Discrete and Computational Geometry, WS1516 Exercise Sheet " 6 ": Order- k Diagrams University of Bonn, Department of Computer Science I

- Written solutions have to be prepared until Wednesday 16th of December, 12:00 pm.
- There is a letterbox in front of Room E. 01 in the LBH builiding.
- You may work in groups of at most two participants.

Exercise 13: Numbers of vertices, edges, and faces of $V_{k}(S)$ points)
Let S be a set of n point sites in the Euclidean plane satisfying a general position assumption that no three sites are on the same line and no four sites are on the same circle. For $1 \leq i \leq n-1$, let $N_{i}, E_{i}, I_{i}, \mathcal{S}_{i}$ be the numbers of faces, edges, vertices, and unbounded faces of $V_{i}(S)$, respectively, and let \mathcal{S}_{0} be 0 . Please prove the following:

1. $E_{k}=3\left(N_{k}-1\right)-\mathcal{S}_{k}$ and $I_{k}=2\left(N_{k}-1\right)-\mathcal{S}_{k}$. (Hint: Euler formula. Due the general position assumption, the degree of a Voronoi vertex is 3). (2 points)
2. $N_{1}=n$, and $N_{2}=3(n-1)-\mathcal{S}_{1}$, and $N_{k}=3\left(N_{k-1}-1\right)-\mathcal{S}_{k-1}-$ $2 \sum_{i=1}^{k-2}(-1)^{k-2-i}\left(2\left(N_{i}-1\right)-\mathcal{S}_{i}\right)$ implies

$$
N_{k}=2 k(n-k)+k^{2}-n+1-\sum_{i=0}^{k-1} S_{i} .
$$

(Hint: By induction on k) (6 points)

Exercise 14: Relation between $V_{i}(S)$ and $V_{i+1}(S) \quad$ (4 points)
Assume $\mathrm{VR}_{i}(H, S)$ has m adjacent regions $\mathrm{VR}_{i}\left(H_{j}, S\right), 1 \leq j \leq m$. Let Q be $\bigcup_{1 \leq j \leq m} H_{j} \backslash H$. Prove that $V_{i+1}(S) \cap \operatorname{VR}_{i}(H, S)=V_{1}(Q) \cap \mathrm{VR}_{i}(H, S)$. (Hint: prove that for all site $r \in(S \backslash H) \backslash Q, \operatorname{VR}_{1}(r, S \backslash H) \cap \mathrm{VR}_{k}(H, S)=\emptyset$. You can first assume the contrary that $\exists r \in(S \backslash H) \backslash Q, \mathrm{VR}_{1}(r, S \backslash H) \cap$ $\mathrm{VR}_{k}(H, S) \neq \emptyset$, and then show that it will lead to a contradiction. For any point $x \in \mathrm{VR}_{1}(r, S \backslash H) \cap \mathrm{VR}_{k}(H, S), \overline{r x}$ will intersect a Voronoi edge e between $\mathrm{VR}_{i}(H, S)$ and $\mathrm{VR}_{i}\left(H_{j}, S\right)$ for some $j \in\{1, \ldots, m\}$. Let y be the intersection point between $\overline{r x}$ and e. Discuss nearest neighbors of y, which will lead to a contradiction from the viewpoint of e and the viewpoint of $\mathrm{VR}_{1}(r, S \backslash H)$.)

Bonus 3: Voronoi edges of $k^{\text {th }}$-order Voronoi diagrams points)

Consider a Voronoi edge e between two adjacent Voronoi regions $\mathrm{VR}_{k}\left(H_{1}, S\right)$ and $\mathrm{VR}_{k}\left(H_{2}, S\right)$, where S is a set of n point sites in the Euclidean plane. Please prove the following.

1. $\left|H_{1} \backslash H_{2}\right|=\left|H_{2} \backslash H_{1}\right|=1$
2. The circle centered at a point x in e and touching p and q, where $H_{1} \backslash H_{2}=\{p\}$ and $H_{2} \backslash H_{1}=\{q\}$, encloses exactly $k-1$ sites of S.
(Hint: Consider $\operatorname{VR}_{k-1}(H, S)$ and $V_{1}(S \backslash H)$, where $e \cap \operatorname{VR}_{k-1}(H, S) \neq \emptyset$.)
