Convex Polytope (Chapter 5.1 and 5.2)

A convex polytope is a convex hull of finite points in \mathbb{R}^{d}

- bounded convex polyhedron

Central Geometric Duality D_{0}
For a point $a \in \mathbb{R}^{d} \backslash\{0\}$, it assigns the hyperplane

$$
D_{0}(a)=\left\{x \in \mathbb{R}^{d} \mid\langle a, x\rangle=1\right\},
$$

and for a hyperplane h not passing through the origin, where $h=\left\{x \in \mathbb{R}^{d}\right.$ $\langle a, x\rangle=1\}$, it assisns the points $D_{0}(h)=a \in \mathbb{R}^{d} \backslash\{0\}$.

An interpretation of duality through \mathbb{R}^{d+1}

- "Primal" \mathbb{R}^{d} : the hyperplane $\pi=\left\{x \in \mathbb{R}^{d+1} \mid x_{d+1}=1\right\}$
- "dual" \mathbb{R}^{d} : the hyperplane $\rho=\left\{x \in \mathbb{R}^{d+1} \mid x_{d+1}=-1\right\}$
- A point $a \in \pi$
- construct the hyperplane in \mathbb{R}^{d+1} perpendicular to $0 a$ and containing 0
- intersect the hyperplane with ρ
k-flat is a hyperplane in $(k+1)$ dimensions.
- 0-flat is a point, 1 -flat is a line, 2-flat is a plane, and so on.
- The dual of a k-flat is a $(d-k-1)$-flat.

Half-space

For a hyperplane h not containing the origin, let h^{-}stand for the closed halfspace bounded by h and containing the origin, while h^{+}denotes the other closed half-space bounded by h. That is, if $h=\left\{x \in \mathbb{R}^{d} \mid\langle a, x\rangle=1\right\}$, then $h^{-}=\left\{x \in \mathbb{R}^{d} \mid\langle a, x\rangle \leq 1\right\}$ and $h^{+}=\left\{x \in \mathbb{R}^{d} \mid\langle a, x\rangle \geq 1\right\}$.

Duality preserves incidences

For a point $p \in \mathbb{R}^{d} \backslash 0$ and a hyperplane h not containing the origin,

- $p \in h$ if and only if $D_{0}(h) \in D_{0}(p)$.
- $p \in h^{-}$if and only if $D_{0}(h) \in D_{0}(p)^{-}$.
- $p \in h^{+}$if and only if $D_{0}(h) \in D_{0}(p)^{+}$.

Dual set (Polar set)
For a set $X \subseteq \mathbb{R}^{d}$, the set dual to X, denoted by X^{*}, is defined as follows:

$$
X^{*}=\left\{y \in \mathbb{R}^{d} \mid\langle x, y\rangle \leq 1 \text { for all } x \in X\right\}
$$

Illustration for the dual set X^{*}

- Geometrically, X^{*} is the intersection of all half-spaces of the form $D_{0}(x)^{-}$ with $x \in X$.
- In other words, X^{*} consists of the origin plus all points y such that $X \subseteq$ $D_{0}(y)^{-}$.
- For example, if X is the quadrilateral $a_{1} a_{2} a_{3} a_{4}$ shown above, the X^{*} is the quadrilateral $v_{1} v_{2} v_{3} v_{4}$.
- X^{*} is convex and closed and contains the origin.
- $\left(X^{*}\right)^{*}$ is the convex hull of $X \cup\{0\}$

Primal

Dual

Tetrahedron

four triangles
6 edges
4 vertices

Octahedron

8 triangles
12 edges
6 vertices

Dodecahedron
12 pentagon
30 edges
20 vertices

Two Types of Convex Polytopes

H-polyhedron/polytope

An H-polyhedron is an intersection of finitely many closed half-spaces in \mathbb{R}^{d}.
An H-polytope if an bounded H-polyhedron.

V-polytope

An V-polytope is the convex hull of a finite point set in \mathbb{R}^{d}

Theorem

Each V-polytope is an H-polytope, and each H-polytope is a V-polytope.

Mathematically Equivalence, Computational Difference

- Whether a convex polytope is given as a convex hull of a finite point set or as an intersection of half-spaces
- Given a set of n points specifying a V-polytope, how to find its representationsa as an H-polytope?
- The number of required half-spaces may be astronomically larger than the number n of points

Another Illustration

- Consider the maximization of a given linear function over a given polytope.
- For V-polytopes, it suffices to substitute all points of V into the given linear function and select the maximum of the resulting values
- For H-polytopes, it is equivalent to solving the problem of linear programming.

Dimension of a convex polyhedron P

- Dimension of its affine hull
- Smallest dimension of an Euclidean space containing a congruent copy of P

Cubes

- The d-dimensional cube as a point set of the Cartesian Product $[-1,1]^{d}$
- As a V-polytope, the d-dimentional cube is the convex hull of the set $\{-1,1\}^{d}$ (2d points).
- As a H-polytope, it is described by the inequalities $-1 \leq x_{i} \leq 1, i=$ $1,2, \ldots, d$, i.e., by the intersection of $2 d$ half-spaces
- 2^{d} points vs. $2 d$ half-spaces
- The unit-ball of the maximium norm $\|x\|_{\infty}=\max _{i}\left|x_{i}\right|$
$d=1$

$d=2$

$d=3$

Crosspolytope

- V-polytope: Convex hull of the "coordinates cross," i.e., the convex hulll of $e_{1},-e_{1}, e_{2},-e_{2}, \ldots, e_{d}$, and $-e_{d}$, where e_{1}, \ldots, e_{d} are vectors of the stanard orthonormal basis. For $d=2, e_{1}=(1,0)$ and $e_{2}=(0,1)$.
- H-polytope: Intersection of 2^{d} half-spaces of the form $\langle\sigma, \leq\rangle 1$, where σ ranges over all vectors in $\{-1,1\}^{d}$.
- $2 d$ points vs. 2^{d} half-spaces
- Unit ball of l_{1}-norm $\|x\|_{1}=\sum_{i=1}^{d}\left|x_{i}\right|$.

$d=1$
$d=2$

$d=3$

A simplex is the convex hull of an affinely independent point set in some \mathbb{R}^{d}

- A d-dimensional simplex in \mathbb{R}^{d} can also be an intersection of $d+1$ half-spaces.
- The polytopes with smallest possible number of vertices (for a given dimension) are simplices.

$d=2$

$d=3$

A regular d-dimensional simplex in \mathbb{R}^{d} is the convex hull of $d+1$ points with all pairs of points having equal distances.

- Do not have a very nice representation in \mathbb{R}^{d}
- Simplest representation lives one dimension higher
- The convex hull of the $d+1$ vectors e_{1}, \ldots, e_{d+1} of the standard orthonormal basis in \mathbb{R}^{d+1} is a d-dimensional regular simplex with side length $\sqrt{2}$.

Proof of equivalence of H-polytope and V-polytope
$=>($ Let P be an H-polytope $)$

- Assume $d \geq 2$ and let Γ be a finite collection of closed half-spaces in \mathbb{R}^{d} such that $P=\bigcap \Gamma$ is nonempty and bounded (By the induction, $(d-1)$ is correct)
- For each $\gamma \in \Gamma$, let $F_{\gamma}=P \cap \partial \gamma$ be the intersection of P with bounding hyperplane of γ.
- Each nonempty F_{γ} is an H-polytope of dimension of at most ($d-1$), and it is the convex hull of a finite set $\boldsymbol{V}_{\gamma} \subset F_{\gamma}$ (by the inductive hypothesis)
- Claim $P=\operatorname{conv}(V)$, where $V=\bigcup_{\gamma \in \Gamma} V_{\gamma}$
- Let $x \in P$ and let l be a line passing through x.
- The intersection $l \cap P$ is a segement, so let y and z be its endpoints
- There are $\alpha, \beta \in \Gamma$ such that $y \in F_{\alpha}$ and $z \in F_{\beta}$
- We have $y \in \operatorname{conv}\left(V_{\alpha}\right)$ and $z \in \operatorname{conv}\left(V_{\beta}\right)$.
$-x \in \operatorname{conv}\left(V_{\alpha} \bigcup V_{\beta}\right) \subseteq \operatorname{conv}(V)$

$(<=)($ Let P be a V-polytope)
- Let $P=\operatorname{conv}(V)$ with V finite and assume 0 is an interior point of P
- Consider the dual body $P^{*}=\bigcap_{v \in V} D_{0}(v)^{-}$
- Since P^{*} is an H-polytope, P^{*} is a V-polytope (what we just prove)
$-P^{*}$ is the convex hull of a finite point set U
- Since $P=\left(P^{*}\right)^{*}, P$ is the intersection of finitely many half-spaces $-P=\bigcap_{u \in U} D_{0}(u)^{-}$

