Convexity

e R’ deonotes the d-dimensional Euclidean space.
e A point in R? is a d-tupple of real numbers, x = (21, 2o, . . ., Tq).

e Compare “linear” and “affine”

Linear Subspace

e a subset of R? closed under addtion of vectors and under multiplication
by real numbers

e Geometric meaning

— In R?, the origin, all lines passing through the origin, and the whole of
R?.

— in R3, the origin, all lines passing through the origin, all planes passing
through the origin, and the whole R3.

Linear Combination:
A linear combination of points, a;, as, ..., a, € R? is given by

a1a1 + as + ...+ Gy,

where o, ao, ..., a, are real numbers.

Affine Subspace:
An affine subspace of R? has the form L + z, where L is a linear subspace of
R? and z is a vector in R,

e In R3, all points, all lines, all planes, and R?

Affine Combination
An affine combination of points a;, as, ..., a, € R? is given by

a1a1 + 0ao + ... + Gy,

where o, ao, ..., a, are real numbers and a; +as + ...+, =1



Linear Dependence

A set of points, ay, as, ..., a, € R? are linearly dependent if and only
if there exists a set of real numbers, oy, a9, ..., a,, at least one of which is
nonzero such that aya; + asas + ... 4+ aya, =0

Affine Dependence

A set of points, a1, as, ..., a, € RY, are affinely dependent if and only
if there exists a set of real numbers, aq, ao, ..., a,,, at least one of which is
nonzero such that aya; + awas +. ..+ a,a, =0and oy +as+ ...+, = 0.

Another viewpoint of affine dependence:

For a set of points, a1, as, ..., a, € R? let b; be (a;, 1).
ai, as, ..., a,, are affinely dependent if and only if by, bs, ..., b, are linearly
dependent.
T3 — 1
\ X3 = 0




Additional viewpoint:

Let a1, as, ..., agr1 be points in RY, and let A be d x d matrix with a; — a4
ith column for 1 <4 < d.
Then aq, ao, ..., agyq are affinely independent if and only if A has d linear

independent columns, i.e., det(A) # 0.
A useful criterion of affine independence using a determinant.

Names for affine subspaces:
e (d — 1)-dimensional: hyperplane
e (-dimensional: point
e l-dimensional: line
e 2-dimensional: plane

e k-dimensional: k-flat

hyerplane
e usuall specified by a single linear equation of the form:
a1T1 + asxo + - -+ + agrg = b.
— the left hand side can be written as the scalar product (a, x)

e expressed as
{z € RY| (a,z) = b},
where a € R?\ {0} and b € R.
e A (closed) half-space in R? is expressed as

{z e RY| (a,2) > b},
— the hyerplane {z € R? | (a, z) = b} is its boundary
k-flat:

e the intersection among d — k£ hyperplanes

e viewed as a solution to a system
Ax =b

of linear equestions, where x € R? is regarded as a column vector, A is a
(d — k) x d matrix, and b € R,



General Position Assumption
No k + 2 points belongs to the same k-flat

e 1o three points are on the same line, no four points are one the plane, . . ..

e a magic phrase to avoid unlikely coincidence.

Convex Set

A set C' C R?is convex if for any two points z, y € C, the whole segment Z7
is also contained in C'. In other words, for every t € [0, 1], the point tx+ (1 —1)y
belongs to C'.

The intersection of an arbitrary famility of convex sets is obviously convex.

Not Convex

Convex Hull
For a set X C RY the convex hull of X, denoted by conv(X) is the

intersection of all convex sets in R? containing X.

X conv(X)



Convex Combination

For points 1, ..., z,, € R? and nonnegative real numbers ¢y, ..., t,, t1x; +
toxo + - -+ 4+ t,x, 1s a convex combination of xq, ..., x, if 2?21 t; = 1.
Lemma 1

A point x belongs to conv(X) if and only if there exits points zy, o, ...,
x, € X such that x is a convex combination of x1, o, ..., x,.

Sketch of proof

(<):

e Fach convex combination of points of X must lie in conv(X).
e For n = 2, it is true by definition.
e For large n, it can be proved by induction.

(—): Trivial

Important properties for convex huls regarding the dimensions d:
Caratheodory’s theorem, Radon’s lemma, and Helly’s theorem.

Caratheodory’s Theorem

Let X C RY. Then each point of conv(X) is a convex combination of at most
d + 1 points of X.

Sketch of proof

e x is a convex combination of a finite number of points in X:

k
T = Z tZ'ZUZ',
i=1
where x1, ...,z are points in X, tq, ..., {; are nonnegative real numbers,
k
and >+ t;=1
e [t is sufficient to discuss k > d + 1.

e We will continuously remove one point until £k = d + 1.



e Consider k — 1 points/vectors xy — x1, 3 — x1, T — x1. Since they are
linearly dependent, we have

k

Z )\z’(%’ — 5131) =0,

i=2
where Ao, A3, ..., A\; are real numbers.

o Let A be — 3% U \;. Then we have

k k
1=1 =1

Note that at least one \; is larger than zero.

e For any real number a, we have

k

k k
xr = Z tixr; + « Z AT = Z(tZ — Ck)\z)ilfz
1=1 =1

1=1

e Let o be minj<;<x {5t | A; > 0} and let j be the index such that ;—J =«
<i<k1y, y
e Then t; —aX; > 0for 1 <¢<kandt; —a) =0.

® We Cal Iemove I

Application of Caratheodory’s Theorem

e In R?, conv(X) is the union of all triangles whose vertices are points in

X.

e In R?, conv(X) is the union of all tetrahedrons whose vertices are points
in X.



Radon’s Lemma
Let A be a set of d + 2 points in R?.
Then there exists two disjoints A;, Ay C A such that

conv(Ay) N conv(Ay) # .

Definition

A point & € conv(Aj)Nconv(Ay), where Ay and A, are as in Radon’s Lemma,
is called a Radon point of A, and the pair (A, As) is called a Radon
partition of A. (it is easily seen taht we can require A; U Ay = A.)

.A1 IAQ

Sketch of Proof
o Let Abe {ay,as,...,a0:0}

e These d + 2 points are necessarily affinely dependent.
— there exist real numbers aq, .. ., agy0, not all of which are 0, such that

d+2 d+2 _
Yoo =0and ) . J oa; = 0.

e Let Pbe {i|a; >0} and N be {i | oy < 0}. It is clear that both P and
N are nonempty.

o Let Ay be {a; | i € P} and Ay be {a; | i € N}. We will exhibit a point
x that is contained in both conv(A;) and conv(A,).

o Put Sbe ), pa;; wealsohave S =—)". v



e Then, define

Qy;
r = —Q;.
—~ S
1€P
. d+2
e Since ZZL aia; =0=) . poya; + ) .y a,a;, we have
T = a;.
_ S
€N
e Since ¢ >0fori € Pand ) ,.p 7 =1,

x is a convex combination of points in Ay, — x € conv(A;).

e Since = > 0fori € Nand ) .y <t =1

x is a convex combination of points in Ay, — x € conv(As).

)

Helly’s theorem

Let Cy, Cy, ..., C, be convex sets in RY n > d + 1.

[f the intersection of every d + 1 of these sets is nonempty, the intersection of
all the C; is nonempty:.

Example

In R?, if every 3 among convex sets intersect, there is a point comon to all
100 sets.

Contrapositive viewpoint:
For n > d + 1, if the intersection among C4, Cy, ..., C,, is empty, there exist
d + 1 sets among them whose intersection is empty.

Implication
For many planar problems, one can deal with 3 convex sets instead of an arbi-
trary number.

Wrong Form:
If every d + 1 of convex sets intersect, all the n convex sets intersects. (Missing
n>d+1).



Sktech of Proof (Using Radon’s Lemma)
e For a fixed d, we prove by induction on n.
e The case n = d + 1 is trivial.
e Suppose that n > d + 2 and the statement holds for n — 1.
e Consider sets C, CY, ..., C, satisfying the assumption.

e If we leave out any one of these sets, the remaining sets have a nonempty
intersection by the inductive assumption.

e [ix a point a; € ﬂj# C; for 1 <7 < n and consider ay, as, ..., a.

e By Radon’s Lemma, there exists index sets Iy, I, C {1,2,...,d+2} such
that
conv({a; | i € 1}) Nconv({a; | i € I1}) # 0.

e We pick a point x in the intersection, and prove that x lies in the inter-
section of all the C;, leading to the statement.

e Consider some i € {1,2,...,n}

o Ifi & Iy, each a; with j € [ lies in Cj, so x € conv({a; | j € [1}) C C;
o If i & Iy, each a; with j € Iy lies in Cj, so x € conv({a, | j € I2}) C C;
ezxc(_,C.



An infinite version of Helly’s theorem:
If we have infinite collection of convex sets in R? such that any d+1 of them
have a common point, the entire collection still need not have a coomon
points. There are two examples in R

e C;=(0,1/i) fori=1,2,...
o C;=[i,o00) fori=1,2,...

The sets in the former are not closed, and those in the latter are unbounded.

Definition

A convex set is compact if it is closed and bounded

Infinite version of Helly’s theorem

Let C be an arbitrary infinite famility of compact convex sets in R? such that
any d + 1 of the sets have a nonempty intersection.

Then all the sets of C have a nonempty intersection.

Sketch of proof
e By Helly’s theorem, any finite subfamily of C has a nonempty intersection

e By a basic property of compactness, if we have an arbtrary family of
compact sets such that each of its finite subfamilies has a nonempty in-
tersection, the entire famility has a nonempty intesection.



Separation Theorem

Let C, D C R? be convex sets with C'N D = (.

If C'and D are closed and at least one of them is bounded, there exists a
hyperplane h such that C' and D are separated by h, i.e., there exists a unit
vector @ € R? and a real number b € R such that for all z € C {(a,z) > b,
for all z € D {a,z) < b, and his {z € R?| (a,x) = b}.

Sketch of proof

e Since one of C' and D is bounded, the distance between C' and D is
well-defined.

e I'ind p € C and ¢ € D such that d(p,q) = minyco epd(p’, ), ie.,
d(p,q) is d(C, D).

e h can be taken as the one perpdendicular to pg and passing through the
midpoint of pg.

Corollary

If both of C' and D are unbounded and one of them is open, there exists a
hyperplane h such that C' lies in one of the closed half-spaces determined by
h and D lies in the opposite closed half-space.



Farkas Lemma (one of many versions)
For d x n real matrix A, exactly one of the following cases occurs:

1. The system of linear equations Az = 0 has a nontrivial nonnegative solu-
tion z € R". (All componennts of x are nonnegative and at least one of
them is strictly positive.)

2. There exists a y € R? such that y” A is a vector with all entries strictly
negative. Thus, if we multiply the j™ equation in the system Az = 0 by y;
and add these equations together, we obtain an equation that obviously
has no nontrivial nonnegative solution, since all the coefficients on the
left-hand sides are strictly negative, while the right-hand side is 0.

Sketech of proof

e This is another version of separation theorem.

o Let V C R be the set of n points given by the column vectors of the
matrix A.

e There two cases: either 0 € conv(V') or 0 & conv(V).

e In the former case, we know that 0 is a convex combination of the points of
V', and the coefficients of this convex combination determine a nontrivial
nonnegative solution to Ax = 0.

e In the latter case, there exists a hyperplane strictly seprating V' from 0,
i.e., a unit vector y € R? such that (y,v) < (y,0) = 0 for each v € V.
This is just the y from the scond alternative in the Farkas lemma.



Definition (Center point)

Let X be an n-point set in R%.

A point z € R?is called a centerpoint of X if each closed half-space containing
x contains at least 25 points of X.

e X may generally have many centerpoints.

e A centerpoint need not belong to X.

The notion of centerpoint is a generalization of the median of one-dimensional
data.

® suppose xq,...,T, € R are results of measurements of an unknown real
parameter x.

e We can use the arithmetic mean, but if one of the measurement is complete
wrong, the estimate is bad

o A median is more robust. It is a point 2’ such that at least § of the x;
lies in the interval (—oo, z] and tat least 5 of them lies in [z, 00).

Definition (a-Center point)

Let X be an n-point set in RY.

A point z € R? is called an a-centerpoint of X if each closed half-space
1

containing x contains at least « points of X. If @ > 55, such a an a-

centerpoint does not necessarily exist.

Cetnerpoint Theorem
Each finite point set in R? has at least one centerpoint.

Sketch of proof

e An equivalent definition of a centerpoint:
x is a centerpoint of X if and only if x lies in each open half-space v such
that | X N~| > %n

e We attempt to apply Helly’s theorem to conclude that all these open
half-spaces intersect, i.e., x in the intersection.

e But they are open and unbounded, i.e., not compact.



conv(X N )

e Instead of such an open half-space v, we consider the compact convex set
conv(X Nvy) C v

e By letting v run through all open half-spaces v with | X N~| > -%n, we

obtain a familiy C of compact convex sets.

d+1

e Fach of those compact convex sets contains more than y Hn points of X.
e The intersection of any d 4 1 of them contains at least one point of X.

e The family C consists of finitely many distinct sets since X has finitely
many distinct subsets.

e By Helly’s theorem, (C # 0.
e cach point in (C is a centerpoint of X.



