## Voronoi Diagram and Delaunay Triangulation

#### Chih-Hung Liu

University of Bonn



• Voronoi Diagrams and Delaunay Triangulations

・ロン・(理)・ ・ ヨン・

■ のへで

- Properties and Duality
- 2 3D geometric transformation
- Applications

• Given a set S of n point sites, Voronoi Diagram V(S) is a planar subdivision

•

٠

٠

• Given a set S of n point sites, Voronoi Diagram V(S) is a planar subdivision



◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─臣 ─の��

- Given a set S of n point sites, Voronoi Diagram V(S) is a planar subdivision
  - Each region contains exactly one site p ∈ S and is denoted by VR(p, S).



- Given a set S of n point sites, Voronoi Diagram V(S) is a planar subdivision
  - Each region contains exactly one site p ∈ S and is denoted by VR(p, S).



- Given a set S of n point sites, Voronoi Diagram V(S) is a planar subdivision
  - Each region contains exactly one site p ∈ S and is denoted by VR(p, S).



- Given a set S of n point sites, Voronoi Diagram V(S) is a planar subdivision
  - Each region contains exactly one site p ∈ S and is denoted by VR(p, S).
  - 2 For each point  $x \in VR(p, S)$ , p is its closest site in S.



- Given a set S of n point sites, Voronoi Diagram V(S) is a planar subdivision
  - Each region contains exactly one site p ∈ S and is denoted by VR(p, S).
  - 2 For each point  $x \in VR(p, S)$ , p is its closest site in S.
- VR(p, S) is the locus of points closer to p than any other site.



• Bisector 
$$B(p, q) = \{x \in R^2 \mid d(x, p) = d(x, q)\}.$$



◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

- Bisector  $B(p, q) = \{x \in R^2 \mid d(x, p) = d(x, q)\}.$
- $D(p,q) = \{x \in R^2 \mid d(x,p) < d(x,q)\}.$ 
  - Two half-planes D(p,q) and D(q,p) separated by B(p,q).



- Bisector  $B(p, q) = \{x \in R^2 \mid d(x, p) = d(x, q)\}.$
- $D(p,q) = \{x \in R^2 \mid d(x,p) < d(x,q)\}.$ 
  - Two half-planes D(p,q) and D(q,p) separated by B(p,q).



- Bisector  $B(p, q) = \{x \in R^2 \mid d(x, p) = d(x, q)\}.$
- $D(p,q) = \{x \in R^2 \mid d(x,p) < d(x,q)\}.$ 
  - Two half-planes D(p,q) and D(q,p) separated by B(p,q).



イロト イポト イヨト イヨト 一臣

0

- Bisector  $B(p,q) = \{x \in R^2 \mid d(x,p) = d(x,q)\}.$
- $D(p,q) = \{x \in R^2 \mid d(x,p) < d(x,q)\}.$ 
  - Two half-planes D(p,q) and D(q,p) separated by B(p,q).

$$\mathsf{VR}(p,S) = \bigcap_{q \in S, q \neq p} D(p,q).$$



프 🖌 🛪 프 🛌

ъ

۲

- Bisector  $B(p,q) = \{x \in R^2 \mid d(x,p) = d(x,q)\}.$
- $D(p,q) = \{x \in R^2 \mid d(x,p) < d(x,q)\}.$ 
  - Two half-planes D(p,q) and D(q,p) separated by B(p,q).

$$\mathsf{VR}(p, S) = \bigcap_{q \in S, q \neq p} D(p, q).$$



イロト イポト イヨト イヨト 一臣

- Voronoi Edge
  - Common intersection between two adjacent Voronoi regions VR(p, S) and VR(q, S)



イロン イボン イヨン イヨン

ъ

- Voronoi Edge
  - Common intersection between two adjacent Voronoi regions VR(p, S) and VR(q, S)
  - A piece of B(p,q)



・ロト ・聞 と ・ ヨ と ・ ヨ と …

3

- Voronoi Edge
  - Common intersection between two adjacent Voronoi regions VR(p, S) and VR(q, S)
  - A piece of B(p,q)



- Voronoi Edge
  - Common intersection between two adjacent Voronoi regions VR(p, S) and VR(q, S)
  - A piece of B(p,q)
- Voronoi Vertex
  - Common intersection among more than two Voronoi regions VR(*p*, *S*), VR(*q*, *S*), VR(*r*, *S*), and so on.



ヘロン 人間 とくほ とくほ とう

.

x  $\circ$ 

• Grow a circle from a point *x* on the plane

・ロト ・聞 ト ・ ヨト ・ ヨト

æ

• Grow a circle from a point *x* on the plane



• Grow a circle from a point x on the plane

• Hit one site  $p \in S \rightarrow x$  belongs to VR(p, S)



▲□ > ▲圖 > ▲目 > ▲目 > → 目 → のへで

• Grow a circle from a point x on the plane

• Hit one site  $p \in S \rightarrow x$  belongs to VR(p, S)



 $x_{\circ}$ 

• Grow a circle from a point x on the plane

• Hit one site  $p \in S \rightarrow x$  belongs to VR(p, S)

イロト イヨト イヨト イ

≣ ▶

• Grow a circle from a point x on the plane

- Hit one site  $p \in S \rightarrow x$  belongs to VR(p, S)
- Hit two sites p, q ∈ S → x belongs to the Voronoi edge between VR(p, S) and VR(q, S)



• Grow a circle from a point x on the plane

- Hit one site  $p \in S \rightarrow x$  belongs to VR(p, S)
- Hit two sites p, q ∈ S → x belongs to the Voronoi edge between VR(p, S) and VR(q, S)

イロト イポト イヨト イヨト



• Grow a circle from a point x on the plane

 $x_{o}$ 

- Hit one site  $p \in S \rightarrow x$  belongs to VR(p, S)
- Hit two sites p, q ∈ S → x belongs to the Voronoi edge between VR(p, S) and VR(q, S)

< □ > < 同 > < 三 > <

- Grow a circle from a point x on the plane
  - Hit one site  $p \in S \rightarrow x$  belongs to VR(p, S)
  - Hit two sites p, q ∈ S → x belongs to the Voronoi edge between VR(p, S) and VR(q, S)
  - Hit more than two sites p, q, r, ... ∈ S → x is the Voronoi vertex among VR(p, S), VR(q, S), VR(r, S), ...



- Grow a circle from a point x on the plane
  - Hit one site  $p \in S \rightarrow x$  belongs to VR(p, S)
  - Hit two sites p, q ∈ S → x belongs to the Voronoi edge between VR(p, S) and VR(q, S)
  - Hit more than two sites p, q, r, ... ∈ S → x is the Voronoi vertex among VR(p, S), VR(q, S), VR(r, S), ...

< ロ > < 同 > < 臣 > < 臣 > -



• Grow circles from  $\forall p \in S$  at unit speed

٠

٠

• Grow circles from  $\forall p \in S$  at unit speed



- Grow circles from  $\forall p \in S$  at unit speed
  - $x \in \mathbb{R}^2$  is first hit by a circle from  $p \to x$  belongs to VR(p, S)



- Grow circles from  $\forall p \in S$  at unit speed
  - $x \in \mathbb{R}^2$  is first hit by a circle from  $p \to x$  belongs to VR(p, S)



- Grow circles from  $\forall p \in S$  at unit speed
  - $x \in \mathbb{R}^2$  is first hit by a circle from  $p \to x$  belongs to VR(p, S)
  - *x* ∈ *R*<sup>2</sup> is first hit by two circles from *p* and *q* → *x* belongs to a Voronoi edge between VR(*p*, *S*) and VR(*q*, *S*)



- Grow circles from  $\forall p \in S$  at unit speed
  - $x \in \mathbb{R}^2$  is first hit by a circle from  $p \to x$  belongs to VR(p, S)
  - *x* ∈ *R*<sup>2</sup> is first hit by two circles from *p* and *q* → *x* belongs to a Voronoi edge between VR(*p*, *S*) and VR(*q*, *S*)



- Grow circles from  $\forall p \in S$  at unit speed
  - $x \in \mathbb{R}^2$  is first hit by a circle from  $p \to x$  belongs to VR(p, S)
  - *x* ∈ *R*<sup>2</sup> is first hit by two circles from *p* and *q* → *x* belongs to a Voronoi edge between VR(*p*, *S*) and VR(*q*, *S*)
  - $x \in \mathbb{R}^2$  is first hit by three circles from p, q, and  $r \to x$  is a Voronoi vertex among VR(p, S), VR(q, S) and VR(r, S)


### Wavefront Model (Growth Model)

- Grow circles from  $\forall p \in S$  at unit speed
  - $x \in \mathbb{R}^2$  is first hit by a circle from  $p \to x$  belongs to VR(p, S)
  - *x* ∈ *R*<sup>2</sup> is first hit by two circles from *p* and *q* → *x* belongs to a Voronoi edge between VR(*p*, *S*) and VR(*q*, *S*)
  - $x \in \mathbb{R}^2$  is first hit by three circles from p, q, and  $r \to x$  is a Voronoi vertex among VR(p, S), VR(q, S) and VR(r, S)



• VR(*p*, *S*) is unbounded if and only if *p* is a vertex of the convex hull of *S*.



- VR(*p*, *S*) is unbounded if and only if *p* is a vertex of the convex hull of *S*.
  - Consider the exterior angle bisector of p



- VR(*p*, *S*) is unbounded if and only if *p* is a vertex of the convex hull of *S*.
  - Consider the exterior angle bisector of p
  - For any point x on the bisector, x belongs to VR(p, S)



- VR(*p*, *S*) is unbounded if and only if *p* is a vertex of the convex hull of *S*.
  - Consider the exterior angle bisector of p
  - For any point x on the bisector, x belongs to VR(p, S)



- VR(*p*, *S*) is unbounded if and only if *p* is a vertex of the convex hull of *S*.
  - Consider the exterior angle bisector of p
  - For any point x on the bisector, x belongs to VR(p, S)
  - The bisector extends to the infinity.



- VR(*p*, *S*) is unbounded if and only if *p* is a vertex of the convex hull of *S*.
  - Consider the exterior angle bisector of p
  - For any point x on the bisector, x belongs to VR(p, S)
  - The bisector extends to the infinity.
- If S is in convex position, V(S) is a tree.



- VR(*p*, *S*) is unbounded if and only if *p* is a vertex of the convex hull of *S*.
  - Consider the exterior angle bisector of p
  - For any point x on the bisector, x belongs to VR(p, S)
  - The bisector extends to the infinity.
- If S is in convex position, V(S) is a tree.
- An unbounded Voronoi edge corresponds to a hull edge.



### Voronoi Diagram (Mathematic Definition)

• Voronoi Diagram V(S)

$$V(S) = R^2 \setminus (\bigcup_{p \in S} \mathsf{VR}(p, S)) = \bigcup_{p \in S} \partial \mathsf{VR}(p, S)$$

- ∂VR(p, S) is the boundary of VR(p, S)
  - $\partial VR(\rho, S) \not\subset VR(\rho, S)$
- V(S) is the union of all the Voronoi edges
- Voronoi Edge *e* between VR(p, S) and VR(q, S)

 $e = \partial \mathsf{VR}(p, S) \cap \partial \mathsf{VR}(q, S)$ 

Voronoi Vertex v among VR(p, S), VR(q, S), and VR(r, S)

 $v = \partial \mathsf{VR}(p, S) \cap \partial \mathsf{VR}(q, S) \cap \partial \mathsf{VR}(r, S)$ 

# Complexity of V(S)

#### Theorem

V(S) has O(n) edges and vertices. The average number of edges of a Voronoi region is less than 6.

- Add a large curve **F** 
  - $\Gamma$  only passes through unbounded edges of V(S)
  - Cut unbounded pieces outside F
  - One additional face and several edges and vertices.



# Complexity of V(S)

#### Theorem

V(S) has O(n) edges and vertices. The average number of edges of a Voronoi region is less than 6.

- Euler's Polyhedron Formula: v e + f = 1 + c
  - *v*: # of vertices, *e*: # of edges, *f*: # of faces, and *c*: # number of connected components.
- An edge has two endpoints, and a vertex is incident to at least three edges.
  - $3v \leq 2e \rightarrow v \leq 2e/3$
- f = n + 1 and c = 1
  - $v = 1 + c + e f = e + 1 n \le 2e/3 \rightarrow e \le 3n 3$

•  $e = v + f - 1 - c = v + n - 1 \ge 3v/2 \rightarrow v \le 2n - 2$ 

• Average number of edges of a region  $\leq (6n - 6)/n < 6$ 

Given a set S of points on the plane, a triangulation is maximal collection of non-crossing line segments among S.



Crossing  $(\overline{pq})$ 

ъ

Given a set S of points on the plane, a triangulation is maximal collection of non-crossing line segments among S.



Not Maximal ( $\overline{pq}$  is allowable)

イロト イヨト イヨト イ

Given a set S of points on the plane, a triangulation is maximal collection of non-crossing line segments among S.



Triangulation

э

An edge  $\overline{pq}$  is called **Delaunay** if there exists a circle passing through *p* and *q* and containing no other point in its interior.



pq is **Delaunay** 

An edge  $\overline{pq}$  is called **Delaunay** if there exists a circle passing through *p* and *q* and containing no other point in its interior.



 $\overline{pq}$  is **Delaunay** 

< ロ > < 同 > < 三 >

An edge  $\overline{pq}$  is called **Delaunay** if there exists a circle passing through *p* and *q* and containing no other point in its interior.



 $\overline{pq}$  is  $\mathbf{NOT}$  Delaunay

### Definition

A **Delaunay Triangulation** is a triangulation whose edges are all Delaunay.



### Definition

A **Delaunay Triangulation** is a triangulation whose edges are all Delaunay.



### Definition

A **Delaunay Triangulation** is a triangulation whose edges are all Delaunay.



▲口▶▲御▶▲臣▶▲臣▶ 臣 のQで

### Definition

A **Delaunay Triangulation** is a triangulation whose edges are all Delaunay.

• For each face, there exists a circle passing all its vertices and containing no other point.



### No more than two point sites are colinear

# No more than two point sites are colinear

• V(S) is connected



# No more than two point sites are colinear V(S) is connected

No more than three point sites are cocircular (At most three points are on the same circle)

### **General Position Assumption**

- No more than two point sites are colinear
  V(S) is connected
- No more than three point sites are cocircular (At most three points are on the same circle)
  - degree of each Voronoi vertex is exactly 3.

### **General Position Assumption**

- No more than two point sites are colinear
  V(S) is connected
- No more than three point sites are cocircular (At most three points are on the same circle)
  - degree of each Voronoi vertex is exactly 3.
  - Each face of the Delaunay triangulation is a triangle.

## **General Position Assumption**

- No more than two point sites are colinear
  V(S) is connected
- No more than three point sites are cocircular (At most three points are on the same circle)
  - degree of each Voronoi vertex is exactly 3.
  - Each face of the Delaunay triangulation is a triangle.
  - There is a unique Delaunay triangulation.

# Duality

#### Theorem

Under the general position assumption, the Delaunay triangulation is a dual graph of the Voronoi diagram.

• A site  $p \leftrightarrow$  a Voronoi region VR(p, S)



# Duality

#### Theorem

Under the general position assumption, the Delaunay triangulation is a dual graph of the Voronoi diagram.

- A site  $p \leftrightarrow$  a Voronoi region VR(p, S)
- A Delaunay edge pq ↔ a Voronoi edge between VR(p, S) and VR(q, S)



# Duality

### Theorem

Under the general position assumption, the Delaunay triangulation is a dual graph of the Voronoi diagram.

- A site  $p \leftrightarrow$  a Voronoi region VR(p, S)
- A Delaunay edge pq ↔ a Voronoi edge between VR(p, S) and VR(q, S)
- A Delaunay triangle △pqr ↔ a Voronoi vertex among VR(p, S), VR(q, S) and VR(r, S)



### Geometric Transformation from 2D to 3D

- A paraboloid  $P = \{(x_1, x_2, x_3) \mid x_1^2 + x_2^2 = x_3\}$  in 3D
- For a point  $x = (x_1, x_2)$  in 2D,  $x' = (x_1, x_2, x_1^2 + x_2^2)$  is its lifted image in 3D
  - *x*<sup>'</sup> ← vertical projection from *x* to *P*
- For a set *A* of points in 2D, its lifted image  $A' = \{x' = (x_1, x_2, x_1^2 + x_2^2) \mid x = (x_1, x_2) \in A\}$



◆□▶▲□▶▲□▶▲□▶ □ のへぐ

#### Lemma

Let *C* be a circle in the plane. Then C' is a planar curve on the paraboloid *P* 

- C is given by  $r^2 = (x_1 c_1)^2 + (x_2 c_2)^2$ •  $r^2 = x_1^2 + x_2^2 - 2x_1c_1 - 2x_2c_2 + c_1^2 + c_2^2$
- *C*' satisfies  $x_1^2 + x_2^2 = x_3$
- Substituting  $x_1^2 + x_2^2$  by  $x_3$ , we obtain a plane *E*

$$x_3 - 2x_1c_1 - 2x_2c_2 + c_1^2 + c_2^2 - r^2 = 0$$

#### • $C' = P \cap E$

Intersection between E and P is a planar curve

- S' on  $P \rightarrow S'$  in convex position
- Each point of S' is a vertex of conv(S')
- Lower convex hull *lconv*(S') of S' is the part of *conv*(S') visible from x<sub>3</sub> = −∞

# Duality between DT(S) and lconv(S') (1)

#### Theorem

The Delaunay triangulation DT(S) equals to the vertical projection onto the  $x_1x_2$ -plane of the lower convex hull of S'

- *p*, *q*, *r* ∈ *S*. *C*: circumcircle of *p*, *q*, *r*
- C' lies on a plane E defined by p', q', r'
- a point x inside  $C \leftrightarrow$  lifted image x' below E



# Duality between DT(S) and lconv(S') (2)

#### Theorem

The Delaunay triangulation DT(S) equals to the vertical projection onto the  $x_1x_2$ -plane of the lower convex hull of S'

- *p*, *q*, *r* defines a triangle of DT(S)
  ↔ no point of S in C defined by *p*, *q*, *r* ↔ no point of S' below E defined by p', q', r'
  ↔ p', q', r' defines a facet of *lconv*(S')
- Computing a convex hull in 3D takes O(n log n) time

イロト イポト イヨト イヨト

• *V*(*S*) in *O*(*n* log *n*) time

### Another Viewpoint of paraboloid

• For each  $s = (s_1, s_2) \in S$ , a paraboloid

$$P_s = \{(x_1, x_2, x_3) \mid x_3 = (x_1 - s_1)^2 + (x_2 - s_2)^2\}$$

- For each x = (σ<sub>1</sub>, σ<sub>2</sub>) in x<sub>1</sub>x<sub>2</sub> plane, vertical distance from x to P<sub>s</sub> is d(x, s)<sup>2</sup>
- Opaque and of pairwise different colors
- Looking from  $x_3 = -\infty$  upward  $\rightarrow V(S)$
- Vertical from x upward first hits  $P_s \rightarrow x \in VR(p, S)$
- $P_s \cap P_t \to B(s, t)$
- Lower envelope of  $\bigcup_{s \in S} P_s \to V(S)$
•  $P_s = \{(x_1, x_2, x_3) | x_3 = f((x_1 - s_1)^2 + (x_2 - s_2)^2)\}$ 

・ロン・(理)・ ・ ヨン・

■ のへで

- f is a strictly increasing function
- Lower envelope of  $\bigcup_{s \in S} P_s \to V(S)$

•  $P_s = \{(x_1, x_2, x_3) | x_3 = f((x_1 - s_1)^2 + (x_2 - s_2)^2)\}$ 

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

- f is a strictly increasing function
- Lower envelope of  $\bigcup_{s \in S} P_s \to V(S)$
- $f(x) = \sqrt{x} = \sqrt{(x_1 s_1)^2 + (x_2 s_2)^2}$

•  $P_s = \{(x_1, x_2, x_3) | x_3 = f((x_1 - s_1)^2 + (x_2 - s_2)^2)\}$ 

- f is a strictly increasing function
- Lower envelope of  $\bigcup_{s \in S} P_s \to V(S)$
- $f(x) = \sqrt{x} = \sqrt{(x_1 s_1)^2 + (x_2 s_2)^2}$ 
  - Cones of slope  $45^{\circ}$  with apices at sites  $s \in S$

イロト イポト イヨト イヨト

•  $P_s = \{(x_1, x_2, x_3) | x_3 = f((x_1 - s_1)^2 + (x_2 - s_2)^2)\}$ 

- f is a strictly increasing function
- Lower envelope of  $\bigcup_{s \in S} P_s \to V(S)$
- $f(x) = \sqrt{x} = \sqrt{(x_1 s_1)^2 + (x_2 s_2)^2}$ 
  - Cones of slope 45° with apices at sites s ∈ S
- Expanding circles  $C_s$  from sites  $s \in S$  at equal unit speed

イロト イポト イヨト イヨト 一臣

time t = radius r

• 
$$r^2 = (x_1 - s_1)^2 + (x_2 - s_2)^2$$

•  $x_3 = \sqrt{(x_1 - s_1)^2 + (x_2 - s_2)^2}$  = radius = time

•  $P_s = \{(x_1, x_2, x_3) | x_3 = f((x_1 - s_1)^2 + (x_2 - s_2)^2)\}$ 

- f is a strictly increasing function
- Lower envelope of  $\bigcup_{s \in S} P_s \to V(S)$
- $f(x) = \sqrt{x} = \sqrt{(x_1 s_1)^2 + (x_2 s_2)^2}$ 
  - Cones of slope 45° with apices at sites s ∈ S
- Expanding circles  $C_s$  from sites  $s \in S$  at equal unit speed
  - time t = radius r

• 
$$r^2 = (x_1 - s_1)^2 + (x_2 - s_2)^2$$

- $x_3 = \sqrt{(x_1 s_1)^2 + (x_2 s_2)^2} = \text{radius} = \text{time}$
- x first hit by  $C_s \leftrightarrow$  upward vertical projection from x first hit  $P_s$

#### **Post Office Problem**

Given a query point  $x = (x_1, x_2)$ , answer the closest post office *p* among *S* 

*p* ∈ *S* is the closest post office to *x* iff *x* belong to VR(*p*, *S*)

- Compute V(S) in  $O(n \log n)$  time
- Construct a point location data structure for V(S) in O(n log n) time
- Answer each query in O(log n) time after O(n log n)-time preprocessing

くロト (過) (目) (日)

Locating x in VR(p, S) takes O(log n) time

### **Nearest Neighbors**

#### **Nearest Neighbors**

Given a set *S* of points, for each  $s \in S$ , compute its nearest neighbor among  $S \setminus \{s\}$ 

#### Lemma

t is the nearest neighbor of s only if (s, t) is an edge of DT(S)

A circle growing from *s* will first hit *t* → There is a circle touching *s* and *t* but empty of *S* \ {*s*, *t*}

#### Theorem

The nearest neighbors can be computed in  $O(n \log n)$  time

- DT(S) can be computed in O(n log n) time
- Since |DT(S)| is O(n), computing the nearest neighbor from DT(S) takes O(n) time

# Largest Empty Circle

#### Largest Empty Circle

Given a set *S* of points inside a conex polygon *A*, find the largest circle *C* whose center is located in *A* and which enclose no point of *S*.

#### Lemma

C must touch two or three points of S

- touch no site: expand it until it touches one sites p
- touches one site p: expand it until it touches p and q
- touches p and q: expand it along B(p,q) until
  - the center of C hit the boundary of A
  - O hit the third site r

#### Theorem

The center of *C* is either a Voronoi vertex of V(S) or the intersection between a Voronoi edge and the boundary of *A* 

#### Minimum Spanning Tree

Given a set *S* of points, compute a tree MST(S) connecting all sites of *S* with the minimum total length

イロト イヨト イヨト イ

#### Minimum Spanning Tree

Given a set *S* of points, compute a tree MST(S) connecting all sites of *S* with the minimum total length

#### **Cut Property**

If *S* is partitioned into *A* and *B*, the shortest edge (a, b) satisfying  $a \in A$  and  $b \in B$  is an edge of MST(S)

# Minimum Spanning Tree

#### Minimum Spanning Tree

Given a set *S* of points, compute a tree MST(S) connecting all sites of *S* with the minimum total length

#### Cut Property

If *S* is partitioned into *A* and *B*, the shortest edge (a, b) satisfying  $a \in A$  and  $b \in B$  is an edge of MST(S)

#### Theorem

An edge of MST(S) is an edge of DT(S)

- Each shortest edge (a, b), a ∈ A and b ∈ B, is an edge of DT(S).
- The circle whose diameter ab enclose no other sites
  - If it contains a site  $a' \in A$ , d(a', b) < d(a, b)

# Thank You!!

#### **Divide and Conquer**

#### Basic Steps

- Divide an instance into c equal-size sub-instances
  - If the instance is extremely small, solve it directly instead
- Recursively compute the sub-solution for each sub-instance
  - Until a sub-instance can be solved in O(1) time

Merge all the c sub-solutions into one solution

If both Divide and Merge take linear time,

 $T(n) = cT(n/c) + O(n) => O(n \log n)$ 

- The *i*<sup>th</sup> level has  $c^i$  parts and each part has  $n/c^i$  elements
- A level takes  $c^i \times O(n/c^i) = O(n)$  time
- O(log n) levels

• n = 12 and c = 2

• *n* = 12 and *c* = 2

콜▶ 콜







- \* 値 \* \* 目 \* \* 目 \* \* 目 \* \* ④ \* \*

• *n* = 12 and *c* = 2



イロト イクト イモト イモト ニヨー のへの

• *n* = 12 and *c* = 2



イロト イヨト イヨト トヨー のえの

- Divide and Conquer to Compute V(S)
  - Use a vertical line to partition *S* into *L* and *R* where  $|L| \sim |R|$ 
    - If |S| is a constant, directly compute V(S) instead

イロト イポト イヨト イヨト

- 2 Recursively compute V(L) and V(R)
- 3 Merge V(L) and V(R) into V(S)



- Divide and Conquer to Compute V(S)
  - Use a vertical line to partition *S* into *L* and *R* where  $|L| \sim |R|$ 
    - If |S| is a constant, directly compute V(S) instead

《曰》《聞》 《臣》 《臣》

- 2 Recursively compute V(L) and V(R)
- 3 Merge V(L) and V(R) into V(S)



- Divide and Conquer to Compute V(S)
  - Use a vertical line to partition *S* into *L* and *R* where  $|L| \sim |R|$ 
    - If |S| is a constant, directly compute V(S) instead
  - 2 Recursively compute V(L) and V(R)
  - 3 Merge V(L) and V(R) into V(S)



- Divide and Conquer to Compute V(S)
  - Use a vertical line to partition *S* into *L* and *R* where  $|L| \sim |R|$ 
    - If |S| is a constant, directly compute V(S) instead
  - 2 Recursively compute V(L) and V(R)
  - 3 Merge V(L) and V(R) into V(S)



• Merge Chain B(L, R) consists of Voronoi edges between V(I, S) and V(r, S) where  $I \in L$  and  $r \in R$ .



- Merge Chain B(L, R) consists of Voronoi edges between V(I, S) and V(r, S) where  $I \in L$  and  $r \in R$ .
  - Voronoi edges between L's regions and R's regions



- Merge Chain B(L, R) consists of Voronoi edges between V(I, S) and V(r, S) where  $I \in L$  and  $r \in R$ .
  - Voronoi edges between L's regions and R's regions
  - $d(x, L) = \min_{l \in L} d(x, l)$  (reps. d(x, R))



- Merge Chain B(L, R) consists of Voronoi edges between V(I, S) and V(r, S) where  $I \in L$  and  $r \in R$ .
  - Voronoi edges between L's regions and R's regions
  - $d(x, L) = \min_{l \in L} d(x, l)$  (reps. d(x, R))

• 
$$B(L,R) = \{x \in R^2 \mid d(x,L) = d(x,R)\}$$



- Merge Chain B(L, R) consists of Voronoi edges between V(I, S) and V(r, S) where  $I \in L$  and  $r \in R$ .
  - Voronoi edges between L's regions and R's regions
  - $d(x, L) = \min_{l \in L} d(x, l)$  (reps. d(x, R))
  - $B(L, R) = \{x \in R^2 \mid d(x, L) = d(x, R)\}$

•  $\forall e \in B(L, R)$  belongs to  $B(I, r), I \in L$  and  $r \in R$ 



- Compute V(S)
  - Remove the part of V(L) right to B(L, R)
  - Remove the part of V(R) left to B(L, R)
  - Glue the two remaining parts



- Compute V(S)
  - Remove the part of V(L) right to B(L, R)
  - Remove the part of V(R) left to B(L, R)
  - Glue the two remaining parts



- Compute V(S)
  - Remove the part of V(L) right to B(L, R)
  - Remove the part of V(R) left to B(L, R)
  - Glue the two remaining parts



- Compute V(S)
  - Remove the part of V(L) right to B(L, R)
  - Remove the part of V(R) left to B(L, R)
  - Glue the two remaining parts



- Compute V(S)
  - Remove the part of V(L) right to B(L, R)
  - Remove the part of V(R) left to B(L, R)
  - Glue the two remaining parts



- Compute V(S)
  - Remove the part of V(L) right to B(L, R)
  - Remove the part of V(R) left to B(L, R)
  - Glue the two remaining parts



- Compute V(S)
  - Remove the part of V(L) right to B(L, R)
  - Remove the part of V(R) left to B(L, R)
  - Glue the two remaining parts
- B(L, R) is a part of V(S)


#### Lemma

B(L, R) is y-monotone

- Let *b* be an edge of B(L, R).
- *b* belongs to V(I, S) and V(r, S),  $I \in L$  and  $r \in R$
- Let b be directed such that I in the left of b
- x-coordinate of *I* < x-coordinate of *r*

 $\rightarrow$  *b* must be **upward** 

#### B(L, R) is y-monotone

#### Lemma

B(L, R) is y-monotone

- Let *b* be an edge of B(L, R).
- *b* belongs to V(I, S) and V(r, S),  $I \in L$  and  $r \in R$
- Let b be directed such that I in the left of b
- x-coordinate of *I* < x-coordinate of *r* 
  - $\rightarrow$  *b* must be **upward**

#### Computing B(L, R)

- Find the bottom edge *e* of *B*(*L*, *R*) as a starting edge
  *e* is unbounded and extends to -∞
- Trace out **B**(**L**, **R**) from **e**

 An unbounded Voronoi edge corresponds to an edge of the convex hull conv(S) of S



- An unbounded Voronoi edge corresponds to an edge of the convex hull conv(S) of S
  - Build conv(L) and conv(R)
    - V(L) and V(R) are known.



- An unbounded Voronoi edge corresponds to an edge of the convex hull conv(S) of S
  - Build conv(L) and conv(R)
    - V(L) and V(R) are known.
  - Compute a tangent edge  $\overline{Ir}$  between conv(L) and conv(R)



- An unbounded Voronoi edge corresponds to an edge of the convex hull conv(S) of S
  - Build conv(L) and conv(R)
    - V(L) and V(R) are known.
  - Compute a tangent edge  $\overline{Ir}$  between conv(L) and conv(R)
  - B(l, r) is the starting edge



- An unbounded Voronoi edge corresponds to an edge of the convex hull conv(S) of S
  - Build conv(L) and conv(R)
    - V(L) and V(R) are known.
  - Compute a tangent edge  $\overline{Ir}$  between conv(L) and conv(R)
  - B(l, r) is the starting edge
- O(|L| + |R|) time



- $B(L, R) \cap V(I, L)$ 
  - B(L, R) enters V(I, L) at v along  $B(I, r_1)$

イロト イポト イヨト イヨト



- $B(L, R) \cap V(I, L)$ 
  - B(L, R) enters V(I, L) at v along  $B(I, r_1)$

・ロン・西方・ ・ ヨン・ ヨン・



- $B(L, R) \cap V(I, L)$ 
  - B(L, R) enters V(I, L) at v along  $B(I, r_1)$

・ロト ・回 ト ・ ヨト ・ ヨトー



- $B(L,R) \cap V(I,L)$ 
  - B(L, R) enters V(I, L) at v along  $B(I, r_1)$



・ロト ・四ト ・ヨト ・ヨトー

- $B(L, R) \cap V(I, L)$ 
  - B(L, R) enters V(I, L) at v along  $B(I, r_1)$
  - Counterclockwise along  $\partial V(I, L)$  from v to find
    - $v_{L,1} \in B(I, r_1)$ 
      - After  $v_{L,1}$ ,  $V(l,L) \rightarrow V(l',L)$ , and  $B(l,r_1) \rightarrow B(l',r_1)$

イロト イポト イヨト イヨト



- $B(L, R) \cap V(I, L)$ 
  - B(L, R) enters V(I, L) at v along  $B(I, r_1)$
  - Counterclockwise along  $\partial V(l, L)$  from v to find  $v_{L,1} \in B(l, r_1)$ 
    - After  $v_{L,1}$ ,  $V(l,L) \rightarrow V(l',L)$ , and  $B(l,r_1) \rightarrow B(l',r_1)$
  - Clockwise along  $\partial V(r_1, R)$  to find  $v_{R,1} \in B(l, r_1)$ 
    - After  $v_{R,1}$ ,  $V(r_1, R) \rightarrow V(r_2, R)$ , and  $B(l, r_1) \rightarrow B(l, r_2)$

イロト イポト イヨト イヨト



- $B(L,R) \cap V(I,L)$ 
  - B(L, R) enters V(I, L) at v along  $B(I, r_1)$
  - Counterclockwise along  $\partial V(l, L)$  from v to find  $v_{L,1} \in B(l, r_1)$ 
    - After  $v_{L,1}$ ,  $V(I,L) \rightarrow V(I',L)$ , and  $B(I,r_1) \rightarrow B(I',r_1)$
  - Clockwise along  $\partial V(r_1, R)$  to find  $v_{R,1} \in B(l, r_1)$ 
    - After  $v_{R,1}$ ,  $V(r_1, R) \rightarrow V(r_2, R)$ , and  $B(l, r_1) \rightarrow B(l, r_2)$

イロト イポト イヨト イヨト

•  $v_{R,1}$  earlier than  $v_{L,1}$ , and  $B(l, r_1) \rightarrow B(l, r_2)$  at  $v_{R,1}$ 



- $B(L, R) \cap V(I, L)$ 
  - B(L, R) from  $v_{R,1}$  along  $B(I, r_2)$



・ロト ・四ト ・ヨト ・ヨトー

- $B(L, R) \cap V(I, L)$ 
  - B(L, R) from  $v_{R,1}$  along  $B(I, r_2)$
  - Counterclockwise along  $\partial V(l, L)$  from  $v_{L,1}$  to find
    - $v_{L,2} \in B(I, r_2)$ 
      - After  $v_{L,2}$ ,  $V(l,L) \rightarrow V(l',L)$ , and  $B(l,r_2) \rightarrow B(l',r_2)$

イロト イポト イヨト イヨト

ъ



- $B(L, R) \cap V(I, L)$ 
  - B(L, R) from  $v_{R,1}$  along  $B(I, r_2)$
  - Counterclockwise along ∂V(I, L) from v<sub>L,1</sub> to find v<sub>L,2</sub> ∈ B(I, r<sub>2</sub>)
    - After  $v_{L,2}$ ,  $V(l,L) \rightarrow V(l',L)$ , and  $B(l,r_2) \rightarrow B(l',r_2)$
  - Clockwise along  $\partial V(r_2, R)$  from  $v_{R,1}$  to find  $v_{R,2} \in B(I, r_2)$ 
    - After  $v_{R,2}$ ,  $V(r_2, R) \rightarrow V(r_3, R)$ , and  $B(l, r_2) \rightarrow B(l, r_3)$

イロト イポト イヨト イヨト



- $B(L, R) \cap V(I, L)$ 
  - B(L, R) from  $v_{R,1}$  along  $B(I, r_2)$
  - Counterclockwise along  $\partial V(l, L)$  from  $v_{L,1}$  to find  $v_{L,2} \in B(l, r_2)$ 
    - After  $v_{L,2}$ ,  $V(l,L) \rightarrow V(l',L)$ , and  $B(l,r_2) \rightarrow B(l',r_2)$
  - Clockwise along  $\partial V(r_2, R)$  from  $v_{R,1}$  to find  $v_{R,2} \in B(I, r_2)$ 
    - After  $v_{R,2}$ ,  $V(r_2, R) \rightarrow V(r_3, R)$ , and  $B(l, r_2) \rightarrow B(l, r_3)$

イロト イポト イヨト イヨト

•  $v_{R,2}$  earlier than  $v_{L,2}$ , and  $B(l, r_2) \rightarrow B(l, r_3)$  at  $v_{R,2}$ 



- $B(L, R) \cap V(I, L)$ 
  - B(L, R) from  $v_{R,2}$  along  $B(I, r_3)$



・ロト ・聞 ト ・ ヨト ・ ヨトー

- $B(L, R) \cap V(I, L)$ 
  - B(L, R) from  $v_{R,2}$  along  $B(I, r_3)$
  - Counterclockwise along  $\partial V(l, L)$  from  $v_{L,2}$  to find
    - $v_{L,3} \in B(I, r_3)$ 
      - After  $v_{L,3}$ ,  $V(l,L) \rightarrow V(l'',L)$ , and  $B(l,r_3) \rightarrow B(l'',r_3)$

イロト イポト イヨト イヨト

ъ



- $B(L, R) \cap V(I, L)$ 
  - B(L, R) from  $v_{R,2}$  along  $B(I, r_3)$
  - Counterclockwise along ∂V(I, L) from v<sub>L,2</sub> to find v<sub>L,3</sub> ∈ B(I, r<sub>3</sub>)
    - After  $v_{L,3}$ ,  $V(I,L) \to V(I'',L)$ , and  $B(I,r_3) \to B(I'',r_3)$
  - Clockwise along  $\partial V(r_3, R)$  from  $v_{R,2}$  to find  $v_{R,3} \in B(I, r_3)$

イロト イポト イヨト イヨト

No V<sub>R,3</sub>



- $B(L, R) \cap V(I, L)$ 
  - B(L, R) from  $v_{R,2}$  along  $B(I, r_3)$
  - Counterclockwise along  $\partial V(I, L)$  from  $v_{L,2}$  to find  $v_{L,3} \in B(I, r_3)$ 
    - After  $v_{L,3}$ ,  $V(l,L) \rightarrow V(l'',L)$ , and  $B(l,r_3) \rightarrow B(l'',r_3)$
  - Clockwise along  $\partial V(r_3, R)$  from  $v_{R,2}$  to find  $v_{R,3} \in B(I, r_3)$

イロト イポト イヨト イヨト

- No V<sub>R,3</sub>
- $B(l, r_3) \rightarrow B(l'', r_3)$  at  $v_{L,3}$



- $B(L, R) \cap V(I, L)$ 
  - B(L, R) from  $v_{R,2}$  along  $B(I, r_3)$
  - Counterclockwise along ∂V(I, L) from v<sub>L,2</sub> to find v<sub>L,3</sub> ∈ B(I, r<sub>3</sub>)
    - After  $v_{L,3}$ ,  $V(I,L) \rightarrow V(I'',L)$ , and  $B(I,r_3) \rightarrow B(I'',r_3)$
  - Clockwise along  $\partial V(r_3, R)$  from  $v_{R,2}$  to find  $v_{R,3} \in B(I, r_3)$

イロト イポト イヨト イヨト

- No V<sub>R,3</sub>
- $B(l, r_3) \rightarrow B(l'', r_3)$  at  $v_{L,3}$



#### Time to Compute B(L, R)

#### Lemma

Computing B(L, R) takes O(|L| + |R|) = O(|S|) time

- Finding the starting edge takes O(|L| + |R|) time
- Traversing V(L) takes O(|V(L)|) time  $(V(R) \rightarrow O(|V(R)|))$ 
  - Enter each V(I, L) and its boundary at most once
- There are O(|B(L, R)|) intersections
  - Each edge of B(L, R) makes two intersections.
- O(|L| + |R|) + O(|V(L)|) + O(|V(R)|) + O(|B(L, R)|)= O(|L| + |R| + |L| + |L| + |S|) = O(|S|)
  - O(|V(L)|) = O(|L|), O(|V(R)|) = O(|R|), and O(|B(L, R)|) = O(|S|)

#### Theorem

The divide-and-conquer algorithm computes V(S) in  $O(n \log n)$  time

- Sorting takes O(n log n) time (only do once)
- A sub-instance  $S' \subset S$  takes O(|S'|) time
  - Partitioning S' into L' and R' takes O(|S'|) time
  - Computing B(L', R') takes O(|S'|) time
- The *i*<sup>th</sup>-level takes  $O(2^i) \times O(n/2^i) = O(n)$  time
  - $O(2^i)$  sub-instances each with  $O(n/2^i)$  sites

・ロン・西方・ ・ ヨン・ ヨン・

• O(log n) levels

#### Theorem

The divide-and-conquer algorithm computes V(S) in  $O(n \log n)$  time

- Sorting takes O(n log n) time (only do once)
- A sub-instance  $S' \subset S$  takes O(|S'|) time
  - Partitioning S' into L' and R' takes O(|S'|) time
  - Computing B(L', R') takes O(|S'|) time
- The *i*<sup>th</sup>-level takes  $O(2^i) \times O(n/2^i) = O(n)$  time
  - $O(2^i)$  sub-instances each with  $O(n/2^i)$  sites
- O(log n) levels
- $T(n) = O(n) + 2 \cdot T(n/2) => T(n) = O(n \log n)$