Properties of Abstract Voronoi Diagrams

A simplified version of the following reference

 Rolf Klein, "Combinatorial Properties of Abstract Voronoi Diagrams," Graph-Theoretic Concepts in Computer Science (WG 89), LNCS 834, pp. 356–369, 1989.

Euclidean Voronoi Diagrams

Voronoi Diagram: Given a set S of n point sites in the plane, the Voronoi diagram V(S) of S is a planar subdivision such that

- Each site $p \in S$ is assigned a Voronoi region denoted by VR(p, S)
- All points in VR(p, S) share the same nearest site p in S

Voronoi Edge: The common boundary between two adjacent Voronoi regions, $\mathrm{VR}(p,S)$ and $\mathrm{VR}(q,S),$ i.e., $\mathrm{VR}(p,S)\cap\mathrm{VR}(q,S)$, is called a Voronoi edge.

Voronoi Vertex: The common vertex among more than two Voronoi regions is called a *Voronoi vertex*.

The Euclidean Voronoi diagram can be computed in $O(n\log n)$ time

• Voronoi Diagram in the L_1 metric

Bisecting Systems

- For two sites $p, q \in S$, the bisector J(p, q) between p and q is defined as $\{x \in R^2 \mid d(x, p) = d(x, q)\}$
- J(p,q) partitions the plane into two half-planes $-D(p,q) = \{x \in R^2 \mid d(x,p) < d(x,q)\}$ $-D(q,p) = \{x \in R^2 \mid d(x,q) < d(x,p)\}$
- $\operatorname{VR}(p, S) = \bigcap_{q \in S \setminus \{p\}} D(p, q)$
- $V(p, S) = R^2 \setminus \bigcup_{p \in S} \operatorname{VR}(p, S)$ - consists of Voronoi edges.

Abstract Voronoi Diagrams

A unifying approach to computing Voronoi diagrams among different geometric sites under different distance measures.

A bisecting system $\mathcal{J} = \{J(p,q) \mid p,q \in S\}$ for a set S of sites (indices)

A bisecting system \mathcal{J} is **admissible** if \mathcal{J} satisfies the following axioms

- (A1) Each bisecting curve in \mathcal{J} is homeomorphic to a line (not closed)
- (A2) For each non-empty subset S' of S and for each $p \in S'$, VR(p, S') is path-connected.
- (A3) For each non-empty subset S', $R^2 = \bigcup_{p \in S'} \overline{\operatorname{VR}(p, S')}$
- (A4) Any two curves in \mathcal{J} have only finitely many intersection points, and these intersections are transversal.

- (A1) can be written as "Each curve in \mathcal{J} is unbounded. After stereographic projection to the sphere, it can be completed to a closed Jordan curve through the north pole."
- (A4) can be removed through several complicated proofs.

Three possibilities of an admissible system for three sites

Abstract Voronoi Diagrams

- A category of Voronoi diagrams
 - points in any convex distance function
 - Karlsruhe metric
 - Line segments and convex polygons of constant size

Basic Properties

Lemma 1

Let (S, \mathcal{J}) be a bisecting curve system. If for each nonempty subset $S' \subseteq S$, $R^2 = \bigcup_{p \in s'} \overline{\operatorname{VR}(p, S')}$ (Axiom (A3)), then for every three pairwise sites p, q, and r in $S, D(p,q) \cap D(q,r) \subseteq D(p,r)$ (Transitivity). Proof:

- Let x be a point in $D(p,q) \cap D(q,r)$.
- x must be contained in D(r, p), J(r, p), and D(p, r).
- If x were contained in D(r, p), it could not lie in the closure of any closed Voronoi region:

$$\overline{\mathrm{VR}(q,S')} \subseteq \overline{D(q,p)} = D(q,p) \cup J(q,p)$$
$$\overline{\mathrm{VR}(r,S')} \subseteq \overline{D(r,q)} = D(r,q) \cup J(r,q)$$
$$\overline{\mathrm{VR}(p,S')} \subseteq \overline{D(p,r)} = D(p,r) \cup J(p,r)$$

for $S' = \{p, q, r\}$. This contraicts Axiom (A3).

- If $x \in J(p,r)$, consider a small neighborhood U at x such that $U \subseteq D(p,q) \cap D(q,r)$.
 - There is an arc α with endpint x such that $\alpha \subset U$ and $\alpha \setminus \{x\} \subset D(r, p)$.
 - Inside $U,\,\alpha$ contains a point $z\in D(p,q)\cap D(q,r)\cap D(r,p)$
 - -z does not lie in any of VR(p, S'), VR(q, S'), and VR(r, S') for $S' = \{p, q, r\}$, contradicting Axiom (A3).
- To conclude, $x \in D(p, r)$.