k™-order Voronoi Diagrams
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Given a set S of n point sites in the Euclidean plane, the k-
order Voronoi diagram Vi (.S) is a planar subdivision such that

e cach region is associated with a k-element subset H of .S and

denoted by VRy(H, 5).

e all points in VRy(H, S) share the same k nearest sites H
among S.
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Property 1

Consider a Voronoi edge e between VRy(Hy, S) and VRy(Hs, S).

H, and H» only differ by one site.

Let Hy \ Hy be {p} and Hy \ H; be {q¢}.

For all points « € e, H; N Hy are the k — 1 nearest sites of x and both
p and ¢ are the k™ nearest sites of .

k=4
‘HlﬂHQ’:?)

General Position Assumption

e no more than than sites are on the same line
— Vi(.5) is connected.

e no more than three sites are on the same circle
— the degree of a Voronoi vertex is exactly 3.

Definition 1
Consider a Voronoi vertex v among VRg(Hi,S), VRi(Hs,S), and
VR (Hs, S).

® VU IS new if|H1UH2UH3’ =k + 2. H1 :HU{p}, HQZHU{Q},
Hs; = HU{r}, where |H| =k — 1.
— the circle centered at v and touching p, ¢, and r will exactly enclose
the k — 1 sites of H.

evisoldif |[HHUH,UH;3|=k+1. H = HU{p,q}, Ho = HU{q,r},
Hs; = HU{p,r}, where |[H| =k — 2.
— the circle centered at v and touching p, ¢, and r will exactly enclose
the k — 2 sites of H.
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\ v is old
k=4
Hy = HU{p,q}
Hy=HU{q,r}
Hs;=HU{p,r}
|H| =2

Proprety 2
v is a Voronoi vertex among VRy(Hq, S), VRi(Ho, S), and VRi(Hs, S)

(a) v is new
— v is an old Voronoi vertex among VRi(H; U Hs,S), VRi(Hy U
Hs, S), VR,(Hs U Hy, S).

(b) v is old
— v belongs to VRx(H; U Hy U H3).



Property 3

Consider an edge e between VRy(Hy, S) and VRy(Hs, S).

Then all points = € e belong to VRi(H; U Hy).

Sketch of proof:

Let Hy \ Hy be {p} and Hy \ H;y be {q}. Since e is a part of the bisector
B(p, q) between p and ¢, the circle centered at x and touching p and ¢ will
enclose all the k — 1 sites of HyN Hy. Therefore, (H1NHy)U{p,q} = HiUH>
are exactly the k£ + 1 nearest sites of x.

Definition 2
For a Voronoi edge e of Vj(S), if one endpoint of e is an old Voronoi vertex,
e is called old; otherwise, e is called new.

Property 4
New vertices of V;(S) decompose V() into two kinds of connected compo-
nents:

1. a new Voronoi edge
2. a connected subgraph whose internal nodes are old Voronoi vertices

Each kind induces a Voronoi region of Vj41(S). (The former comes from
Property 2 (a) and Property 3, and the latter comes from Property 2(b) and
Property 3.)

Definition 3
For ¢ > 1, Voronoi regions VR;(H, S) of V;(S) can be categorized into two

types:
e type-1: VR,(H, S) contains one new edge of V;_1(5).

e type-2: VR,(H, S) contains old vertices of V;_1(S).
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VRs({q, s},S) is a type-1 region because it contains one new edge of V4(5)

Type-2

Both VR3({p, q, s}, S) and VR3({q,r, s}, S) are type-2 regions because they
contain old vertices of V5(S)



Lemma 1

For ¢ > 1, V;_l(S) ﬂVRZ<H, S) 1s a tree. Vz_l(S) HVRZ<H, S) 1s ‘/Z—l(H) M
VR;(H, S)

Sketch of proof

e all points in VR;(H, S) share the same ¢ nearest sites.
o V,_1(.5) partitions VR;(H, .S) into at most ¢ sub-regions, and t < 4.

o For 1 < j <t let R; be a sub-region of V;_1(S) N VR;(H, S), let H; be
the (¢ —1)-element subset of S such that R; = VR,;_;(H;, S)NVR,(H,S),
and let H \ H; be {s;}.

e Lor all points x in R;, H; are the (¢ — 1) nearest sites of , and s; is the

it nearest site of z.

e In other wods, s; is the farthest site of x among H.

o V;_1(.5) forms the fartheset site Voronoi diagram of H inside VR;(H,.5),
i.e., ‘/;_1(8) M VRZ(H, S) = ‘/;_1([‘]) M VRZ(H, S)

e The farthest-site Voronoi diagram is a tree

e By Property 4, V;_1(S)NVR;(H, S) is a connected component, and thus
Vi_1(H)NVR;(H, S) is a tree.

Corollary 1

If VR;(H,S) contains m old Voronoi vertices of V;_1(.5), VR;(H,S) contains
2m + 1 old Voronoi edges of V;_1(5).

Sketch of proof

e By the generation position assumption, the degree of a Voronoi vertex is 3.

e By Lemma 1, V;_1(S) N VR;(H, 9) is a tree.

Euler formular for a planar subdivision
v—e+ f=1+c,

where v is # of vertices, e is # of edges, f is # of faces, and c is # of connected
component



Corollary 2

Under the general position assumption,
OEkZB(Nk—l)—Sk
e and Ik = Q(Nk — 1) — Sk,

where E}. is # of edges, I is # of vertices, N} is # of faces, and Sy is # of
unbounded faces of Vj(5).

Theorem 1
Given a set S of n point sites in the Euclidean plane, the total number N,

of regions in Vi(S) is 2k(n — k) + k2 —n+1— S0 'S, where S; is # of
unbounded regions in V;(S), and Sy is defined to be 0.

proof

o [;, Il and I are # of vertices, new vertices, and old vertices of V;(.9),
respectively.

e F;, E and E! are # of edges, new edges, and old edges of V;(S), respec-
tively.

e N;, N/ and N/ are # of regions, type-1 regions, and type-2 regions of
Vi(S), respectively.

e Since an old vertex of V;;1(5) is a new vertex of V;(.9),

Lipy =1 + Iy =1, + I
=l

® [1 = ]{, E1 = Ei, and Ez'—H = El(—i—l + E’L,il—l

e Order N/, type-2 regions of V;2(.5), let m; be the number of old vertices
of Vi1 1(S) inside the j™ type-2 region of V;5(S), and let e, be the number
of edges of V;41(S) inside the j™ type-2 region of V. o(S).

N N
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e By Corollay 1,
N N
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Niyo = Nio+ Nitp = Ei g + (Bl — 2L) = By — 21
e Ny=nand Ny=FE]=F, =3n—-1)—&;.
e since N;juo = F;1 — 21, E; =3(N; — 1) = S;,and [; =2(N; — 1) = S,
Niyo = Eppt — 211 = 3(Nypt — 1) — St — 21

e By induction on k,
k—1

Ne=2k(n—k)+ K —n+1-) S

1=1

Theorem 2
Ny = O(k(n —k))

o If £ < n/2 by Theorem 1, Ny is trivially O(k(n — k)).

o If k> n/2, N, depends on 37— S;

o Since S Sy =nn—1), 'S =nn—-1) -7 S
o Since S, =S,_;, SIS =SS

o Ny =2k(n—k)+ Kk —n+1-S1"S
—2%k(n—k)+ k> —n+1—nn-1)+3"S
:Nk:Zk(n—k)—l—kQ—n—i—l—n(n—1)+Z§:1k8i

o Since 7S, < (n — k)n (recal # of < k-set),
Ny <2kn—k)+k —n+l-nn—-1)+n—-—Kkn=kn—k) +1



[terative Construction

Theorem 3
Vi11(S) can be obtained from V;(.S) by taking VR;(H,S) N Vi(S \ H) for all
H C S such that V;(H, S) is non-empty:.

Sketch of proof
o Vi(S\ H)NVR,(H,S) =V11(S)NVR,;(H,S5)
— all points in VR;(H, S) share the same ¢ nearest sites H among S

— all points in VR4 (p, S\ H) share the same nearest site p among S\ H.

— all points in VR (p, S\ H) NVR;(H, S) share the same ¢ nearest sites
H and (i + 1) nearest site p among S, implying that VRy(p, S\ H) N
VR;(H,S) C VR:1(H U{p}, 5)

— It is trivial that VR; 1 (H U {p},S) N VR,;(H,S) € VRi(p,S \ H),

— VRi(p, S\ H) N VR,;(H,S) = VR;11(H U {p},S) N VR;(H, S) for
Vpe H

Corollary 3
Assume VR;(H, S) has m adjacent regions VR;(H;,S), 1 < j < m. Let Q)
be Ulgjgm Hj \ H. Then ‘/;+1(S) M VRZ(H, S) = ‘/1(@) M VRZ(H, S)

The proof will be an exercise.

Compute V;1(S) from V;(.S)

e For each nonempty region VR;(H, S), compute V1(Q)NVR;(H, S) where
VR;(H, S) has m adjacent regions VR;(H;,S5), 1 < j < m, and @ is

U1§j§m Hj \ H.



Lemma 2
Vi41(S) can be obtained from V;(S) in O(i(n — i) logn) time.
Sketch of proof

e 11(Q) can be computed in |@Q|log |@Q| time.
o || < |OVR;(H,S)| where OVR;(H, S) is the boundary of VR;(H, S)

HcS,|H|=i,VR,;(H,5):0
= logn > O(|OVRi(H, S)|)

HcS,|H|=i,VR,;(H,5)£0
= O(i(n — 1) logn)

Theorem 4
Vi(S) can be computed in O(k*nlogn) time.
Sketch of proof

e V1(.S) can be computed in O(nlogn)
e O(nlogn) + S\ O(i(n — i) logi) = O(k*nlogn).



Construction by Geometric Duality and Arrangement

Definition 4 (Bisectors)
e For two sites, p, g € S, the bisector B(p, q) is {x € R* | d(x, p) = d(z,q)}.
e For asite p € S, let B, be {B(p,q) | ¢ € S\ {p}}.

Definition 5
For a site p € S, the k-neighborhood of p is UPGH,HC5’|H|:,€ VRi(H, S) and
denoted by VNk(p, S). VNi(p, S).

Property 5
Vi(S) = | 0VNu(p, 5)

peS

Lemma 3
VNy(p, S) is connected and each edge of OVN(p, S) is a part of the bisector

B(p, q) for some g € S\ {p}.
The proof could be a bonus task.

Lemma 4

Consider an edge of JVNg(p, S). For any point z € e, pT intersects exactly
k — 1 bisectors of B,,.

Sketch of proof

e W.lo.g, let e belong to VR(Hiy, S) N VRi(Hs, S) and let p belong to
Hy \ Hy.

e [t is clear that Hy \ {p} are the k — 1 nearest sites of z.

e For any g € Hy\ {p}, x belongs to D(q, p), i.e., pT intersects B(p, q). For
any g € S\ Hy, z does not belongs to D(q, p), i.e., pT does not intersects

B(p,q).



Definition 6

e Given a set L of lines in the plane, let A(L) be the arrangement fromd by
L.

e For a point x in a face of A(L), an edge e of A(L) is at level i from x if
for any point y € e, yx intersects exactly ¢ — 1 lines of L.

e The i-skeleton SK;(z, L) is the collection of edges in A(L) whose level
from x is 7.

Lemma 5

OVN(p, S) = SKi(p, B,)

Therefore, computing V;(.5) is equivalent to computing SKy(p, B,) for all
sitesp € S.

Hereafter, we translate S such that p is located at (0,0), and let L be B,,.
If we know all the vertices of SKy(p, L) and their order along SKj(p, L)
(clockwise or counterclockwise, we can compute SKy(p, L)

Lemma 6 Under the general position assumption, for a vertex v of
SKi(p, Bp), pv intersects k — 1 or k — 2 lines of B,

Geometric Duality
Consider a function W. For a point x = (a, b) except the origin, U(z) is a line
. axy + bro =1, and for a line [ : axy + bxy = 1, ¥(x) is a point (a, b).

Lemma 7

e For an edge e of SK(p, B,) and any point € e, V(x) partitions the plane
such that one half-plane contains the origin and exactly k& — 1 points of

U(By).

e For a vertex v of SKi(p, B,), V(v) partitions the plane such that one half-
plane contains the origin and £ — 1 or k — 2 points of U(B,)).



Example

For g € S\ {p}, let p, be ¥(B(p,q)).

Consider n = 8 and k = 4.

[, corresponds to a new Voronoi ver-
tex among VRy(H1,S), VRi(Hs, S),
and VRy(Hs,S), where H; = H U
{p}v Hy=HU {Q}? H3=HU {T},
and H = {s,t,u}.

[ corresponds to a point on a Voronoi
edge  between  VRy(Hi, S)and
VR (Hs, S), where Hy = H U {p},
Hy=HU{q}, and H = {s,t,u}.

l4 s corresponds to an old Voronoi ver-
tex among VRy(H{,S), VRi(H}, S),
and VRy(H3,S), where Hf = H' U
{p,sy, Hy = H' U {q,s}, H3 =
H U{p,q}, and H = {t,u}. (Note
H{ = H1 and Hé = HQ)



Let vy, vg, ... be a sequence of vertices of SKj(p, B,) along the counterclock-
wise order.
We consider how to compute v, from v;.

e Wlo.g., we let v; be the intersection between B(p,q) and B(p,r) and
vi+1 be B(p,q) and B(p, s). But we do not know s.

e Similarly, for each ¢ € S\ {p}, let p, be ¥(B(q,p)).
e U(v;) is a straight line passing through p, and p;.

e Let [ be U(v;), and rotate [ at p, in the direction such that one half-plane
contains the origin and exactly & — 1 points of U(B,)).

e The rotation will hit ps first and we obtain v;.

e During the rotation, [ partition W(B, \ {B(p,q)})) into the same 2 sets.

Property 6

Let e be an edge of SKi(p, S) and belong to B(p, q). Let v be an endpoint of
e and v be an intersection between B(p, q) and B(p, s). For any point x € e,
let Py and Py be the 2-partition of W(B,\ {B(p,q)}) formed by ¥(z). Then,
U(B(p,s)) must be one of four tangent points between W(B(p, q)) and the
two convex hulls of P; and Ps.

pq pS

Du



Lemma 8
SKi(p, B,) can be constructed in O(nlogn + |SKy(p, B,)|logn) time.
Sketch of proof

e After the sorting, it takes O(n) time to compute a vertex of SKi(p, B))
and then view the vertex as the begining vertex v;.

e [t sufficient to analyze the time for computing v;,1 from v;.

e Assume that v; is an intersection between B(p, q) and B(p, ).

e Let P and P, be the 2-partion of W(B, \ {p}) formed by ¥(v;) and let
P1 belong to the half-plane containing the origin.

e If v; is a new Voronoi vertex, |P;| =k — 1.

—let I be ¥(v;)

— rotate [ at W(B(p, q)) such that Py and W(B(p, r)) belongs to different
half-planes formed by (.

— Determine that [ first touches the convex hull of P; or that of Pr U
{V(B(p,7))}

— Let W(B(p, s)) be the first touched point of the first touched convex
hull. Then v;,; is the intersection between B(p, q) and B(p, s).

e Otherwise, v; is an old Voronoi vertex, and |Py| =k — 2.

—let I be ¥U(v;)

— rotate [ at W(B(p, q)) such that Py and W(B(p,r)) belong to the same
half-plane formed by (.

— Determine that [ first touches the convex hull of Py U {¥(B(p,r))} or
that of Ps

— Let W(B(p,s)) be the first touched point of the first touched convex
hull. Then v;,; is the intersection between B(p, q) and B(p, s).

e Brodal and Jacob proposed a dynamic structure for the convex hulls al-
lowing insertion, deletion, and tangent query in amorted O(logn) time.

e [t takes O(nlogn) time to compute the two initial convex hulls.

e There are O(|SKy(p, B,))| insertions, deletions, and tangent queries.



Theorem 5
Vi(S) can be computed in O(n?logn + k(n — k)logn) time.
sketch of proof
o Vi(S) = U,es SKi(p, By).
® > csO(nlogn+|SKy(p, By)|logn) = O(n*logn +k(n—k)logn)



