and let �
0

(l0) denote the segment from p
0

to the point at curve
length l0 from p

1

. This segment can be extended into a linkage in the same way. We observe
that

F
j+1

(l
1

) = �
j+1

(l
1

) (5.17)

F
j+1

(0) = �
j

(l
2

) (5.18)

hold (but initially, we have F
0

(l) = A+ cos(↵) l and �
0

(l0) = cos(↵) l0, so that F
0

(l
1

) 6= �
0

(l
1

)).
Clearly, each point on the curve can be reached by a unique linkage, as tangents can be con-
structed backwards. We refer to the two types of linkages by F -type and �-type. As Figure 5.19
illustrates, points of the same linkage type form alternating intervals along the barrier curve.
If p’s linkage is of F -type then p is uniquely determined by the index j � 0 and parameter
l 2 [0, l

1

] such that p is the outer endpoint of edge F
j

(l).

Now we will derive two structural properties of F -linkages on which our analysis will be based;
analogous facts hold for �-linkages, too. To this end, let L

j

(l) denote the length of the barrier
curve from p

0

to the outer endpoint of edge F
j

(l), and let F
j

(l) also denote its length of edge
F
j

(l).

Lemma 60 We have L
j�1

(l) + F
j

(l) = cos↵L
j

(l).

Proof. Both, fire and fire fighter, reach the endpoint of F
j

(l) at the same time. The fire has
travelled a geodesic distance of L

j�1

(l) + F
j

(l) at unit speed, the fighter a distance of L
j

(l) at
speed 1/ cos↵. 2

Equivalently, one could argue that the free string grows by cos↵ for each barrier unit built; thus,
the total string length (wrapped plus free) of L

j�1

(l) + F
j

(l) must be equal to cos↵L
j

(l).

The second property is related to the wrapping of the free string. Intuitively, it says that if we
turn an F -linkage, the speed of each edge’s endpoint is proportional to its length (with the same
proportionality constant for all j depending on turning speed).

Lemma 61 As functions in l, L
j

and F
j

satisfy the following equation.

L0
j�1

(l)

L0
j

(l)
=

F
j�1

(l)

F
j

(l)
.

First, we will derive Lemma 61 from two general facts on smooth curves stated in Lemma 62
and Lemma 63.

Lemma 62 Suppose a string of length F is tangent to a point t on some smooth curve C. Now
the end of the string moves a distance of ✏ in the direction of ↵, as shown in Figure 5.20. Then
for the curve length Ct✏

t

between t and the new tangent point, t
✏

, we have

lim
✏!0

Ct✏
t

✏
=

sin↵ r

F

where r denotes the radius of the osculating circle at t.
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Figure 5.20: A string wrapping around a curve.
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Figure 5.21: Intersection of turned normals.

This fact is quite intuitive. The more perpendicular the motion of the string’s endpoint, and
the larger the radius of curvature, the more string gets wrapped. But if the string is very long,
the e↵ect of the motion decreases; see also Figure 5.20.

The center of the osculating circle at t is known to be the limit of the intersections of the
normals of all points near t with the normal at t. Lemma 63 shows what happens if, instead of
the normals, we consider the lines turned by the angle ⇡/2� ↵.

Lemma 63 Let t be a point on a smooth curve C, whose osculating circle at t is of radius r.
Consider the lines L

s

resulting from turning the normal at points s by an angle of ⇡/2�↵. Then
their limit intersection point with L

t

has distance sin↵ r to t.

A simple example is shown in Figure 5.21 for the case where curve C itself is a circle. Now we
can prove Lemma 61.

Proof.[Proof of Lemma 61] By Lemma 62, applied to the inner point t of edge F
j

(L
j

), we have

L0
j�1

(L
j

)

L0
j

(L
j

)
= L0

j�1

(L
j

) =
sin↵ r

F
j

(L
j

)
.



5.6. AN ALTERNATIVE APPROACH: THE FIREFIGHTER CURVE 75

Lemma 63 implies that sin↵ r equals the distance between t and the limit intersection point
of the normals turned by ⇡/2 � ↵ near t. But for the barrier curve generated by strategy FF,
these turned normals are the tangents to the previous coil, so that sin↵ r = F

j�1

(L
j

) holds. As
we substitute variable L

j

with L
j

(l), the derivatives of the inner functions cancel out and we
obtain Lemma 61. 2

The proofs of Lemma 63 and 62 are rather straightforward. We include them for completeness.

Proof.[Proof of Lemma 62] Using the notations in Figure 5.20, the following hold. From
r sin(�/2) = s = a cos(�/2) we obtain a = r tan(�/2). For short, let c := Ct✏

t

. By l’Hospi-
tal’s rule,

c

2a
=

r �

2r tan(�/2)
⇡ cos2(�/2) ! 1

as ✏, hence �, go to 0. Thus, 2a is a good approximation of c = Ct✏
t

. By the law of sines,

✏ sin(↵)

sin(�)
=

F
✏

+ a

sin(⇡/2)
,

hence
sin(�)

✏
=

sin(↵)

F
✏

+ a
! sin(↵)

F

This implies sin(�/2)/✏ ! sin(↵)/(2F ), and we conclude

Ct✏
t

✏
=

c

2a

2a

✏
⇡ 2r tan(�/2)

✏
=

2r sin(�/2)

✏ cos(�/2)
! r sin(↵)

F
.

2

Proof.[Proof of Lemma 63] Let us assume that C is locally parameterized by Y = f(X) and
that t = (x

0

, f(x
0

)). Then the tangent in t is

Y = f 0(x
0

)X � f 0(x
0

)x
0

+ f(x
0

),

and line L
t

, the tangent turned counterclockwise by ↵, is given by

Y = tan(arctan(f 0(x
0

)) + ↵)X � tan(arctan(f 0(x
0

)) + ↵)x
0

+ f(x
0

).

Now let (v, w) denote the point of intersection of L
t

and L
s

, where s = (x
0

+ ✏, f(x
0

+ ✏)).
Equating the two line equations we obtain

�
h(x

0

+ ✏)� h(x
0

)
�
v = g(x

0

+ ✏)� g(x
0

) + f(x
0

)� f(x
0

+ ✏)

where
h(x) := tan(arctan(f 0(x)) + ↵) and g(x) := h(x)x

After dividing by ✏ and taking limits, we have

h0(x
0

) v
0

= g0(x
0

)� f 0(x
0

) = h0(x
0

)x
0

+ h(x
0

)� f 0(x
0

),

which results in

v
0

= x
0

+
h(x

0

)� f 0(x
0

)

h0(x
0

)

w
0

= h(x
0

) v
0

� g(x
0

) + f(x
0

)

= f(x
0

) +
h2(x

0

)� h(x
0

)f 0(x
0

)

h0(x
0

)
.
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In other words,

(v
0

, w
0

)� (x
0

, f(x
0

)) =
h(x

0

)� f 0(x
0

)

h0(x
0

)
(1, h(x

0

))

|(v
0

, w
0

)� (x
0

, f(x
0

))| = |h(x0)� f 0(x
0

)

h0(x
0

)
|
p
1 + h2(x

0

)

Using the addition formula for tan,

h(x) = tan(arctan(f 0(x)) + ↵) =
f 0(x) + tan(↵)

1� f 0(x) tan(↵)
,

we obtain

h(x
0

)� f 0(x
0

) =
1 + (f 0(x

0

))2 + tan(↵)

1� f 0(x
0

) tan(↵)
.

and

1 + h2(x
0

) =
(1 + (f 0(x

0

))2) (1 + tan2(↵))

(1� f 0(x
0

) tan(↵))2
.

Moreover,

h0(x
0

) =
f 00(x) (1 + tan2(↵))

(1� f 0(x
0

) tan(↵))2
.

Putting expressions together we obtain

|(v
0

, w
0

)� (x
0

, f(x
0

))| = |
�
1 + (f 0(x

0

))2
�
3/2

f 00(x
0

)
| tan(↵)p

1 + tan2(↵)
.

The first term is known to be the radius of the osculating circle, r, and the second equals sin(↵).
2

5.6.3 Di↵erential equations

In this section we turn the structural properties observed in Subsection 5.6.2 into di↵erential
equations.

By multiplication, Lemma 61 generalizes to non-consecutive edges. Thus,

F
j

(l)

F
0

(l)
=

L0
j

(l)

l0
= L0

j

(l) (5.19)

holds. On the other hand, taking the derivative of the formula in Lemma 60 leads to

F 0
j

(l) + L0
j�1

(l) = cos↵L0
j

(l). (5.20)

We substitute in 5.20 both L0
j

(l) and L0
j�1

(l) by the expressions we get from 5.19 and obtain a
linear di↵erential equation for F

j

(l),

F 0
j

(l) � cos(↵)

F
0

(l)
F
j

(l) = � F
j�1

(l)

F
0

(l)
.

The textbook solution for y0(x) + f(x)y(x) = g(x) is

y(x) = exp(�a(x))

✓Z
g(t) exp(a(t)) dt+ 

◆
,
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where a =
R
f and  denotes a constant that can be chosen arbitrarily. In our case,

a(l) =

Z
� cos(↵)

A+ cos(↵) l
= � ln(F

0

(l))

because of F
0

(l) = A+ cos(↵) l, and we obtain

F
j

(l) = F
0

(l)
⇣

j

�
Z

F
j�1

(t)

F 2

0

(t)
dt
⌘
. (5.21)

Next, we consider a linkage of �-type, for parameters l 2 [l
1

, l
2

], and obtain analogously

�
j

(l) = �
0

(l)
⇣
�
j

�
Z

�
j�1

(t)

�2

0

(t)
dt
⌘
. (5.22)

Now we determine the constants 
j

,�
j

such that the solutions 5.21 and 5.22 describe a contiguous
curve. To this end, we must satisfy conditions 5.17 and 5.18.

We define 
0

:= 1 and


j+1

:=
�
j

(l
2

)

F
0

(0)
+

Z
F
j

(t)

F 2

0

(t)
dt|

l=0

so that 5.21 becomes

F
j+1

(l) = F
0

(l)
⇣�

j

(l
2

)

F
0

(0)
�

Z
l

0

F
j

(t)

F 2

0

(t)
dt
⌘
,

which, for l = 0, yields F
j+1

(0) = �
j

(l
2

) (condition 5.18).

Similarly, we set �
0

:= 1 and

�
j+1

:=
F
j+1

(l
1

)

�
0

(l
1

)
+

Z
�
j

(t)

�2

0

(t)
dt|

l=l1

so that 5.22 becomes

�
j+1

(l) = �
0

(l)
⇣F

j+1

(l
1

)

�
0

(l
1

)
�

Z
l

l1

�
j

(t)

�2

0

(t)
dt
⌘
,

and for l = l
1

we get F
j+1

(l
1

) = �
j+1

(l
1

) (condition 5.17).

For simplicity, let us write

G
j

(l) :=
F
j

(l)

F
0

(l)
and �

j

(l) :=
�
j

(l)

�
0

(l)
, (5.23)

which leads to

G
j+1

(l) =
�
0

(l
2

)

F
0

(0)
�
j

(l
2

) �
Z

l

0

G
j

(t)

F
0

(t)
dt (5.24)

�
j+1

(l) =
F
0

(l
1

)

�
0

(l
1

)
G

j+1

(l
1

) �
Z

l

l1

�
j

(t)

�
0

(t)
dt. (5.25)

Now we can make a useful observation. In order to find out if the fire fighter is ever successful,
we need to check only the values of F

j

(l) at the end of each round.

Lemma 64 The curve encloses the fire if and only if there exists an index j such that F
j

(l
1

)  0
holds.

Proof. The free string shrinks to zero if and only if there exist an index j and argument l such
that F

j

(l)  0 or �
j

(l)  0. Clearly, G
j

and F
j

have identical signs, as well as �
j

and �
j

do.
Suppose that G

j

> 0 and G
j+1

(l) = 0, for some j and some l 2 [0, l
1

]. By 5.24, function G
j+1

is decreasing, therefore G
j+1

(l
1

)  0. Now assume that G
i

> 0 holds for all i, and that we have
�
j�1

> 0 and �
j

(l) = 0 for some j and some l 2 [l
1

, l
2

]. By 5.25 this implies �
j

(l
2

)  0, and
from 5.24 we conclude G

j+1

 0, in particular G
j+1

(l
1

)  0. 2
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