
The Zone Theorem (Chapter 6.4)

Zone

Let H be a set of n hyperplane, and let g be a hyperplane that may or may

not lie in H .

The zone of g is the set of the faces in the arrangement of H that can see g

• Imagine the hyperplanes of H are opaque

• A face F can see the hyperplane g if there are points x ∈ F and y ∈ g
such that the open segment xy is not intersected by any hyperplane of H

– It does not matter which point x ∈ F we choose.

– Either all of them can see g or non can.

Zone Theorem

The number of faces in the zone of any hyperplane in an arrangement of n

hyperplanes in Rd is O(nd−1), with the constant of proportionality depending

on d.

Before the proof

• Assume H ∪ {g} to be in general position

• The zone hasO(nd−1) cells because each (d−1)-dimensional cell of the (d−
1)-dimensional arrangement within g intersects only one d-dimensional cell

of the zone

– But it does not apply to the number of faces and vertices.



Proof of Zone Theorem

General Idea: Induction on the dimension d.

The case d = 2

• Let H be a set of n lines in the planes in general position

• Consider the zone of a line g

• Since a convex polygon has the same number of vertices and edges, it

suffices to bound the total number of edges visible from the line g

• Imagine g drawn horizontally and count the number of visible edges lying

above g

– At most n visible edges intersect the line g since each line of H gives

rise to at most one such edge

– The other visible edges are disjoint from g

• Consider an edge uv from g and visible from a point of g.

• Let h ∈ H be the line containing uv, and let a be the intersection of h

with g

– Assume u is closer to a than v is.

• Let l be the second line defining the vertex u, and let b be the intersection

of l with g.

• Call uv a right edge of l if b lies to the right of a, and a left edge if b lies

to the left of a.

a b

u

v

x
y

l

h

g



• Show that for each line l there exists at mos one right edge

– If it were not the case, there would exist two edges, uv and xy, where

u lies lower than x, which would both be the right edges of l

– The edge xy should see some point of the line g.

– However, the part of g lying to the right of a is obscured by line h, and

the part left of a is obscured by the line

– There exists a contradiction

• The number of visible edges is O(n)

– the numer of right edges is at most n, so is the number of left edges

– The visible edges lying below g are counted symmetrically.

The case for d > 2

• Make the inductive step from d− 1 to d

– Assume the total number of faces of a zone in Rd−1 to be O(nd−2), and

want to bound the total number of zone faces in Rd

• Use an averaging argument

– begin with the slightly simpler case of counting only the facets (i.e., (d-

1)-faces) of the zone

• Let f (n) denote the maximum possible number of (d− 1)-faces in the zone

of an arrangement of n hyperplanes in Rd.

• Let H be an arrangement and g be a base hyperplane such that f (n) is

attained for them.

• Consider the folowing random experiment

– Color a randomly chosen hyperplane h ∈ H red and the other hyper-

planes of H blue

– Investigate the expected number of blue facets of the zone, where a facet

is blue if it lies in a blue hyperplane.

• On one hand, since any facet has probability n−1
n of becoming blue, the

expcted number of blue facets is n−1
n f (n).



• Bound the expected number of blue facets in different way

– Consider the arrangement of blue hyperplanes

– Its has at most f (n − 1) blue facets in the zone by the inductive

hypothesis

– Add the red plane, and look by how much the number of blue facets

in the zone can increase

• A new blue facets can arise by adding the red hyperplane only if the red

hyperplane slice some existing blue facets F into two parts F1 and F2
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• This operation increases the number of blue facets in the zone only if both

F1 and F2 are visible from g.

– In such a case, we look at the situation within the hyperplane h

• Claim F ∩ h are visible from g ∩ h

– Let C be a cell of the zone in the arrangement of the blue hyperplanes

having F on the boundary

– Exhibit a segment connecting F ∩ h to g ∩ h within C.

∗ If x1 ∈ F1 see a point y1 ∈ g and x2 ∈ F2 see a point y2 ∈ g, then

the whole interior of the tetrahedron x1x2y1y2 is contained in C

∗ The intersection of this tetrahedron with the hyperplane h contains

a segment witnessing the visibility of g ∩ h from F ∩ h.

• We can obtain the following inequaility:

n− 1

n
f (n) ≤ f (n− 1) + O(nd−2).

– If we intersect all the blue hyperplanes and the hyperplane g with the

red hyperplane h, we get a (d− 1)-dimensional arrangement, in which

F ∩h is a facet of the zone of the (d−2)-dimensional hyperplane g∩h.

– By the inductive hypothesis, this zone has O(nd−2) facets.

– Hence adding h increases the number of blue facets of the zone by

O(nd−2).

• The previous considerations can be generalized to (d − k)-faces, where

1 ≤ k ≤ d− 2:

n− k
n

fd−k(n) ≤ fd−k(n− 1) + O(nd−2),

– where fj(n) denote the maximum possible number of j-faces in the

zone for n hyperplanes in Rd.

• Use the subsitituion φ(n) =
fd−k(n)

n(n−1)···(n−k−1), and transform the recurrence

into

φ(n) ≤ φ(n− 1) + O(nd−k−2).

• For k < d− 1, φ(n) = O(nd−k−1), and hence fd−k(n) = O(nd−1)



• Still need to bound the case k = d− 1

• The number of vertices of the zone is at most proportional to
the number of the 2-faces of the zone

– Every vertex is contained in some 3-face of the zone

– Within each such 3-face, the number of vertices is at most
3 times the numer of 2-faces, because the 3-faces is a 3
dimensional convex polyhedron.

– Since our arrangement is simple, each 2-face is contained
in a bouneded number of 3-faces

– Therefore, the total number of vertices is at most propor-
tional to f2(n) = O(nd−1)

– The analogous bound for edges follows immediately from
the bound for vertices


