Discrete and Computational Geometry, WS1516 Exercise Sheet "1": Geometry Duality and Finding the Minimum

University of Bonn, Department of Computer Science I

- Written solutions have to be prepared until Wednesday 4th of November, 12:00 pm.
- There is a letterbox in front of Room E.01 in the LBH building.
- You may work in groups of at most two participants.

Exercise 1:Geometry Duality II(4 Points)We define a geometry duality $\Psi(\cdot)$ as follows (O denotes the origin)

- For a point $p = (a, b) \in \mathbb{R}^2 \setminus O$, $\Psi(p)$ maps to the line ax + by = 1.
- For a line L : ax + by = 1, $\Psi(L)$ maps to the point (a, b).

Please prove the following.

For a point $p \in \mathbb{R}^2 \setminus O$ and a line L that does not pass through O, p and O are located in the same side of L if and only if $\Psi(L)$ and O are located in the same side of $\Psi(p)$.

Exercise 2: Geometry Duality II (4 Points)

We define a geometry duality $\Phi(\cdot)$ as follows

- For a point $p = (a, b) \in \mathbb{R}^2$, $\Phi(p)$ maps to the line y = ax b.
- For a line L: y = ax b, $\Phi(L)$ maps to the point (a, b).

Please prove the following.

For a point $p \in \mathbb{R}^2$ and a nonvertical line L, p lies above L if and only if $\Phi(L)$ lies above $\Phi(p)$.

Exercise 3: Finding the Minimum (4 Points)

Given r distinct numbers, let (a_1, a_2, \ldots, a_r) be a random permutation of the r numbers. For i > 1, Let A_i be the event that a_i is smaller than all numbers in $\{a_1, \ldots, a_{i-1}\}$. Please answer the following two questions.

- What is the probability $Prob(A_i)$ of event A_i ?
- What is the value of $\sum_{i=2}^{r} \operatorname{Prob}(A_i)$?