
Nmber of faces of convex polytope (Chapter 5.4 and 5.5)

Main Question:

For a convex polytope P with n vertices in Rd, what is the maximum number

of facets or faces of P ?

Terminology

• fj = fj(P ) denotes the number of j-faces of a polytope P

• The vector (f0, f1, . . . , fd) is called the f -vector of P

• f0 = n

• Estimate fd−1 and
∑d

k=0 fk.

A 3-dimensional polytope

• f1 ≤ 3n− 6 and f2 ≤ 2n− 4

– By well-known results for planar graphs

• Equalities hold if and only if the polytope is simplicial (all facets are

triangles)

Higher dimensions

• For every n ≥ 5, a 4-dimensional convex polytope with n vertices can

have every two vertices connected by an edge, i.e.,
(
n
2

)
edges

• In any fixed dimension d, the number of facets can be of order nbd/2c

The number of faces for a given dimension and number of vertices is the

largest possible for so-called Cyclic Polytopes



Moment curve

The curve γ = {(t, t2, . . . , td) | t ∈ R}

Cyclic polytope

The convex hull of finitely many points on the moment curve is called

a cyclic polytope.

Lemma

Any hyperplane h intersects the moment curve γ in at most d points.

If there are d intersections, then h cannot be tangent to γ, and thus at each

intersection, γ passes from one side of h to the other

Sketch of Proof

• h can be expressed by the equation 〈a, x〉 = b, or in coordinates a1x1 +

a2x2 + · · · + adxd − b = 0.

• A point of γ has the form (t, t2, . . . , td).

• If this point lies in h, we obtain a1t + a2t
2 + · · · + adt

d − b = 0

• In this situation, t is a root of a nonzero polynomial ph(t) of degree at

most d, and thus the number of intersections of h with γ is at most d

• If there are d distinct roots, then they must be all simple.

• At a simple root, the polynomial ph(t) changes sign, and this means that

the curve γ passes from one side of h to the other

Corollary

• Every d points of the moment curve are affinely indepedent.

– Otherwise, we could pass a hyperplane through them plus one more

point of γ

• The moment curve readily supplies explicit examples of point sets in

general position



How many facets does a cyclic polytope have?

• Each facet is determined by a d-tuple of vertices

• Distinct d-tuples determine distinct facets.

Proposition (Gale’s evenness criterion)

Let V be the vertex set of a cyclic polytope P considerd with the linear

ordering ≤ along the moment curve (larger vertices have larger values of the

parameter t).

Let F = {v1, v2, . . . , vd} ⊆ V be a d-tuple of vertices of P , where v1 < v2 <

· · · < vd.

Then F determines a facet of P if and only if for any two vertices u, v ∈ V \F ,

the number of vertices vi ∈ F with u < vi < v is even.
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Sktech of Proof.

• Let hF be the hyperplane affinely spanned by F

• F determines a facet if and only if all the points of V \F lies on the same

side of hF

• Since the moment curve γ intersects hF in exactly d points, i.e., at the

points of F , γ is partitioned into d + 1 pieses, say γ0, . . . , γd, each lying

completely in one of the half-spaces.

• If the vertices of V \ F are all contained in the odd-numbered pieces

γ1, γ3, . . ., or if they are all contained in the even-number pieces γ0, γ2, . . .,

then F detemines a facet

• The above condition is equivalent to the Gale’s criterion.



Theorem (Number of facets of a cyclic polytope)

The number of facets of a d-dimensional cyclic polytope with n vertices is(
n− bd/2c
bd/2c

)
+

(
n− bd/2c − 1

bd/2c − 1

)
for d even, and

2

(
n− bd/2c − 1

bd/2c

)
for d odd.

For fixed d, this has the order of magnitude nbd/2c.

Sketch of Proof

• # facets = # ways placing d black circles and n−d white circles in a row

where an even number of black circles lies between each two white circles.

• An arrangement of black and white circles are paired if any contiguous

segment of black circles has an even length

• # paired arrangements of 2k black and n− 2k white circles is
(
n−k
k

)
– since by deleting every second black circles we get a one-to-one cor-

respondence with selections of the position of k black circles among

n− k possible position

• Consider an odd d = 2k+1. We must have an odd number of consecutive

black circles at the begining or at the end (but not botth)

– For the former case, delete the initial black circle, and get a paired

arrangment of 2k black and n− 1− 2k white circles

– For the latter case, do symmetrically

– This implies the first formula for odd d

• For d = 2k, # initial consecutive black circles is either odd or even.

– In the even case, we have a paired arrangement, leading to
(
n−k
k

)
pos-

sibilities

– In the odd case,

∗ We also have an odd number of consecutive black circles at the end

∗ By deleting the first and last black circles we obtain a paired ar-

rangement of 2(k − 1) black circles and n− 2k white circles

∗ This implies
(
n−k−2
k−1

)
possibilities



Upper Bound Theorem

Among all d-dimensional convex polytopes, claims that the cyclic polytope

has the largest possible number of faces.

Asymptotic upper bound theorem (Proposition 5.5.2)

A d-dimensional convex polytope with n vertices has at most 2
(

n
bd/2c

)
facets

and no more than 2d+1
(

n
bd/2c

)
faces in total. For d fixed, both quantities thus

have the order of mangnitude nbd/2c.

Proposition 5.5.3.

Let P be a d-dimensional simplicial polytope. Then

(a) f0(P ) + f1(P ) + · · · + fd(P ) ≤ 2dfd+1(P ), and

(b) fd−1(P ) ≤ 2fbd/2c−1(P )

This implies Proposition 5.5.2 for simplicial polytope

• The number of (bd/2c−1)-faces is certainly no bigger than
(

n
bd/2c

)
, which

is the number of all bd/2c-tuples of vertices

Sketch of Proof

• Consider the dual polytope P ∗, which is simple

• Need to prove
∑d

k=0 fk(P
∗) ≤ 2df0(P

∗) and f0(P
∗) ≤ 2fdd/2e(P

∗).

• Each face of P ∗ has at least one vertex, and every vertex of a simple

d-polytope is incident to 2d faces, which is gives the first inequality

• The remainng is to bound the number of vertices in terms of the number

of dd/2e-faces.

– It shows where the mysterious exponent bd/2c comes from



Sketch of Proof (Continues)

• Rotate the polytope P ∗ so that no two vertices share the xd-coordinace

– i.e., no two vertices have the same vertical level

• Consider a vertex v with d edges emanating from it.

• By the pigeonhole principle, there are at least dd/2e edges directed down-

wards or at least dd/2e edges directed upwards

• In the former case, every dd/2e-tuple of edge going up determines a dd/2e-
face for which v is the lowest vertex

• In the latter case, every dd/2e-tuple of edge going down determines a dd/2e-
face for which v is the highest vertex

• There exists at least one dd/2e-face for which v is the lowest vertex or the

highest vertex

• Since the lowest vertex and the highest vertex are unqiue for each face, the

number of vertices is no more than twice the number of dd/2e-faces.

Warning

• For simple polytopes, the total combinatorial complexity is proportional to

the number of vertices

• For simplicial polytope, the combinatorial complexity is proportional to the

number of facets

• For polytopes that are neigher simple nor simplicial, the number of faces of

intermediate dimenions can have larger order of magnitude than both the

number of facets and the number of vertices.

Nonsimplicial polytopes

• To prove the asymptotic upper bound

• To use the perturbation argument



Lemma

For any d-dimensional convex polytope P , there exists a d-dimensional

simplicail polytope Q with f0(P ) = f0(Q) and fk(Q) ≥ fk(P ) for all

k = 1, 2, . . . , d.

Sketch of Proof

• Basic Idea

– Move (perturb) every vertex of P by a very small amount, in such a

way that the vertices are in general position

– Show that each k-face of P give rise to at least one k-face of the

perturbed polytope.

• Process the vertices one by one

• Let V be the vertex set of P and let v ∈ V

• The operation of ε-pushing v:

– Choose a point v′ lying in the interior of P , at distance at most ε from

v, and on no hyperplane determined by the points of V .

– Set V ′ = (V \ {v}) ∪ {v′}

• If we successively εv-push each vertex of the polytope, the resulting vertex

set is in general position and we have a simple polytope.

• Show for any polytope P with vertex set V and any vertex v ∈ V , there

is an ε > 0 such that ε-pushing v does not decrease the number of faces.

• Let U ⊂ V be the vertex set of a k-face of P , 0 ≤ k ≤ d− 1, and let V ′

arise from V by ε-pushing v.

• If v 6∈ U , then U determines a face of conv(V ′). so we assume v ∈ V .

• If v lies in the affine hull of U \ {v}

– Claim U \ {v} determines a k-face of conv(V ′).

– This follows from Exercise 5.3.7: A subset U ⊂ V is the vertex of

a face of conv(V ) if and only if the affine hull of U is disjoint from

conv(V \ U).



Sketch of Proof (continues)

• If v lies outside the affine hull of U \ {v}:

– Show U ′ = (U \ {v}) ∪ {v′} determines a k-face of conv(V ′)

– The affine hull of U is disjoint from the compact set conv(V \ U)

– If we move v continuously by a sufficiently smal amount, the affine

hull of U moves continuously, so there is an ε > 0 such that if we

move v within ε from its original position, the considered affine hull

and conv(V \ U) remain disjoint.


