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Chapter 3

Discrete Cop and Robber game

In this chapter we would like to discuss another discrete variant of the intruder search problem.
In comparison to the previous chapter, we assume that at any time of the game the position of
the single intruder is given.

More precisely, there is a single robber R and a set of cops C and a graph G = (V,E). The
game starts with the cops, by choosing the starting vertices for the set C. After that, the robber
R can choose its starting vertex. The game runs in subsequent steps. First, any cop can move
from a vertex to an incident vertex, then the robber can move. The game ends, when one cop
enters the position of the robber or the robber enters the position of a cop, respectively.

Cop and Robber game for graphs:
Instance: A Graph G = (V,E) and the cardinality of the cops C.
Question: Is there a winning strategy S for the cops C?

We are searching for classifications of graphs that allow a winning strategy for C or vice versa a
winning strategy for R. Aigner and Fromme introduced the problem in the midst of the 90ies.

3.1 Classifications of graphs

3.1.1 Simple examples and pitfalls

It is interesting to see that it makes a di↵erence, if we do not allow the robber to keep in place
during its strategy. This is called the active version of the game, in correspondance to the
passive version, where the robber is not forced to move in any step.

Figure 3.1 shows an example where this makes a di↵erence for a single cop. In the active version
the cop starts at vertex v1 and the robber can only choose the opposite vertex r2. The cop
moves toward v. Now the robber has to move to r1. The cop moves toward v2 and after the
next mandatory move of the robber, the robber will be catched. In the passive version the
robber can move around or rest in the 4-cycle and holds distance 2 from the cop all the time.
In the following we will always discuss the more intuitive passive version of the game. Let G

C

denote the set of all graphs that allow a winning strategy for C and let G
R

denote all graphs
that have a winning strategy for R.

Obviously, any tree T belongs to G
C

already for a single cop, that successively moves into the
subtree of R. Additionally, for a single cop, all graphs that contain a cycle of length at least 4
belong to G

R

.

We concentrate on a single cop. In the winning case for the cop, the final situation is as follows:
The robber is located in a vertex v

r

and the cop is located in v
c

for an edge e = (v
r

, v
c

).
Moreover, all neighbors, N(v

r

), of v
r

are also neighbors of v
c

, which means N(v
r

) ✓ N(v
c

).
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Figure 3.1: In this simple graph for one cop and a robber it makes a di↵erence, if the robber
has to perform moves mandatorily.

Figure 3.2: A graph without pitfalls.

For a pair (v
r

, v
c

) of vertices we call v
r

a pitfall and v
c

its dominating vertex if N(v
r

) [ {v
r

} ✓
N(v

c

) holds. Obviously, a graph G whithout a pitfall is in G
R

. Figure 3.2 shows an example.

Exercise 16 Present a construction scheme for graphs of arbitrary size without pitfalls.

3.1.2 Algorithmic approaches

We would like to show that for a single cop the classification of a graph depends on the successive
removement of pitfalls of G.

Lemma 34 Let v
r

be a pitfall of some graph G. Then

G 2 G
C

() G \ {v
r

} 2 G
C

,

where G \ {v
r

} results from G by removing all edges adjacent to v
r

and vertex v
r

from G.

Proof. If G \ {v
r

} 2 G
R

holds, the robber simply identifies any visit of the cop of the pitfall
v
r

by the dominating vertex v
c

and makes use of a strategy in G 2 G
R

\ {v
r

}. Note that the
neighborship of the pitfall v

r

is a subset of the neighorship of v
c

. This means that we do not
weaken the cop by the identification.

If G \ {v
r

} 2 G
C

holds, the cop wants to extend its winning strategy to G. The cop simply
identifies any visit of the robber of the pitfall v

r

as a visit of the dominating vertex v
c

and
makes use of the same strategy. Again, since the neighborship of the pitfall v

r

is a subset of the
neighorship of v

c

, we do not weaken the robber by this identification. If at the end we catch the
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imaginary robber at v
c

and the robber is physically located at v
r

, we will catch the robber in
the next step. 2

Now, we have a simple characterization of G
C

.

Theorem 35 The graph G is in G
C

, if and only if the successive removement of pitfalls finally
ends in a single vertex. The classification of a graph can be computed in polynomial time.

Proof. Lemma 34 gives the key argument, as the classification does not change by removing
pitfalls. This means that we either end up in a graph with no pitfalls for G 2 G

R

or in a single
vertex for G 2 G

C

.

Checking the existance of a pitfall can be done locally for any vertex and its neighborship. After
computing the neigborship sets, we can check the pitfall property for a vertex in a brute-force
manner in O(n2) time and for all vertices in O(n3) time for a graph with n vertices. At most n
reduction steps can be done. 2

Exercise 17 Design an e�cient algorithm for checking the pitfall property of a single vertex
and/or for the graph.

The above shrinking process answers the classification question algorithmically in polynomial
time. On the other hand we would like to construct arbitrary examples of representatives of G

C

.
It can be shown that G

C

is closed under the operations product of two graphs and reduction of
a graph.

The product G1 ⇥ G2 of two graphs G1 = (V1, E1) and G2 = (V2, G2) is defined by vertex set
V1 ⇥ V2 and an edge set by the folllowing rules: (v1, v2) and (w1, w2) of V1 ⇥ V2 build an edge if:

1. v1 = w1 and (v2, w2) 2 E2 or

2. (v1, w1) 2 E1 and v2 = w2 or

3. (v1, w1) 2 E1 and (v2, w2) 2 E2.

Lemma 36 If G1, G2 2 G
C

, then G1 ⇥G2 2 G
C

Proof. If the cop has a winning strategy for G1 that starts in vs1 and catches the robber in ve1
and for G2 that starts in vs2 and catches the robber in ve2, the cop can start in (vs1, v

s

2) apply
the strategies simultaneously and finally catches the robber in a vertex (ve1, v

e

2). This strategy
is obviously correct. 2

For a graph G and its subgraph H, the retraction from G to H is a mapping ' : V (G) 7! V (H)
of the vertices of V (G) of G to the vertices V (H) of H as follows: '(H) = H for (u, v) 2 E we
have ('(v),'(u)) 2 E(H). The graph H is called a retract of G, if a retraction from G to H
exists.

Note that G \ {v
r

} for a pitfall v
r

is a retract of G.

Lemma 37 If G 2 G
C

, and graph H is a retract of G, then H 2 G
C

.

Proof. Assume that H 2 G
R

holds and let ' be the mapping for a retraction from G to H.
We would like to show G 2 G

R

. We extend the winning strategy for H to a winning strategy
of G as follows: R remains in H and identifies the moves of C in G as moves in H. That is, if
C moves from v to u in G, the robber indentifies this move as a move from '(u) to '(w) which
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exists in H by definition of '. The robber always moves according to the strategy in H and
cannot be catched. 2

Note that, the above lemmata do not rely on the fact that there is only one cop.

Theorem 38 The class of graphs G in G
C

is closed under the operations product and retraction.

3.1.3 How many cops are required?

Obviously, any graph with a 4-cycle will not belong to G
C

, therefore it makes sense to think
about more than one cop. For a graph G the cop-number, c(G), denotes the minimum number
of cops required to guarantee that G 2 G

C

holds.

A vertex cover of a graph G is a subset V
c

✓ V so that any vertex u 2 V \ V
c

has a neighbor in
V
c

. Therefore the minimum vertex cover is an upper bound on c(G). First, we show that c(G)
can be arbitrarily large for some graphs.

Theorem 39 Let G = (V,E) be a graph with minimum degree n that contains neither 3- nor
4-cycles. We conclude c(G) � n.

Proof. Let us assume that n � 1 cops are su�cient. If G does not have a vertex cover of size
smaller than n, the n�1 cops located in the beginning at c1, . . . , cn�1 cannot prevent the robber
to choose a safe vertex. So the robber chooses such a vertex whose neighbors are not occupied
by the cops. Since there are no 3- and 4-cycles, by the next move a single cop cannot threaten
(occupy and/or be adjacent to) two neighbors of the robber in the next step. Therefore, there
is still one safe neighbor for the robber after the next move of the cops.

It remains to show that a vertex cover of size < n does not exist. Consider any vertex set
V = {v1, . . . , vn�1} of G and a vertex w 6= v

i

for i = 1, . . . , n� 1. Note that |V | � n holds, so w
exists. Now consider the neighborhood, N(w), of w. Let it consist of k vertices v1, . . . , v

k

from
V and l � k vertices w1, . . . , w

l�k

not in V . We have l � n, k  n� 1 and l � k � 1. There are
no 3- and 4-cycles, so N(w

i

) \N(w
j

) has to be {w} for i 6= j. If the set V is a vertex cover for
G, any N(w

i

) has to contain a di↵erent vertex from V . But none of the N(w
i

)’s can contain a
vertex of v1, . . . , v

k

, since this would give a 3-cycle with w. This means that we require l � k
di↵erent vertices from v

k+1, . . . , vn�1 and n vertices from V in total, a contradiction. 2

We can construct regular graphs of arbitrary size, which fulfill the condition of Theorem 39.
The following Theorem is given by construction.

Theorem 40 For every n there exists a graph without 3- or 4-cylces with minimum degree n.
So, for any n there is a graph with c(G) � n.

Proof. For n = 2 the simple 5-cycle will work. Note that C5 is 3-colorable, which means that
we color the vertices by three colora such that no two colors are adjacent. Three colors are
required and su�cient for C5. Inductively, we construct a 3-colorable graph with degree exactly
n for any vertex v of G and without 3- and 4-cycles. The coloring is required for maintaining
the cycle condition by construction.

The induction base for n = 2 was shown above. Let us assume that the statement holds for
n. We consider four copies G0, G1, G2, G3 of a corresponding graph G for n as depicted in
Figure 3.3. We build new edges with respect to the coloring of the vertices so that any vertex
obtains an additional edge; see Figure 3.3. From G

i

to G
j

the exact copies of two vertices of
a single color are connected. For example from G1 to G2 all identical copies of color 3 are
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Figure 3.3: In the inductive step we use four copies G0, G1, G2, G3 of a 3-colorable graph G of
degree exactly n without 3- and 4-cycles. Then we construct new edges according to the colors
and finally interchange some colors, appropriately.

connected, from G2 to G0 all identical copies of color 2 are connected and so on. There is a
unique correspondance as shown in Figure 3.3.

Since there are no cycles of size 3 or 4 in G0, G1, G2, G3 and any two edges between G
i

and G
j

make use of identical copies of the same color there are at least two edges between them in G
i

and G
j

respectively. So there are no 3- or 4-cycles in the new graph. For the inductive step, we
require a new 3-coloring, which will be attained by interchanging the colors for example color
3 by 1 and color 1 by 3 in G1 and color 2 by 1 and color 1 by 2 in G2 and so on. Thus, we
maintain 3-coloring in G0, G1, G3, G4 and also for the connections. 2

Finally, in this section we prove some positive results by bounding the cop-number from above
for special graphs. The corresponding proofs are constructive, i.e., a winning strategy for the
cops can be computed.

Theorem 41 Consider a graph G with maximum degree 3 and the property that any two adja-
cent edges are contained in a cycle of length at most 5. Then c(G)  3.

Proof. The proof is constructive in the following sense. If the position of the robber is known,
for the cops c1, c2 and c3 we consider three paths towards r that use all incident edges to r.
We choose P1, P2 and P3 for c1, c2 and c3 respectively. The paths cover the incident edges by
di↵erent cops and with length l1, l2 and l3. And the paths make use of any possible shortcut
for reaching the incident edges. Note that the paths need not be disjoint and r might also have
only one or two incident vertices. But such paths do always exist. We would like to argue that
by the condition of the Theorem, we can decrease the overall distance l := l1 + l2 + l3 in any
move of the cops.

Formally, after the move of the robber, R, we move c1, c2 and c3 to c01, c
0
2 and c03 so that l0 < l

holds. We further assume that r was adjacent to exactly three vertices r1, r2 and r3. The other
cases can be handled anlogously, and are given as an exercise. We have P1 = {c1, . . . , r1, r},
P2 = {c2, . . . , r2, r} and P3 = {c3, . . . , r3, r} and consider the following cases.

1. The robber R stands still. The cops move along the paths toward R and l0  l � 3.
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Figure 3.4: If r has degree 3 and c1 is not on r1, there is a 5-cycle so that we can move closer
to r at least by one.

2. The robber R moves to r1 (w.l.o.g.):

r1 has degree 1: This cannot happen since (r, r1) and (r, r2) are neighboring edges.

r1 has degree 2: Either c1 was on r1 and we are done or move all three cops toward r
which gives l0  l1 � 2 + l2 + l3 = l � 2 < l.

r1 has degree 3: Either c1 was on r1 and we are done or we have l1 � 2. At least one
adjacent vertex, say x, of r1 does not belong to P1, otherwise we use a shortcut for P1.
This means that (x, r1) and (r1, r) are on a cycle of length at most 5. Since r has only
degree 3, one of the vertices r2 or r3, (say r2) also belong to this cycle as depicted
in Figure 3.4. So we have a 5-cycle r2, y, x, r1, r. We move all three cops toward
r, respectively r1 and use the paths P1 = {c01, . . . , r1} P2 = {c02, . . . , r2, y, x, r1} and
P3 = {c03, . . . , r3, r, r1} with length l0  l1 � 2 + l2 + 1 + l3 = l � 1 < l0.

In any case we can reduce the distance of the cops to the robber for the paths to all all three
neighboring vertices. 2

Finally, we would like to prove that for any planar graph G, indeed c(G)  3 holds. We first
show that in any graph G it is always possible to protect a shortest path between two vertices
by two cops. Protection means the robber cannot enter the path without being caught in the
next step. The path length is given by the number of edges along a path between to vertices
in G. By this measure the triangle inequality holds.

Lemma 42 Consider a graph G and a shortest path P = s, v1, v2, . . . , vn, t between two vertices
s and t in G, assume that we have two cops. After a finite number of moves the path is protected
by the cops so that after a visit of the robber R of a vertex of P the robber will be caught.

Proof. First, we move a cop c onto some vertex c = v
i

of P . Let d(x, y) denote the distance
between two vertices in G. The robber R located at r can only have a shorter distance to vertices
on one side of P w.r.t. c because the triangle inequality holds. Assuming, that r is closer to
some x in s, v1, . . . , vi�1 and some y in v

i+1, . . . , vn, t is a contradiction to the shortest path
between x and y. That is d(x, c) + d(y, c)  d(x, r) + d(r, y). This means that d(r, x) < d(c, x)
only holds at most for one side of P w.r.t. c and for the other side we conclude d(r, y) > d(c, y)
in this case.
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Figure 3.5: Case 1: All three cops in one vertex.

Thus, we move c towards the vertices x. Now the robber can move. Again, if there are still
vertices on one side of P w.r.t. c which are closer to r than to c we move further on toward
these vertices. So finally, we achieved

d(r, v) � d(c, v) for all v 2 P (3.1)

by this process.

Now the robber again could make its move. We show that we can maintain the inequality at all
time, which means that the robber will be caught if it tries to move towards the vertices of P .

Assume Equation 3.1 holds. The robber can either stay in its place, so the cop c does and we
fulfill Equation 3.1 (and the second cop could move now). Or the robber moves and tries to
contradict Equation 3.1 by its single move. Assume r goes to some vertex r0, we have

d(r0, v) � d(r, v)� 1 � d(c, v)� 1 for all v 2 P .

If there is again some v0 2 P with d(c, v0) � 1 = d(r0, v0), we have the same situation as above
and we can move c toward v0 and Equation 3.1 holds again. Again as before the movement
toward r0 cannot reduce the distance to x and y on opposite sides of c w.r.t. P . Thus, by the
move toward some v0 we fulfill Equation 3.1. 2

Finally, we exploit the above property for planar graphs and by the use of 3 cops and two such
paths.

Theorem 43 For any planar graph G we have c(G)  3.

Proof. We show that the region R
i

for the robber R will shrink successively, that is R
i+1 ⇢ R

i

after some moves of the cops. Two situations can appear.

Case 1: All three cops occupy a single vertex c and the robber is located in one component R
i

of G \ {c}; see Figure 3.5.

Case 2: There are two di↵erent paths P1 and P2 from v1 to v2 that are protected in the sense
of Lemma 42 by cops c1 and c2; see Figure 3.6. In this case P1 [ P2 subdivides G into an
interior, I, and an exterior region E. That is G \ (P1 [ P2) has at least two components.
W.l.o.g. we assume that R is located in the exterior E = R

i

.

We will show that these two cases can appear successively and the region R
i

of the robber will
shrink. In the beginning all cops are located in a single vertex c and we are in case 1. We show
how we handle the cases.



42 CHAPTER 3. DISCRETE COP AND ROBBER GAME

c

2

v

1

P

2

P

1

c

1

v

2

R

i

Figure 3.6: Case 2: Two cops protect two paths.

Movements in Case 1: We consider di↵erent situations for the neighbors of c:

c has one neighbor in R
i

: Move all cops to this neighbor c0 and consider R
i+1 = R

i

\ {c0}.
This gives Case 1 again.

c has more than one neighbor in R
i

: Let a and b be two of the neighbors and let R(a, b)
be a shortest path in R

i

between a and b. One cop remains in c, another cop protects the
path P (a, b) by Lemma 42. Thus P1 = a, c, b and P2 = P (a, b). We are in Case 2 with
R

i+1 ⇢ R
i

.

Movements for Case 2: We consider the situation for the composition of R
i

and the location
of the robber. We first assume that there is another shortest path P 0(v1, v2) but di↵erent from
P1 and P2 that partially runs in R

i

and also connects v1 and v2.

Let x1 be the first vertex of P 0(v1, v2) where the path P 0 leaves P1 [ P2 after v1 and x2 be the
first vertex of P 0 after x1 that enters P1 [ P2 again.

We let c3 protect the path P3 which results from combining P1,2(v1, x1) with x1, r1, . . . , r
l

, x2
and with P1,2(x2, v2) as depicted in Figure 3.7. While c1 and c2 protect P1 and P2, the cop
c3 can protect this path P3 from v1 to v2. At the end c3 protects P3 and c1 or c2 protect the
remaining path, we are in Case 2 with R

i+1 ⇢ R
i

.

On the other hand, if there is no path di↵erent from P1 and P2 and partially running in R
i

that
connects v1 and v2, there are no such leave and entry vertices x1 and x2 that are connected in
R

i

. Thus, the robber has to be inside a component that fully is connected to a single vertex x
on P1 and P2. Thus, we move c3 to this vertex, and also c1 and c2 and end in Case 1 again. 2
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Figure 3.7: The situation for the two chains P1 and P2 protected by c1 and c2. If there is another
shortest path from v1 to v2 di↵erent from P1 and P2 that runs partially in R

i

, we construct a
path P3 that runs from v1 to v2 that is protected by c3 alone and protects vertices of R

i

. If
there is no such path, a vetex x exists that can be visited by all cops and gives Case 1 again.
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