Convex Polytope (Chapter 5.1 and 5.2)

A convex polytope is a convex hull of finite points in \mathbb{R}^d

• bounded convex polyhedron

Central Geometric Duality D_0

For a point $a \in \mathbb{R}^d \setminus \{0\}$, it assigns the hyperplane

$$D_0(a) = \{ x \in \mathbb{R}^d \mid \langle a, x \rangle = 1 \},\$$

and for a hyperplane h not passing through the origin, where $h = \{x \in \mathbb{R}^d \mid \langle a, x \rangle = 1\}$, it assists the points $D_0(h) = a \in \mathbb{R}^d \setminus \{0\}$.

An interpretation of duality through \mathbb{R}^{d+1}

- "Primal" \mathbb{R}^d : the hyperplane $\pi = \{x \in \mathbb{R}^{d+1} \mid x_{d+1} = 1\}$
- "dual" \mathbb{R}^d : the hyperplane $\rho = \{x \in \mathbb{R}^{d+1} \mid x_{d+1} = -1\}$
- A point $a \in \pi$
 - construct the hyperplane in \mathbb{R}^{d+1} perpendicular to 0a and containing 0
 - intersect the hyperplane with ρ

k-flat is a hyperplane in (k + 1) dimensions.

- 0-flat is a point, 1-flat is a line, 2-flat is a plane, and so on.
- The dual of a k-flat is a (d k 1)-flat.

Half-space

For a hyperplane h not containing the origin, let h^- stand for the closed half-space bounded by h and containing the origin, while h^+ denotes the other closed half-space bounded by h. That is, if $h = \{x \in \mathbb{R}^d \mid \langle a, x \rangle = 1\}$, then $h^- = \{x \in \mathbb{R}^d \mid \langle a, x \rangle \leq 1\}$ and $h^+ = \{x \in \mathbb{R}^d \mid \langle a, x \rangle \geq 1\}$.

Duality preserves incidences

For a point $p \in \mathbb{R}^d \setminus 0$ and a hyperplane h not containing the origin,

- $p \in h$ if and only if $D_0(h) \in D_0(p)$.
- $p \in h^-$ if and only if $D_0(h) \in D_0(p)^-$.
- $p \in h^+$ if and only if $D_0(h) \in D_0(p)^+$.

Dual set (Polar set)

For a set $X \subseteq \mathbb{R}^d$, the set dual to X, denoted by X^* , is defined as follows:

 $X^* = \{ y \in \mathbb{R}^d \mid \langle x, y \rangle \le 1 \text{ for all } x \in X \}.$

Illustration for the dual set X^*

- Geometrically, X^* is the intersection of all half-spaces of the form $D_0(x)^$ with $x \in X$.
- In other words, X^* consists of the origin plus all points y such that $X \subseteq D_0(y)^-$.
- For example, if X is the quadrilateral $a_1a_2a_3a_4$ shown above, the X^* is the quadrilateral $v_1v_2v_3v_4$.
- X^* is convex and closed and contains the origin.
- $(X^*)^*$ is the convex hull of $X \cup \{0\}$

Famous convex polytopes in \mathbb{R}^3

Tetrahedron four triangles 6 edges 4 vertices

Octahedron

8 triangles12 edges6 vertices

Dodecahedron

- 12 pentagon
- 30 edges
- 20 vertices

Two Types of Convex Polytopes

H-polyhedron/polytope

An H-polyhedron is an intersection of finitely many closed half-spaces in \mathbb{R}^d . An H-polytope if an bounded H-polyhedron.

V-polytope

An V-polytope is the convex hull of a finite point set in \mathbb{R}^d

Theorem

Each V-polytope is an H-polytope, and each H-polytope is a V-polytope.

Mathematically Equivalence, Computational Difference

- Whether a convex polytope is given as a convex hull of a finite point set or as an intersection of half-spaces
- Given a set of n points specifying a V-polytope, how to find its representations as an H-polytope?
- \bullet The number of required half-spaces may be astronomically larger than the number n of points

Another Illustration

- Consider the maximization of a given linear function over a given polytope.
- For V-polytopes, it suffices to substitute all points of V into the given linear function and select the maximum of the resulting values
- \bullet For $H\mathchar`-$ polytopes, it is equivalent to solving the problem of linear programming.

Dimension of a convex polyhedron P

- Dimension of its affine hull
- Smallest dimension of an Euclidean space containing a congruent copy of P

Cubes

- The d-dimensional cube as a point set of the Cartesian Product $[-1, 1]^d$
- As a V-polytope, the d-dimensional cube is the convex hull of the set $\{-1,1\}^d$ (2^d points).
- As a *H*-polytope, it is described by the inequalities $-1 \leq x_i \leq 1$, $i = 1, 2, \ldots, d$, i.e., by the intersection of 2*d* half-spaces
- 2^d points vs. 2d half-spaces
- The unit-ball of the maximum norm $||x||_{\infty} = \max_i |x_i|$

d = 1

Crosspolytope

- V-polytope: Convex hull of the "coordinates cross," i.e., the convex hull of $e_1, -e_1, e_2, -e_2, \ldots, e_d$, and $-e_d$, where e_1, \ldots, e_d are vectors of the stanard orthonormal basis. For d = 2, $e_1 = (1, 0)$ and $e_2 = (0, 1)$.
- *H*-polytope: Intersection of 2^d half-spaces of the form $\langle \sigma, \leq \rangle 1$, where σ ranges over all vectors in $\{-1, 1\}^d$.
- 2d points vs. 2^d half-spaces
- Unit ball of l_1 -norm $||x||_1 = \sum_{i=1}^d |x_i|$.

Simplex

A simplex is the convex hull of an affinely independent point set in some \mathbb{R}^d

- A d-dimensional simplex in \mathbb{R}^d can also be an intersection of d+1 half-spaces.
- The polytopes with smallest possible number of vertices (for a given dimension) are simplices.

A regular d-dimensional simplex in \mathbb{R}^d is the convex hull of d + 1 points with all pairs of points having equal distances.

- Do not have a very nice representation in \mathbb{R}^d
- Simplest representation lives one dimension higher
- The convex hull of the d+1 vectors e_1, \ldots, e_{d+1} of the standard orthonormal basis in \mathbb{R}^{d+1} is a *d*-dimensional regular simplex with side length $\sqrt{2}$.

Proof of equivalence of H-polytope and V-polytope

=> (Let P be an H-polytope)

- Assume $d \ge 2$ and let Γ be a finite collection of closed half-spaces in \mathbb{R}^d such that $P = \bigcap \Gamma$ is nonempty and bounded (By the induction, (d-1) is correct)
- For each $\gamma \in \Gamma$, let $F_{\gamma} = P \cap \partial \gamma$ be the intersection of P with bounding hyperplane of γ .
- Each nonempty F_{γ} is an *H*-polytope of dimension of at most (d-1), and it is the convex hull of a finite set $V_{\gamma} \subset F_{\gamma}$ (by the inductive hypothesis)
- Claim $P = \operatorname{conv}(V)$, where $V = \bigcup_{\gamma \in \Gamma} V_{\gamma}$
 - Let $x \in P$ and let l be a line passing through x.
 - The intersection $l \cap P$ is a segment, so let y and z be its endpoints
 - There are $\alpha, \beta \in \Gamma$ such that $y \in F_{\alpha}$ and $z \in F_{\beta}$
 - We have $y \in \operatorname{conv}(V_{\alpha})$ and $z \in \operatorname{conv}(V_{\beta})$.
 - $-x \in \operatorname{conv}(V_{\alpha} \bigcup V_{\beta}) \subseteq \operatorname{conv}(V)$

(<=) (Let P be a V-polytope)

- Let $P = \operatorname{conv}(V)$ with V finite and assume 0 is an interior point of P
- Consider the dual body $P^* = \bigcap_{v \in V} D_0(v)^-$
- Since P^* is an *H*-polytope, P^* is a *V*-polytope (what we just prove) - P^* is the convex hull of a finite point set *U*
- Since $P = (P^*)^*$, P is the intersection of finitely many half-spaces $-P = \bigcap_{u \in U} D_0(u)^-$