## Properties of Abstract Voronoi Diagrams

A simplified version of the following reference

- Rolf Klein, "Combinatorial Properties of Abstract Voronoi Diagrams," Graph-Theoretic Concepts in Computer Science (WG 89), LNCS 834, pp. 356-369, 1989.

Euclidean Voronoi Diagrams

Voronoi Diagram: Given a set $S$ of $n$ point sites in the plane, the Voronoi diagram $V(S)$ of $S$ is a planar subdivision such that

- Each site $p \in S$ is assigned a Voronoi region denoted by $\operatorname{VR}(p, S)$
- All points in $\operatorname{VR}(p, S)$ share the same nearest site $p$ in $S$

Voronoi Edge: The common boundary between two adjacent Voronoi regions, $\operatorname{VR}(p, S)$ and $\operatorname{VR}(q, S)$, i.e., $\operatorname{VR}(p, S) \cap \operatorname{VR}(q, S)$, is called a Voronoi edge.

Voronoi Vertex: The common vertex among more than two Voronoi regions is called a Voronoi vertex.


The Euclidean Voronoi diagram can be computed in $O(n \log n)$ time

- Line Segment Voronoi Diagram

- Circle Voronoi Diagram

- Voronoi Diagram in the $L_{1}$ metric

- For two sites $p, q \in S$, the bisector $\boldsymbol{J}(\boldsymbol{p}, \boldsymbol{q})$ between $p$ and $q$ is defined as $\left\{x \in R^{2} \mid d(x, p)=d(x, q)\right\}$
- $J(p, q)$ partitions the plane into two half-planes
$-D(p, q)=\left\{x \in R^{2} \mid d(x, p)<d(x, q)\right\}$
$-D(q, p)=\left\{x \in R^{2} \mid d(x, q)<d(x, p)\right\}$
- $\operatorname{VR}(p, S)=\bigcap_{q \in S \backslash\{p\}} D(p, q)$
- $V(p, S)=R^{2} \backslash \bigcup_{p \in S} \operatorname{VR}(p, S)$
- consists of Voronoi edges.

Abstract Voronoi Diagrams
A unifying approach to computing Voronoi diagrams among different geometric sites under different distance measures.

A bisecting system $\mathcal{J}=\{J(p, q) \mid p, q \in S\}$ for a set $S$ of sites (indices)

A bisecting system $\mathcal{J}$ is admissible if $\mathcal{J}$ satisfies the following axioms
(A1) Each bisecting curve in $\mathcal{J}$ is homeomorphic to a line (not closed)
(A2) For each non-empty subset $S^{\prime}$ of $S$ and for each $p \in S^{\prime}, \operatorname{VR}\left(p, S^{\prime}\right)$ is path-connected.
(A3) For each non-empty subset $S^{\prime}, R^{2}=\bigcup_{p \in S^{\prime}} \overline{\operatorname{VR}\left(p, S^{\prime}\right)}$
(A4) Any two curves in $\mathcal{J}$ have only finitely many intersection points, and these intersections are transversal.

- (A1) can be written as "Each curve in $\mathcal{J}$ is unbounded. After stereographic projection to the sphere, it can be completed to a closed Jordan curve through the north pole."
- (A4) can be removed through several complicated proofs.


Not Transversal


Transversal

Not Admissible


Non-Man Land


Disconnected

Three possibilities of an admissible system for three sites


Abstract Voronoi Diagrams

- A category of Voronoi diagrams
- points in any convex distance function
- Karlsruhe metric
- Line segments and convex polygons of constant size

Basic Properties
Lemma 1
Let $(S, \mathcal{J})$ be a bisecting curve system. If for each nonempty subset $S^{\prime} \subseteq S$, $R^{2}=\bigcup_{p \in s^{\prime}} \overline{\operatorname{VR}\left(p, S^{\prime}\right)}$ (Axiom (A3)), then
for every three pairwise sites $p, q$, and $r$ in $S, D(p, q) \cap D(q, r) \subseteq D(p, r)$ (Transitivity).

Proof:

- Let $x$ be a point in $D(p, q) \cap D(q, r)$.
- $x$ must be contained in $D(r, p), J(r, p)$, and $D(p, r)$.
- If $x$ were contained in $D(r, p)$, it could not lie in the closure of any closed Voronoi region:

$$
\begin{aligned}
& \overline{\mathrm{VR}\left(q, S^{\prime}\right)} \subseteq \overline{\overline{D(q, p)}}=D(q, p) \cup J(q, p) \\
& \overline{\mathrm{VR}\left(r, S^{\prime}\right)} \subseteq \overline{D(r, q)}=D(r, q) \cup J(r, q) \\
& \overline{\mathrm{VR}\left(p, S^{\prime}\right)} \subseteq \overline{D(p, r)}=D(p, r) \cup J(p, r)
\end{aligned}
$$

for $S^{\prime}=\{p, q, r\}$. This contraicts Axiom (A3).

- If $x \in J(p, r)$, consider a small neighborhood $U$ at $x$ such that $U \subseteq$ $D(p, q) \cap D(q, r)$.
- There is an arc $\alpha$ with endpint $x$ such that $\alpha \subset U$ and $\alpha \backslash\{x\} \subset$ $D(r, p)$.
- Inside $U, \alpha$ contains a point $z \in D(p, q) \cap D(q, r) \cap D(r, p)$
$-z$ does not lie in any of $\operatorname{VR}\left(p, S^{\prime}\right), \operatorname{VR}\left(q, S^{\prime}\right)$, and $\operatorname{VR}\left(r, S^{\prime}\right)$ for $S^{\prime}=$ $\{p, q, r\}$, contradicting Axiom (A3).
- To conclude, $x \in D(p, r)$.

