Discrete and Computational Geometry, WS1516 Exercise Sheet " 1 ": Geometry Duality and Finding the Minimum
 University of Bonn, Department of Computer Science I

- Written solutions have to be prepared until Wednesday 4th of November, 12:00 pm.
- There is a letterbox in front of Room E. 01 in the LBH builiding.
- You may work in groups of at most two participants.

Exercise 1: Geometry Duality II

(4 Points)
We define a geometry duality $\Psi(\cdot)$ as follows (O denotes the origin)

- For a point $p=(a, b) \in \mathbb{R}^{2} \backslash O, \Psi(p)$ maps to the line $a x+b y=1$.
- For a line $L: a x+b y=1, \Psi(L)$ maps to the point (a, b).

Please prove the following.
For a point $p \in \mathbb{R}^{2} \backslash O$ and a line L that does not pass through O, p and O are located in the same side of L if and only if $\Psi(L)$ and O are located in the same side of $\Psi(p)$.

Exercise 2: Geometry Duality II

(4 Points)
We define a geometry duality $\Phi(\cdot)$ as follows

- For a point $p=(a, b) \in \mathbb{R}^{2}, \Phi(p)$ maps to the line $y=a x-b$.
- For a line $L: y=a x-b, \Phi(L)$ maps to the point (a, b).

Please prove the following.
For a point $p \in \mathbb{R}^{2}$ and a nonvertical line L, p lies above L if and only if $\Phi(L)$ lies above $\Phi(p)$.

Exercise 3: Finding the Minimum

Given r distinct numbers, let $\left(a_{1}, a_{2}, \ldots, a_{r}\right)$ be a random permutation of the r numbers. For $i>1$, Let A_{i} be the event that a_{i} is smaller than all numbers in $\left\{a_{1}, \ldots, a_{i-1}\right\}$. Please answer the following two questions.

- What is the probability $\operatorname{Prob}\left(A_{i}\right)$ of event A_{i} ?
- What is the value of $\sum_{i=2}^{r} \operatorname{Prob}\left(A_{i}\right)$?

