
Convexity

• Rd deonotes the d-dimensional Euclidean space.

• A point in Rd is a d-tupple of real numbers, x = (x1, x2, . . . , xd).

• Compare “linear” and “affine”

Linear Subspace

• a subset of Rd closed under addtion of vectors and under multiplication

by real numbers

• Geometric meaning

– In R2, the origin, all lines passing through the origin, and the whole of

R2.

– in R3, the origin, all lines passing through the origin, all planes passing

through the origin, and the whole R3.

Linear Combination:

A linear combination of points, a1, a2, . . ., an ∈ Rd is given by

α1a1 + α2a2 + . . . + αnan,

where α1, α2, . . ., αn are real numbers.

Affine Subspace:

An affine subspace of Rd has the form L+ x, where L is a linear subspace of

Rd, and x is a vector in Rd.

• In R3, all points, all lines, all planes, and R3

Affine Combination

An affine combination of points a1, a2, . . ., an ∈ Rd is given by

α1a1 + α2a2 + . . . + αnan,

where α1, α2, . . ., αn are real numbers and α1 + α2 + . . . + αn = 1



Linear Dependence

A set of points, a1, a2, . . ., an ∈ Rd, are linearly dependent if and only

if there exists a set of real numbers, α1, α2, . . ., αn, at least one of which is

nonzero such that α1a1 + α2a2 + . . . + αnan = 0

Affine Dependence

A set of points, a1, a2, . . ., an ∈ Rd, are affinely dependent if and only

if there exists a set of real numbers, α1, α2, . . ., αn, at least one of which is

nonzero such that α1a1 +α2a2 + . . .+αnan = 0 and α1 +α2 + . . .+αn = 0.

Another viewpoint of affine dependence:

For a set of points, a1, a2, . . ., an ∈ Rd, let bi be (ai, 1).

a1, a2, . . ., an, are affinely dependent if and only if b1, b2, . . ., bn are linearly

dependent.
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Additional viewpoint:

Let a1, a2, . . ., ad+1 be points in Rd, and let A be d×d matrix with ai−ad+1

ith column for 1 ≤ i ≤ d.

Then a1, a2, . . ., ad+1 are affinely independent if and only if A has d linear

independent columns, i.e., det(A) 6= 0.

A useful criterion of affine independence using a determinant.

Names for affine subspaces:

• (d− 1)-dimensional: hyperplane

• 0-dimensional: point

• 1-dimensional: line

• 2-dimensional: plane

• k-dimensional: k-flat

hyerplane

• usuall specified by a single linear equation of the form:

a1x1 + a2x2 + · · · + adxd = b.

– the left hand side can be written as the scalar product 〈a, x〉

• expressed as

{x ∈ Rd | 〈a, x〉 = b},
where a ∈ Rd \ {0} and b ∈ R.

• A (closed) half-space in Rd is expressed as

{x ∈ Rd | 〈a, x〉 ≥ b},

– the hyerplane {x ∈ Rd | 〈a, x〉 = b} is its boundary

k-flat:

• the intersection among d− k hyperplanes

• viewed as a solution to a system

Ax = b

of linear equestions, where x ∈ Rd is regarded as a column vector, A is a

(d− k)× d matrix, and b ∈ Rd−k.



General Position Assumption

No k + 2 points belongs to the same k-flat

• no three points are on the same line, no four points are one the plane, . . ..

• a magic phrase to avoid unlikely coincidence.

Convex Set

A set C ⊆ Rd is convex if for any two points x, y ∈ C, the whole segment xy

is also contained in C. In other words, for every t ∈ [0, 1], the point tx+(1−t)y
belongs to C.

The intersection of an arbitrary famility of convex sets is obviously convex.

x
y Not Convex

Convex Hull

For a set X ⊆ Rd, the convex hull of X , denoted by conv(X) is the

intersection of all convex sets in Rd containing X .

X conv(X)



Convex Combination

For points x1, . . ., xn ∈ Rd and nonnegative real numbers t1, . . ., tn, t1x1 +

t2x2 + · · · + tnxn is a convex combination of x1, . . ., xn if
∑n

i=1 ti = 1.

Lemma 1

A point x belongs to conv(X) if and only if there exits points x1, x2, . . .,

xn ∈ X such that x is a convex combination of x1, x2, . . ., xn.

Sketch of proof

(←):

• Each convex combination of points of X must lie in conv(X).

• For n = 2, it is true by definition.

• For large n, it can be proved by induction.

(→): Trivial

Important properties for convex huls regarding the dimensions d:

Caratheodory’s theorem, Radon’s lemma, and Helly’s theorem.

Caratheodory’s Theorem

Let X ⊆ Rd. Then each point of conv(X) is a convex combination of at most

d + 1 points of X .

Sketch of proof

• x is a convex combination of a finite number of points in X :

x =

k∑
i=1

tixi,

where x1, . . . , xk are points in X , t1, . . . , tk are nonnegative real numbers,

and
∑k

i=1 ti = 1

• It is sufficient to discuss k > d + 1.

• We will continuously remove one point until k = d + 1.



• Consider k − 1 points/vectors x2 − x1, x3 − x1, xk − x1. Since they are

linearly dependent, we have

k∑
i=2

λi(xi − x1) = 0,

where λ2, λ3, . . ., λk are real numbers.

• Let λ1 be −
∑k

i=2 λi. Then we have

k∑
i=1

λixi = 0 and

k∑
i=1

λi = 0.

Note that at least one λi is larger than zero.

• For any real number α, we have

x =

k∑
i=1

tixi + α

k∑
i=1

λixi =

k∑
i=1

(ti − αλi)xi.

• Let α be min1≤i≤k{ tiλi | λi > 0} and let j be the index such that
tj
λj

= α

• Then ti − αλi ≥ 0 for 1 ≤ i ≤ k and tj − αλj = 0.

• we can remove xj

Application of Caratheodory’s Theorem

• In R2, conv(X) is the union of all triangles whose vertices are points in

X .

• In R3, conv(X) is the union of all tetrahedrons whose vertices are points

in X .



Radon’s Lemma

Let A be a set of d + 2 points in Rd.

Then there exists two disjoints A1, A2 ⊂ A such that

conv(A1) ∩ conv(A2) 6= ∅.

Definition

A point x ∈ conv(A1)∩conv(A2), where A1 and A2 are as in Radon’s Lemma,

is called a Radon point of A, and the pair (A1, A2) is called a Radon

partition of A. ( it is easily seen taht we can require A1 ∪ A2 = A.)

A1 A2

Sketch of Proof

• Let A be {a1, a2, . . . , ad+2}.

• These d + 2 points are necessarily affinely dependent.

→ there exist real numbers α1, . . ., αd+2, not all of which are 0, such that∑d+2
i=1 αi = 0 and

∑d+2
i=1 αiai = 0.

• Let P be {i | αi > 0} and N be {i | αi < 0}. It is clear that both P and

N are nonempty.

• Let A1 be {ai | i ∈ P} and A2 be {ai | i ∈ N}. We will exhibit a point

x that is contained in both conv(A1) and conv(A2).

• Put S be
∑

i∈P αi; we also have S = −
∑

i∈N αi



• Then, define

x =
∑
i∈P

αi
S
ai.

• Since
∑d+2

i=1 αiai = 0 =
∑

i∈P αiai +
∑

i∈N αiai, we have

x =
∑
i∈N

−αi
S
ai.

• Since αi
S ≥ 0 for i ∈ P and

∑
i∈P

αi
S = 1,

x is a convex combination of points in A1, → x ∈ conv(A1).

• Since −αiS ≥ 0 for i ∈ N and
∑

i∈N
−αi
S = 1,

x is a convex combination of points in A2, → x ∈ conv(A2).

Helly’s theorem

Let C1, C2, . . ., Cn be convex sets in Rd, n ≥ d + 1.

If the intersection of every d+ 1 of these sets is nonempty, the intersection of

all the Ci is nonempty.

Example

In R2, if every 3 among convex sets intersect, there is a point comon to all

100 sets.

Contrapositive viewpoint:

For n ≥ d+ 1, if the intersection among C1, C2, . . ., Cn is empty, there exist

d + 1 sets among them whose intersection is empty.

Implication

For many planar problems, one can deal with 3 convex sets instead of an arbi-

trary number.

Wrong Form:

If every d+ 1 of convex sets intersect, all the n convex sets intersects. (Missing

n ≥ d + 1).



C1

C2

C3 C4

a1

a4 a3

a2

x

Sktech of Proof (Using Radon’s Lemma)

• For a fixed d, we prove by induction on n.

• The case n = d + 1 is trivial.

• Suppose that n ≥ d + 2 and the statement holds for n− 1.

• Consider sets C1, C2, . . ., Cn satisfying the assumption.

• If we leave out any one of these sets, the remaining sets have a nonempty

intersection by the inductive assumption.

• Fix a point ai ∈
⋂
j 6=iCj for 1 ≤ i ≤ n and consider a1, a2, . . ., an.

• By Radon’s Lemma, there exists index sets I1, I2 ⊂ {1, 2, . . . , d+ 2} such

that

conv({ai | i ∈ I1}) ∩ conv({ai | i ∈ I2}) 6= ∅.

• We pick a point x in the intersection, and prove that x lies in the inter-

section of all the Ci, leading to the statement.

• Consider some i ∈ {1, 2, . . . , n}

• If i 6∈ I1, each aj with j ∈ I1 lies in Ci, so x ∈ conv({aj | j ∈ I1}) ⊆ Ci

• If i 6∈ I2, each aj with j ∈ I2 lies in Ci, so x ∈ conv({aj | j ∈ I2}) ⊆ Ci

• x ∈
⋂n
i=1Ci.



Definition

A convex set is compact if it is closed and bounded

An infinite version of Helly’s theorem:

If we have infinite collection of convex sets in Rd such that any d+1 of them

have a common point, the entire collection still need not have a coomon

points. There are two examples in R1:

• Ci = (0, 1/i) for i = 1, 2, . . .

• Ci = [i,∞) for i = 1, 2, . . .

The sets in the former are not closed, and those in the latter are unbounded.

Infinite version of Helly’s theorem

Let C be an arbitrary infinite famility of compact convex sets in Rd such that

any d + 1 of the sets have a nonempty intersection.

Then all the sets of C have a nonempty intersection.

Sketch of proof

• By Helly’s theorem, any finite subfamily of C has a nonempty intersection

• By a basic property of compactness, if we have an arbtrary family of

compact sets such that each of its finite subfamilies has a nonempty in-

tersection, the entire famility has a nonempty intesection.



Separation Theorem

Let C,D ⊆ Rd be convex sets with C ∩D = ∅.
If C and D are closed and at least one of them is bounded, there exists a

hyperplane h such that C and D are separated by h, i.e., there exists a unit

vector a ∈ Rd and a real number b ∈ R such that for all x ∈ C 〈a, x〉 > b,

for all x ∈ D 〈a, x〉 < b, and h is {x ∈ Rd | 〈a, x〉 = b}.

Sketch of proof

• Since one of C and D is bounded, the distance between C and D is

well-defined.

• Find p ∈ C and q ∈ D such that d(p, q) = minp′∈C,q′∈Dd(p′, q′), i.e.,

d(p, q) is d(C,D).

• h can be taken as the one perpdendicular to pq and passing through the

midpoint of pq.

p q

h

C D

Corollary

If both of C and D are unbounded and one of them is open, there exists a

hyperplane h such that C lies in one of the closed half-spaces determined by

h and D lies in the opposite closed half-space.



Farkas Lemma (one of many versions)

For d× n real matrix A, exactly one of the following cases occurs:

1. The system of linear equations Ax = 0 has a nontrivial nonnegative solu-

tion x ∈ Rn. (All componennts of x are nonnegative and at least one of

them is strictly positive.)

2. There exists a y ∈ Rd such that yTA is a vector with all entries strictly

negative. Thus, if we multiply the jth equation in the system Ax = 0 by yj
and add these equations together, we obtain an equation that obviously

has no nontrivial nonnegative solution, since all the coefficients on the

left-hand sides are strictly negative, while the right-hand side is 0.

Sketech of proof

• This is another version of separation theorem.

• Let V ⊂ Rd be the set of n points given by the column vectors of the

matrix A.

• There two cases: either 0 ∈ conv(V ) or 0 6∈ conv(V ).

• In the former case, we know that 0 is a convex combination of the points of

V , and the coefficients of this convex combination determine a nontrivial

nonnegative solution to Ax = 0.

• In the latter case, there exists a hyperplane strictly seprating V from 0,

i.e., a unit vector y ∈ Rd such that 〈y, v〉 < 〈y, 0〉 = 0 for each v ∈ V .

This is just the y from the scond alternative in the Farkas lemma.



Definition (Center point)

Let X be an n-point set in Rd.

A point x ∈ Rd is called a centerpoint ofX if each closed half-space containing

x contains at least n
d+1 points of X .

• X may generally have many centerpoints.

• A centerpoint need not belong to X .

The notion of centerpoint is a generalization of the median of one-dimensional

data.

• suppose x1, . . . , xn ∈ R are results of measurements of an unknown real

parameter x.

• We can use the arithmetic mean, but if one of the measurement is complete

wrong, the estimate is bad

• A median is more robust. It is a point x′ such that at least n
2 of the xi

lies in the interval (−∞, x] and tat least n
2 of them lies in [x,∞).

Definition (α-Center point)

Let X be an n-point set in Rd.

A point x ∈ Rd is called an α-centerpoint of X if each closed half-space

containing x contains at least α points of X . If α > 1
d+1, such a an α-

centerpoint does not necessarily exist.

Cetnerpoint Theorem

Each finite point set in Rd has at least one centerpoint.

Sketch of proof

• An equivalent definition of a centerpoint:

x is a centerpoint of X if and only if x lies in each open half-space γ such

that |X ∩ γ| > d
d+1n

• We attempt to apply Helly’s theorem to conclude that all these open

half-spaces intersect, i.e., x in the intersection.

• But they are open and unbounded, i.e., not compact.



γ

conv(X ∩ γ)

• Instead of such an open half-space γ, we consider the compact convex set

conv(X ∩ γ) ⊂ γ

• By letting γ run through all open half-spaces γ with |X ∩ γ| > d
d+1n, we

obtain a familiy C of compact convex sets.

• Each of those compact convex sets contains more than d
d+1n points of X .

• The intersection of any d + 1 of them contains at least one point of X .

• The family C consists of finitely many distinct sets since X has finitely

many distinct subsets.

• By Helly’s theorem,
⋂
C 6= ∅.

• each point in
⋂
C is a centerpoint of X .


