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Given a set S of n point sites in the Euclidean plane, the kth-
order Voronoi diagram Vk(S) is a planar subdivision such that

• each region is associated with a k-element subset H of S and
denoted by VRk(H,S).

• all points in VRk(H,S) share the same k nearest sites H
among S.
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Property 1

Consider a Voronoi edge e between VRk(H1, S) and VRk(H2, S).

H1 and H2 only differ by one site.

Let H1 \H2 be {p} and H2 \H1 be {q}.
For all points x ∈ e, H1 ∩H2 are the k − 1 nearest sites of x and both

p and q are the kth nearest sites of x.
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Definition 1

Consider a Voronoi vertex v among VRk(H1, S), VRk(H2, S), and

VRk(H3, S).

• v is new if |H1 ∪H2 ∪H3| = k + 2. H1 = H ∪ {p}, H2 = H ∪ {q},
H3 = H ∪ {r}, where |H| = k − 1.

→ the circle centered at v and touching p, q, and r will exactly enclose

the k − 1 sites of H .

• v is old if |H1∪H2∪H3| = k+ 1. H1 = H ∪{p, q}, H2 = H ∪{q, r},
H3 = H ∪ {p, r}, where |H| = k − 2.

→ the circle centered at v and touching p, q, and r will exactly enclose

the k − 2 sites of H .

General Position Assumption

• no more than than sites are on the same line

→ Vk(S) is connected.

• no more than three sites are on the same circle

→ the degree of a Voronoi vertex is exactly 3.
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Example

v is new
k = 4
H1 = H ∪ {p}
H2 = H ∪ {q}
H3 = H ∪ {r}
|H| = 3
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v is old
k = 4
H1 = H ∪ {p, q}
H2 = H ∪ {q, r}
H3 = H ∪ {p, r}
|H| = 2

Proprety 2

v is a Voronoi vertex among VRk(H1, S), VRk(H2, S), and VRk(H3, S)

(a) v is new

→ v is an old Voronoi vertex among VRk(H1 ∪ H2, S), VRk(H2 ∪
H3, S), VRk(H3 ∪H1, S).

(b) v is old

→ v belongs to VRk(H1 ∪H2 ∪H3).



Property 3

Consider an edge e between VRk(H1, S) and VRk(H2, S).

Then all points x ∈ e belong to VRk(H1 ∪H2).

Sketch of proof:

Let H1 \ H2 be {p} and H2 \ H1 be {q}. Since e is a part of the bisector

B(p, q) between p and q, the circle centered at x and touching p and q will

enclose all the k−1 sites of H1∩H2. Therefore, (H1∩H2)∪{p, q} = H1∪H2

are exactly the k + 1 nearest sites of x.

Property 4

New vertices of Vk(S) decompose Vk(S) into two kinds of connected compo-

nents:

1. a new Voronoi edge

2. a connected subgraph whose internal nodes are old Voronoi vertices

Each kind induces a Voronoi region of Vk+1(S). (The former comes from

Property 2 (a) and Property 3, and the latter comes from Property 2(b) and

Property 3.)

Definition 2

For a Voronoi edge e of Vk(S), if one endpoint of e is an old Voronoi vertex,

e is called old; otherwise, e is called new.

Definition 3

For i > 1, Voronoi regions VRi(H,S) of Vi(S) can be categorized into two

types:

• type-1: VRi(H,S) contains one new edge of Vi−1(S).

• type-2: VRi(H,S) contains old vertices of Vi−1(S).
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Example

Type-1
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VR2({q, s}, S) is a type-1 region because it contains one new edge of V1(S)

Type-2

Both VR3({p, q, s}, S) and VR3({q, r, s}, S) are type-2 regions because they

contain old vertices of V2(S)
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Lemma 1

For i > 1, Vi−1(S) ∩VRi(H,S) is a tree. Vi−1(S) ∩VRi(H,S) is Vi−1(H) ∩
VRi(H,S)

Sketch of proof

• all points in VRi(H,S) share the same i nearest sites.

• Vi−1(S) partitions VRi(H,S) into at most t sub-regions, and t < i.

• For 1 ≤ j ≤ t, let Rj be a sub-region of Vi−1(S) ∩ VRi(H,S), let Hj be

the (i−1)-element subset of S such that Rj = VRi−1(Hj, S)∩VRi(H,S),

and let H \Hj be {sj}.

• For all points x in Rj, Hj are the (i− 1) nearest sites of x, and sj is the

ith nearest site of x.

• In other wods, sj is the farthest site of x among H .

• Vi−1(S) forms the fartheset site Voronoi diagram of H inside VRi(H,S),

i.e., Vi−1(S) ∩ VRi(H,S) = Vi−1(H) ∩ VRi(H,S).

• The farthest-site Voronoi diagram is a tree

• By Property 4, Vi−1(S)∩VRi(H,S) is a connected component, and thus

Vi−1(H) ∩ VRi(H,S) is a tree.

Corollary 1

If VRi(H,S) contains m old Voronoi vertices of Vi−1(S), VRi(H,S) contains

2m + 1 old Voronoi edges of Vi−1(S).

Sketch of proof

• By the generation position assumption, the degree of a Voronoi vertex is 3.

• By Lemma 1, Vi−1(S) ∩ VRi(H,S) is a tree.

Euler formular for a planar subdivision

v − e + f = 1 + c,

where v is # of vertices, e is # of edges, f is # of faces, and c is # of connected

component



Corollary 2

Under the general position assumption,

• Ek = 3(Nk − 1)− Sk
• and Ik = 2(Nk − 1)− Sk,

where Ek is # of edges, Ik is # of vertices, Nk is # of faces, and Sk is # of

unbounded faces of Vk(S).

Theorem 1

Given a set S of n point sites in the Euclidean plane, the total number Nk

of regions in Vk(S) is 2k(n − k) + k2 − n + 1 −
∑k−1

i=1 Si, where Si is # of

unbounded regions in Vi(S), and S0 is defined to be 0.

proof

• Ii, I ′i and I ′′i are # of vertices, new vertices, and old vertices of Vi(S),

respectively.

• Ei, E
′
i and E ′′i are # of edges, new edges, and old edges of Vi(S), respec-

tively.

• Ni, N
′
i and N ′′i are # of regions, type-1 regions, and type-2 regions of

Vi(S), respectively.

• Since an old vertex of Vi+1(S) is a new vertex of Vi(S),

Ii+1 = I ′i+1 + I ′′i+1 = I ′i+1 + I ′i

→ I ′i+1 = Ii+1 − I ′i

• I1 = I ′1, E1 = E ′1, and Ei+1 = E ′i+1 + E ′′i+1

• Order N ′′i+2 type-2 regions of Vi+2(S), let mj be the number of old vertices

of Vi+1(S) inside the jth type-2 region of Vi+2(S), and let ej be the number

of edges of Vi+1(S) inside the jth type-2 region of Vi+2(S).

•
∑N ′′i+2

j=1 mj = I ′′i+1 = I ′i and
∑N ′′i+2

j=1 ej = E ′′i+1

• By Corollay 1,

E ′′i+1 =

N ′′i+2∑
j=1

ej =

N ′′i+2∑
j=1

(2mj + 1) = 2I ′i + N ′′i+2 → N ′′i+2 = E ′′i+1 − 2I ′i



•
Ni+2 = N ′i+2 + N ′′i+2 = E ′i+1 + (E ′′i+1 − 2I ′i) = Ei+1 − 2I ′i

• N1 = n and N2 = E ′1 = E1 = 3(n− 1)− S1.

• since Ni+2 = Ei+1 − 2I ′i, Ei = 3(Ni − 1)− Si, and Ii = 2(Ni − 1)− Si,

Nk+2 = Ek+1 − 2I ′k = 3(Nk+1 − 1)− Sk+1 − 2I ′k

= 3(Nk+1 − 1)− Sk+1 − 2

k∑
i=1

(−1)k−iIi

= 3(Nk+1 − 1)− Sk+1 − 2

k∑
i=1

(−1)k−i(2(Ni − 1)− Si)

• By induction on k,

Nk = 2k(n− k) + k2 − n + 1−
k−1∑
i=1

Si

Theorem 2

Nk = O(k(n− k))

• If k ≤ n/2, by Theorem 1, Nk is trivially O(k(n− k)).

• If k > n/2, Nk depends on
∑k−1

i=1 Si
• Since

∑n−1
i=1 Si = n(n− 1),

∑k−1
i=1 Si = n(n− 1)−

∑n−1
i=k Si

• Since Si = Sn−i,
∑n−1

i=k Si =
∑n−k

i=1 Si
• Nk = 2k(n− k) + k2 − n + 1−

∑k−1
i=1 Si

= 2k(n− k) + k2 − n + 1− n(n− 1) +
∑n−1

i=k Si
= Nk = 2k(n− k) + k2 − n + 1− n(n− 1) +

∑n−k
i=1 Si

• Since
∑n−k

i=1 Si ≤ (n− k)n (recal # of ≤ k-set),

Nk ≤ 2k(n− k) + k2 − n + 1− n(n− 1) + (n− k)n = k(n− k) + 1



Theorem 3

Vi+1(S) can be obtained from Vi(S) by taking VRi(H,S)∩ V1(S \H) for all

H ⊆ S such that Vi(H,S) is non-empty.

Sketch of proof

• V1(S \H) ∩ VRi(H,S) = Vi+1(S) ∩ VRi(H,S)

– all points in VRi(H,S) share the same i nearest sites H among S

– all points in VR1(p, S \H) share the same nearest site p among S \H .

– all points in VR1(p, S \H)∩VRi(H,S) share the same i nearest sites

H and (i+ 1)st nearest site p among S, implying that VR1(p, S \H)∩
VRi(H,S) ⊆ VRi+1(H ∪ {p}, S)

– It is trivial that VRi+1(H ∪ {p}, S) ∩ VRi(H,S) ⊆ VR1(p, S \H),

– VR1(p, S \ H) ∩ VRi(H,S) = VRi+1(H ∪ {p}, S) ∩ VRi(H,S) for

∀p ∈ H

Corollary 3

Assume VRi(H,S) has m adjacent regions VRi(Hj, S), 1 ≤ j ≤ m. Let Q

be
⋃

1≤j≤mHj \H . Then Vi+1(S) ∩ VRi(H,S) = V1(Q) ∩ VRi(H,S)

The proof will be an exercise.

Compute Vi+1(S) from Vi(S)

• For each nonempty region VRi(H,S), compute V1(Q)∩VRi(H,S) where

VRi(H,S) has m adjacent regions VRi(Hj, S), 1 ≤ j ≤ m, and Q is⋃
1≤j≤mHj \H .

Iterative Construction



Lemma 2

Vi+1(S) can be obtained from Vi(S) in O(i(n− i) log n) time.

Sketch of proof

• V1(Q) can be computed in |Q| log |Q| time.

• |Q| ≤ |∂VRi(H,S)| where ∂VRi(H,S) is the boundary of VRi(H,S)

• ∑
H⊂S,|H|=i,VRi(H,S)6=∅

O(|∂VRi(H,S)| log |∂VRi(H,S)|)

= log n
∑

H⊂S,|H|=i,VRi(H,S) 6=∅

O(|∂VRi(H,S)|)

= O(i(n− i) log n)

Theorem 4

Vk(S) can be computed in O(k2n log n) time.

Sketch of proof

• V1(S) can be computed in O(n log n)

• O(n log n) +
∑k−1

i=1 O(i(n− i) log i) = O(k2n log n).



Construction by Geometric Duality and Arrangement

Definition 5

For a site p ∈ S, the k-neighborhood of p is
⋃

p∈H,H⊂S,|H|=k VRk(H,S) and

denoted by VNk(p, S). VNk(p, S).

Property 5

Vk(S) =
⋃
p∈S

∂VNk(p, S)

Lemma 3

VNk(p, S) is connected and each edge of ∂VNk(p, S) is a part of the bisector

B(p, q) for some q ∈ S \ {p}.
The proof could be a bonus task.

Lemma 4

Consider an edge of ∂VNk(p, S). For any point x ∈ e, px intersects exactly

k − 1 bisectors of Bp.

Sketch of proof

• W.l.o.g, let e belong to VRk(H1, S) ∩ VRk(H2, S) and let p belong to

H1 \H2.

• It is clear that H1 \ {p} are the k − 1 nearest sites of x.

• For any q ∈ H1\{p}, x belongs to D(q, p), i.e., px intersects B(p, q). For

any q ∈ S \H1, x does not belongs to D(q, p), i.e., px does not intersects

B(p, q).

Definition 4 (Bisectors)

• For two sites, p, q ∈ S, the bisector B(p, q) is {x ∈ R2 | d(x, p) = d(x, q)}.

• For a site p ∈ S, let Bp be {B(p, q) | q ∈ S \ {p}}.



Lemma 5

∂VNk(p, S) = SKk(p,Bp)

Therefore, computing Vk(S) is equivalent to computing SKk(p,Bp) for all

sites p ∈ S.

Hereafter, we translate S such that p is located at (0, 0), and let L be Bp.

If we know all the vertices of SKk(p, L) and their order along SKk(p, L)

(clockwise or counterclockwise, we can compute SKk(p, L)

Definition 6

• Given a set L of lines in the plane, let A(L) be the arrangement fromd by

L.

• For a point x in a face of A(L), an edge e of A(L) is at level i from x if

for any point y ∈ e, yx intersects exactly i− 1 lines of L.

• The i-skeleton SKi(x, L) is the collection of edges in A(L) whose level

from x is i.

Lemma 6 Under the general position assumption, for a vertex v of

SKk(p,Bp), pv intersects k − 1 or k − 2 lines of Bp.

Geometric Duality

Consider a function Ψ. For a point x = (a, b) except the origin, Ψ(x) is a line

: ax1 + bx2 = 1, and for a line l : ax1 + bx2 = 1, Ψ(x) is a point (a, b).

Lemma 7

• For an edge e of SKk(p,Bp) and any point x ∈ e, Ψ(x) partitions the plane

such that one half-plane contains the origin and exactly k − 1 points of

Ψ(Bp).

• For a vertex v of SKk(p,Bp), Ψ(v) partitions the plane such that one half-

plane contains the origin and k − 1 or k − 2 points of Ψ(Bp).
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Example

For q ∈ S \ {p}, let pq be Ψ(B(p, q)). Consider n = 8 and k = 4.

lq,r corresponds to a new Voronoi ver-

tex among VRk(H1, S), VRk(H2, S),

and VRk(H3, S), where H1 = H ∪
{p}, H2 = H ∪ {q}, H3 = H ∪ {r},
and H = {s, t, u}.

l corresponds to a point on a Voronoi

edge between VRk(H1, S)and

VRk(H2, S), where H1 = H ∪ {p},
H2 = H ∪ {q}, and H = {s, t, u}.

lq,s corresponds to an old Voronoi ver-

tex among VRk(H ′1, S), VRk(H ′2, S),

and VRk(H ′3, S), where H ′1 = H ′ ∪
{p, s}, H ′2 = H ′ ∪ {q, s}, H ′3 =

H ∪ {p, q}, and H ′ = {t, u}. (Note

H ′1 = H1 and H ′2 = H2.)
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Let v1, v2, . . . be a sequence of vertices of SKk(p,Bp) along the counterclock-

wise order.

We consider how to compute vi+1 from vi.

• W.l.o.g., we let vi be the intersection between B(p, q) and B(p, r) and

vi+1 be B(p, q) and B(p, s). But we do not know s.

• Similarly, for each q ∈ S \ {p}, let pq be Ψ(B(q, p)).

• Ψ(vi) is a straight line passing through pq and pr.

• Let l be Ψ(vi), and rotate l at pq in the direction such that one half-plane

contains the origin and exactly k − 1 points of Ψ(Bp).

• The rotation will hit ps first and we obtain vi+1.

• During the rotation, l partition Ψ(Bp \ {B(p, q)})) into the same 2 sets.

Property 6

Let e be an edge of SKk(p, S) and belong to B(p, q). Let v be an endpoint of

e and v be an intersection between B(p, q) and B(p, s). For any point x ∈ e,

let P1 and P2 be the 2-partition of Ψ(Bp \{B(p, q)}) formed by Ψ(x). Then,

Ψ(B(p, s)) must be one of four tangent points between Ψ(B(p, q)) and the

two convex hulls of P1 and P2.
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Lemma 8

SKk(p,Bp) can be constructed in O(n log n + |SKk(p,Bp)| log n) time.

Sketch of proof

• After the sorting, it takes O(n) time to compute a vertex of SKk(p,Bp)

and then view the vertex as the begining vertex v1.

• It sufficient to analyze the time for computing vi+1 from vi.

• Assume that vi is an intersection between B(p, q) and B(p, r).

• Let P1 and P2 be the 2-partion of Ψ(Bp \ {p}) formed by Ψ(vi) and let

P1 belong to the half-plane containing the origin.

• If vi is a new Voronoi vertex, |P1| = k − 1.

– let l be Ψ(vi)

– rotate l at Ψ(B(p, q)) such that P1 and Ψ(B(p, r)) belongs to different

half-planes formed by l.

– Determine that l first touches the convex hull of P1 or that of P2 ∪
{Ψ(B(p, r))}

– Let Ψ(B(p, s)) be the first touched point of the first touched convex

hull. Then vi+1 is the intersection between B(p, q) and B(p, s).

• Otherwise, vi is an old Voronoi vertex, and |P1| = k − 2.

– let l be Ψ(vi)

– rotate l at Ψ(B(p, q)) such that P1 and Ψ(B(p, r)) belong to the same

half-plane formed by l.

– Determine that l first touches the convex hull of P1 ∪ {Ψ(B(p, r))} or

that of P2

– Let Ψ(B(p, s)) be the first touched point of the first touched convex

hull. Then vi+1 is the intersection between B(p, q) and B(p, s).

• Brodal and Jacob proposed a dynamic structure for the convex hulls al-

lowing insertion, deletion, and tangent query in amorted O(log n) time.

• It takes O(n log n) time to compute the two initial convex hulls.

• There are O(|SKk(p,Bp))| insertions, deletions, and tangent queries.



Theorem 5

Vk(S) can be computed in O(n2 log n + k(n− k) log n) time.

sketch of proof

• Vk(S) =
⋃

p∈S SKk(p,Bp).

•
∑

p∈S O(n log n+ |SKk(p,Bp)| log n) = O(n2 log n+k(n−k) log n)


