
AN OPTIMAL COMPETITIVE STRATEGY FOR
WALKING IN STREETS∗

CHRISTIAN ICKING† , ROLF KLEIN‡ , ELMAR LANGETEPE‡ ,

SVEN SCHUIERER§ , AND INES SEMRAU¶

SIAM J. COMPUT. c© 2004 Society for Industrial and Applied Mathematics
Vol. 33, No. 2, pp. 462–486

Abstract. A simple polygon P with two distinguished vertices, s and t, is called a street if the
two boundary chains from s to t are mutually weakly visible. We present an on-line strategy that
walks from s to t, in any unknown street, on a path at most

√
2 times longer than the shortest path.

This matches the best lower bound previously known and settles an open problem in the area of
competitive path planning. (The result was simultaneously and independently obtained by the first
three authors and by the last two authors. Both papers, [C. Icking, R. Klein, and E. Langetepe,
Proceedings of the 16th Symposium on Theoretical Aspects in Computer Science, Lecture Notes in
Comput. Sci. 1563, Springer-Verlag, Berlin, 1999, pp. 110–120] and [S. Schuierer and I. Semrau,
Proceedings of the 16th Symposium on Theoretical Aspects of Computer Science, pp. 121–131], were
presented at STACS’99. The present paper contains a joint full version.)
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1. Introduction. The path planning problem of autonomous mobile robots has
received a lot of attention in the communities of robotics, computational geometry,
and on-line algorithms; see, e.g., Rao et al. [37], Blum, Raghavan, and Schieber [6],
and the surveys by Berman [4] in Fiat and Woeginger [15] and by Mitchell [35] in
Sack and Urrutia [38].

In on-line navigation one has to perform a certain task in an initially unknown
environment. We are interested in strategies that are correct, in that the objective
will always be achieved whenever this is possible, and in performance guarantees of
the following kind. Given a navigation problem Q, we want to relate the cost of
solving any problem instance P ∈ Q by means of strategy S to the cost of solving
P optimally, using an off-line strategy. If the former never exceeds the latter times
a certain constant factor, c, then strategy S is said to be a c-competitive solution of
Q; this notion was coined by Sleator and Tarjan in their seminal paper [43]. Surveys
on general on-line algorithms can be found in Fiat and Woeginger [15] and Ottmann,
Schuierer, and Hipke [36].

Given an on-line problem Q, three questions arise: Does a competitive solution
exist? If S is a solution, what is its true competitive factor, i.e., the smallest c such that
S is c-competitive? And finally, what is the smallest factor c that can be attained
by any strategy solving Q? This number is called the competitive complexity of
problem Q.

There are not so many navigation tasks we are aware of whose competitive com-
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AN OPTIMAL COMPETITIVE STRATEGY FOR STREETS 463

plexities are precisely known. One of them is searching for a point on m halflines
that meet at the start point; see Baeza-Yates, Culberson, and Rawling [2] and also
Bellman [3], Gal [16], Schuierer [39], López-Ortiz and Schuierer [34], and Alpern and
Gal [1].

Another one is looking around a corner in a wall; see Icking, Klein, and Ma
[22]. Recently, matching lower and upper bounds for some restricted on-line TSP
problems where shown by Blom et al. [5]. More often, there is a gap between the
smallest competitive factor known and the best lower bound, such as in the polygon
exploration problem; see Hoffmann et al. [18].

In this paper we prove that walking in an unknown street is of competitive com-
plexity

√
2, thus settling a problem that has been open for a decade. A street is a

simple polygon P with two vertices, s and t, that mark the start and target point of the
walk, subject to the condition that the two boundary chains connecting s to t are mu-
tually weakly visible1; see Figure 1.1 for an example. This is equivalent to saying that
from each s-to-t path inside P , each point of P can be seen at least once. Streets were
introduced in Klein [24] to model racetracks and rivers like the Rhine that may contain
curves and bays but no cul-de-sacs winding away from the main route. It was shown
in [24, 25] that there exists a strategy that is competitive with a factor of 5.72, and
that no factor smaller than

√
2 can be achieved, not even by a randomized strategy.

s

t

SP

L

R

Fig. 1.1. A street.

Since then, the street problem has attracted considerable attention. Some re-
search was devoted to structural properties. Tseng, Heffernan, and Lee [44] have
shown how to report all pairs of vertices (s, t) of a given polygon for which it is a
street; for star-shaped polygons many such vertex pairs exist. Das, Heffernan, and
Narasimhan [10] have improved on this result by giving an optimal linear time algo-
rithm. Ghosh and Saluja [17] have described how to walk an unknown street with a
minimum number of turns.

For arbitrary polygons it is quite easy to see that in general no strategy can
guarantee a search path whose length is at most a constant times the length of the
shortest path from start to target.2 Therefore, some researchers have designed com-
petitive search strategies for classes of polygons more general than streets; see Datta

1Two sets are mutually weakly visible if each point of one set can see at least one point of the
other.

2If n L-shaped legs of unit length lead away from a central place, the search path can be of length
2n− 1, in the worst case, while the shortest path is of length 1.
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464 ICKING, KLEIN, LANGETEPE, SCHUIERER, AND SEMRAU

and Icking [13, 14], Datta, Hipke, and Schuierer [12], and López-Ortiz and Schuierer
[30, 33].

Other authors have shown that more general search problems can be solved for
the original street polygons. Indeed, not only can we walk to vertex t starting from
vertex s, where s, t are the two special vertices defining the street, but it has also been
shown in Bröcker and Schuierer [8] and Bröcker and López-Ortiz [7] that one can find
any boundary point from any starting point on the boundary of a street by means of
a 69.216-competitive strategy.

Carlsson and Nilsson [9] have shown that the art gallery problem remains NP-
hard for street polygons. However, the problem of computing the minimum number
of guards located on a given watchman route can be solved very efficiently for streets,
while it is NP-hard for general polygons.

Other research has addressed the gap between the
√

2 lower bound and the first
upper bound of 5.72 for the original street problem. The upper bound was low-
ered to 4.44 in Icking [19], then to 2.61 in Kleinberg [26], to 2.05 in López-Ortiz
and Schuierer [29], and to 1.73 in López-Ortiz and Schuierer [31]. López-Ortiz and
Schuierer [32] showed that a particular strategy called CAB has the true competitive
ratio 1.6837. Using different search strategies, the upper bound was further decreased
to 1.57 in Semrau [42], and to 1.51 in Icking et al. [23]. Further attempts were made
by Dasgupta, Chakrabarti, and DeSarkar [11] and by Kranakis and Spatharis [27].

But it remained an open question whether there existed a search strategy with
optimal competitive factor

√
2; this was mentioned open problem no. 13 in Mitchell

[35].
In this paper the problem is finally solved. We introduce a new strategy and prove

that the search path it generates, in any particular street, is at most
√

2 times the
length of the shortest path from s to t. Unlike many approaches discussed in previous
work, the optimal strategy we are presenting here is not a mere artifact. Rather, its
definition is well motivated by backward reasoning, as we shall now explain.

The crucial subproblem can be parametrized by a single angle, φ. For each
possible value of φ a lower bound can be established; see section 3.1. For the maximum
value φ = π the existence of a strategy matching this bound follows from the properties
of a street. We state a requirement in section 3.2 that would allow us to extend an
optimal strategy from a given value of φ to smaller values. From this requirement we
can infer how the strategy should proceed; see section 3.3. One of the problems is to
prove that the requirement can be fulfilled; see section 3.4.

2. Definitions and basic properties. First, we briefly recall some basic defi-
nitions.

A simple polygon P is considered as a room, with its edges as opaque walls. By
∂P we denote the boundary of polygon P . Two points inside P are mutually visible,
i.e., see each other, if the connecting line segment is contained within P . As usual,
two sets of points are said to be mutually weakly visible if each point of one set can
see at least one point of the other set.

Definition 2.1. A simple polygon P in the plane with two distinguished vertices
s and t is called a street if the two boundary chains from s to t are weakly mutually
visible; for an example, see Figure 1.1. Streets are sometimes also called LR-visible
polygons [10, 44], where L and R denote the left and the right boundary chains from
s to t, respectively.

A strategy for searching a target in an unknown street is an on-line algorithm for
a mobile robot, modeled by a point, that starts at vertex s, moves around inside the
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AN OPTIMAL COMPETITIVE STRATEGY FOR STREETS 465

polygon, and eventually arrives at the target, t. The robot is equipped with a vision
system that provides the visibility polygon for its actual position at each time, and
everything that has been visible is memorized. When the target becomes visible the
robot goes there, and its task is accomplished.

As the room’s floor plan is not known in advance, the robot’s path can be longer
than the shortest path, SP , from s to t inside P . Our goal is to bound that detour.

Definition 2.2. A strategy for searching a target, t, in a street is called compet-
itive with factor c (or c-competitive, for short) if its path is never longer than c times
the length of the shortest path from s to t.

All existing algorithms for walking along a street are making use of some geo-
metric properties that can be derived from the definition of a street; these facts and
their complete proofs can be found in [25]. For the convenience of the reader these
properties, together with an outline of their proofs, will now be stated.

First, we consider the situation at the beginning. As the robot starts from vertex
s, it may not be able to see the whole polygon. The parts invisible to the robot are
called caves. Each cave is hidden behind a reflex vertex, v, which is one whose internal
angle exceeds 180◦. Such a reflex vertex—and its associated cave—is called left if its
adjacent edges in ∂P lie to the left of the ray emanating from the robot’s position
through v. Right reflex vertices are defined analogously.

If s is the start point of a street, these caves can occur only in a certain order.
As the robot scans ∂P in a clockwise direction, it encounters a consecutive sequence
of left caves with left reflex vertices v−a

l , v−a+1
l , . . . , v0

l , v
1
l followed by a consecutive

sequence of right caves with right reflex vertices v1
r , v

0
r , . . . , v

−b+1
r , v−b

r ; see Figure 2.1.
Either sequence can be empty. The reason for this ordering is that a right cave cannot
be predecessor of a left cave. Assuming the contrary, let v be a right reflex vertex
that appears before the left reflex vertex w in clockwise order on ∂P . Let v− be the
predecessor vertex of v, and let w+ denote the successor of w. If v were a vertex of
chain L, then v− would not be able to see a point of chain R, in contradiction to the
street property. Thus, v ∈ R holds. Similarly, we have w ∈ L. But this is impossible
since L and R are connected and meet at s.

Of all the left caves visible from s only the clockwise-most can contain the target;
see Figure 2.1. The reason is similar to the proof above. In fact, the reflex vertex vl of
the clockwise-most left cave cannot belong to chain R, or its successor on the boundary
would not be able to see a point of L. Analogously, only the counterclockwise-most
right cave with reflex vertex vr can contain the target vertex t.

Consequently, if only vl exists, then its cave must contain the target, and the
robot walks straight to vl; see Figure 2.1(ii). We observe that this reflex vertex must
also be visited by the shortest path from s to t. The same holds if only vr exists.

A more interesting situation arises if both vl and vr exist. Then the target can
be situated in either of their caves, but the robot does not know in which one; see
Figure 2.1(i). We call this a funnel situation. The angle, φ, between the directions
from the actual position to vl and to vr is called the opening angle; it is always smaller
than π, as another consequence of the street property. Most search strategies cause
the robot to walk into this funnel of angle φ. They differ in choosing the direction
into the funnel.

As the robot leaves the start vertex s, the vertices vl and vr are maintained by
the robot. Essentially, vl is the reflex vertex of the clockwise-most left cave in front
of the robot, and vr is the entrance vertex of the counterclockwise-most right cave.
The vertices vl and vr are known to belong to L and R, respectively; but the horizon,
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466 ICKING, KLEIN, LANGETEPE, SCHUIERER, AND SEMRAU

(i)

φ

v3
l

v2
l

SP
q

L

R

s

vr=v1
r

vl=v1
l

v2
r

t

L R

(ii)
s

t vl=v1
l

v0
l

v0
r

v−1
r

SP

v0
l

v−1
l

Fig. 2.1. Typical situations in streets.

that is, the boundary part between vl and vr, can belong to either chain, depending
on the position of the target.

To summarize, the robot behaves as follows. If the target is visible from the
robot’s current position, the robot walks straight to the target. If only one of the
vertices vl, vr exists, then the robot walks straight to this vertex, which is also visited
by the shortest path. If both vl and vr exist, then the robot walks into the funnel
defined by its current position, c0, and by vl and vr.

As the robot moves into the funnel, three events can happen. The most important
event occurs when a new reflex vertex, say vl

′, appears behind vertex vl. In this case,
we know from the discussion above that the target cannot be contained in the cave
of vl

′; it must be situated in the caves of vl
′ or vr. Now the robot proceeds with vl

′

and vr. This event can occur repeatedly on both sides. It generates convex chains of
reflex vertices v1

l , v
2
l , . . . , v

m
l and v1

r , v
2
r , . . . , v

n
r that form a funnel with apex c0.

Another event can occur when one of the two innermost caves, say the left, be-
comes completely visible. In this case, the target must be situated in the right cave,
and the robot walks to its associated reflex vertex, vnr . On reaching vnr , the funnel
situation is resolved, and we know that the chain v1

r , v
2
r , . . . , v

n
r belongs to the shortest

path from s to t.
The third event occurs when the target becomes visible, e.g., in the right cave;

then the robot walks straight to t, visiting the reflex vertex vnr on the way.
This analysis shows that detour is only caused by funnels, and that the overall

competitive factor of a search strategy for streets depends only on its performance in
funnels.

As a consequence, we can restrict our attention to the subclass of funnel polygons.
They consist of two chains of reflex vertices with a common start point s; see Figure 2.2
for an example. The two reflex chains end in vertices tl and tr, respectively, and the
line segment tl tr closes the polygon. A funnel polygon represents a funnel situation
in which the target t lies arbitrarily close behind either tl or tr, and the strategy will
know which case applies only when the line segment tltr is reached. For analyzing
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vl

tr

tl

vr

s

φ0

φ

Fig. 2.2. A funnel.

a strategy, both cases have to be considered and the worse of them determines the
competitive factor. Other funnel situations, which end before line segment tltr is
reached or where the goal is further away from tl or tr, will produce a smaller detour.

Since the walking direction is always within the opening angle, φ is always strictly
increasing. It starts at the angle, φ0, between the two edges adjacent to s, and reaches,
but never exceeds, 180◦ when finally the goal becomes visible. By this property, it is
quite natural to take the opening angle φ for parameterizing a strategy.

3. A strategy which always takes the worst case into account. In the
previous section we have seen that a crucial situation occurs when the robot is faced
with two caves, one left and one right, and does not know in which of them the target,
t, is situated. This situation can be parametrized by the funnel’s opening angle φ.

Let us assume that π
2 ≤ φ holds. We will see in section 3.1 that for each value of

φ, a lower bound for the competitive ratio is given by

Kφ =
√

1 + sinφ.

If φ = π, then Kπ = 1. The street properties ensure that the robot is able to look
into the caves and see the target. Hence, the optimal strategy is given by walking
straight to t. That means, for φ = π we have a strategy matching the lower bound.

Now assume that π
2 ≤ φ1 < φ2 < π holds, and that we have already found a strat-

egy with (optimum) competitive factor Kφ2 for all opening angles ≥ φ2. We would
like to extend it to a Kφ1

-competitive strategy for opening angles φ1. This is possible
iff a certain geometric condition can be met, which will be stated in section 3.2. This
condition gives rise to a certain curve (see section 3.3), and this curve will then be
shown to have the required properties in section 3.4. Finally, in section 3.5, we deal
with opening angles less than π.

3.1. A generalized lower bound. We start with a generalized lower bound
for initial opening angles ≥ π

2 . For an arbitrary angle φ, let

Kφ :=
√

1 + sinφ .

Lemma 3.1. Assume an initial opening angle φ0 ≥ π
2 . Then no strategy can

guarantee a smaller competitive factor than Kφ0 .
Proof. We take an isosceles triangle with an angle φ0 at vertex s; the other vertices

are tl and tr; see Figure 3.1.
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φ0

s

m trtl

Fig. 3.1. Establishing a generalized lower bound.

The goal becomes visible only when the line segment tl tr is reached. If this
happens to the left of the midpoint m, the goal may be to the right, and vice versa.
In any case the path length is at least the distance from s to m plus the distance
from m to tl. For the ratio, c, of the path length to the shortest path we obtain by
simple trigonometry

c ≥ cos
φ0

2
+ sin

φ0

2
=

√
1 + sinφ0 = Kφ0 .

For φ0 = π
2 , we have the well-known lower bound of

√
2 stemming from a rectan-

gular isosceles triangle; see Klein [25].
Note that the lower bound Kφ0 also applies to any nonsymmetric situation, since

at the start the funnel is unknown except for the two edges adjacent to s, and it may
turn into a nearly symmetric case immediately after the start. In other words this
means that for an initial opening angle φ0, a competitive factor of Kφ0

is always the
best we can hope for.

In the following we develop a strategy that is Kφ-competitive in all funnel poly-
gons of opening angle φ.

3.2. Sufficient requirements for an optimal strategy. In a funnel with
opening angle π the goal is visible and there is a trivial strategy that achieves the
optimal competitive factor Kπ = 1. So we look backwards to decreasing angles.

Let us assume for the moment that the funnel is a triangle, and that we have a
strategy with a competitive factor of Kφ2

for all triangular funnels with initial opening
angle φ2. How can we extend this to initial opening angles φ1 with π ≥ φ2 > φ1 ≥ π

2 ?
Starting with an angle φ1 at point p1 we walk a certain path of length w until we

reach an angle of φ2 at point p2, from where we can continue with the known strategy;
see Figure 3.2. We assume for the moment that the left and right reflex vertices, vl
and vr as defined in section 2, do not change.

vl vr

w

φ2

φ1

p1

p2

l1

r2l2

r1

Fig. 3.2. Getting from angle φ1 to φ2.
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AN OPTIMAL COMPETITIVE STRATEGY FOR STREETS 469

Let l1 and l2 denote the distances from p1, respectively, p2, to vl at the left side,
and r1 and r2 the corresponding distances at the right. If t = vl, the length of the
robot’s path from p1 to t is not greater than w + Kφ2

l2. If now Kφ1
l1 ≥ w + Kφ2

l2
holds and the analogous inequality Kφ1r1 ≥ w + Kφ2r2 for the right side, we have a
competitive factor not bigger than Kφ1

for triangles with initial opening angle φ1. By
combining the two inequalities we can express the condition as

w ≤ min(Kφ1 l1 −Kφ2
l2,Kφ1

r1 −Kφ2
r2) ,(3.1)

which will prove useful later on.
Note that condition (3.1) is additive in the following sense. If it holds for a

path w12 from φ1 to φ2 and for a continuing path w23 from φ2 to φ3, it is also true
for the combined path w12 +w23 from φ1 to φ3. This will turn out to be very useful:
if (3.1) holds for arbitrarily small, successive steps w, then it is also true for all bigger
ones.

vl

φ2

w

φ0 p1

p2

l2 r2
l1

l′2

v′l
trW

φ1

r1
r0

vr

l0

s

rend
pend

lendtl

Fig. 3.3. When p2 is reached, the most advanced visible point to the left jumps from vl to v′l.

Now let us go further backwards and observe what happens if one of the current
vertices vl or vr change. We assume that condition (3.1) holds for path w from p1 to
p2 and that vl changes at p2; see Figure 3.3. The visible left chain is extended by l′2.
Nothing changes on the right side of the funnel, and for the left side of the funnel we
have

w ≤ Kφ1 l1 −Kφ2 l2 = Kφ1 l1 −Kφ2 l2 + Kφ2 l
′
2 −Kφ2 l

′
2(3.2)

≤ Kφ1
(l1 + l′2) −Kφ2

(l2 + l′2) .

The last inequality holds because Kφ =
√

1 + sinφ is decreasing with increasing φ ∈
[π2 , π]. Here, l1 + l′2 and l2 + l′2 are the lengths of the shortest paths from p1 and p2

to v′l, respectively. But (3.2) in fact means that (3.1) remains valid even if changes of
vl or vr occur.

Under the assumption that (3.1) holds for all small steps where vl and vr do not
change we can make use of the additivity of (3.1) and obtain the following expression
for the path length, W , from an initial opening angle φ0 to the point pend where the
line segment tl tr is reached; see Figure 3.3.

W ≤ min
(

Kφ0(length of left chain) −Kπlend,

Kφ0(length of right chain) −Kπrend

)
.
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470 ICKING, KLEIN, LANGETEPE, SCHUIERER, AND SEMRAU

But, since Kπ = 1, this inequality exactly means that we have a competitive factor
not larger than Kφ0 . Only a curve remains to be found that satisfies (3.1) for small
steps.

3.3. Developing the curve. One could try to satisfy condition (3.1) by ana-
lyzing, for fixed p1, φ1, and φ2, which points p2 meet that requirement. To avoid this
tedious task, we argue as follows. For fixed φ2, the point p2 lies on a circular arc
Uφ2

through vl and vr. While p2 moves along the arc Uφ2 , the length l2 is strictly
increasing while r2 is strictly decreasing. Heuristically, we maximize our chances to
satisfy (3.1) if we require that

Kφ1
l1 −Kφ2

l2 = Kφ1r1 −Kφ2r2

or, equivalently,

Kφ2
(l2 − r2) = Kφ1(l1 − r1) .(3.3)

We claim that inside the triangle defined by φ1 and segments of length l1 and r1
there exists a point p2 on Uφ2

that satisfies (3.3). Indeed, while p2 moves along Uφ2

between the intersections of Uφ2
with the segments of length l1 and r1, the continuous

expression Kφ2(l2 − r2) − Kφ1(l1 − r1) changes its sign; see Figure 3.4. If p2 is the
intersection of Uφ2

with the segment of length r1, we have r2 < r1 and Kφ2 < Kφ1 ,
and Kφ2(l2 − r2) −Kφ1(l1 − r1) is positive if Kφ1 l1 ≤ Kφ2 l2. Using the law of sine,

Kφ1
l1 ≤ Kφ2

l2 is equivalent to
Kφ1

sinφ1
≤ Kφ2

sinφ2
. The expression

Kφ

sinφ is monotonically

increasing for π
2 ≤ φ < π. For the same reason Kφ2

(l2 − r2)−Kφ1
(l1 − r1) < 0 holds

if p2 is the intersection of Uφ2 with the segment of length l1.

vl vr

φ2Uφ2

p1

l1
r1φ1

φ2

r2l2

Fig. 3.4. Kφ2
(l2 − r2) −Kφ1

(l1 − r1) changes its sign along the circular arc Uφ2
.

Altogether, if we start with the initial values φ0, l0, r0, we define the fixed constant
A := Kφ0

(l0 − r0), and for any φ0 ≤ φ ≤ π with corresponding lengths lφ and rφ we
want that

Kφ(lφ − rφ) = A(3.4)

holds as long as vl and vr do not change. In the symmetric case l0 = r0 this condition
means that we walk along the bisector of vl and vr. Otherwise, condition (3.4) defines a
curve which can be determined in the following way. We choose a coordinate system
with horizontal axis vl vr, the midpoint being the origin. We scale the coordinate
system so that the distance from vl to vr equals 1. With this choice we have

|A| = |Kφ(lφ − rφ)| ≤ Kφ =
√

1 + sinφ(3.5)

for every lφ, rφ, and Kφ in the triangle defined by φ0, l0, r0.

D
ow

nl
oa

de
d 

11
/2

0/
13

 to
 1

31
.2

20
.3

.4
3.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



AN OPTIMAL COMPETITIVE STRATEGY FOR STREETS 471

vrvl

φ
lφ

r0

φ0

p

(0, 0)

rφ

l0

(
− 1

2 , 0
)

Fig. 3.5. The right arc of the hyperbola defined by vl, vr, and (l − r) = A
Kφ

and the circle

through vl and vr defined by angle φ meet in p = (X(φ), Y (φ)).

W.l.o.g. let l0 > r0. For any φ0 ≤ φ < π the corresponding point of the curve is
the intersection of the hyperbola

X2(
A

2Kφ

)2 − Y 2(
1
2

)2 − (
A

2Kφ

)2 = 1(3.6)

with the circle

X2 +

(
Y +

cotφ

2

)2

=
1

4 sin2 φ
;(3.7)

see Figure 3.5 and the details found in section A.1 of the appendix.
Solving these equations leads us, after some transformations, to the following

solutions (for details see section A.2 of the appendix):

X(φ) =
A

2
·

cot φ
2

1 + sinφ

√(
1 + tan

φ

2

)2

−A2,(3.8)

Y (φ) =
1

2
cot

φ

2

(
A2

1 + sinφ
− 1

)
.(3.9)

Since |A| <
√

1 + sinφ < 1 + tan φ
2 holds, the functions X(φ) and Y (φ) are well

defined and continuous while the curve stays below the line segment vlvr.
Figure 3.6 shows how these curves look for all possible values of φ and A. All

points with an initial opening angle of π
2 lie on the lower half circle.

Two cases can be distinguished. If |A| < 1, then the curves can be continuously
extended to a point (A2 , 0) on the line segment vl vr. For |A| > 1 the curves end up in
vl and vr, respectively, with a limit of opening angles φ = π − arcsin(A2 − 1), which
satisfies X(φ) = ± 1

2 , Y (φ) = 0, and |A| = Kφ. The curves for the limiting cases
|A| = 1 are emphasized with a thick line in Figure 3.6.
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472 ICKING, KLEIN, LANGETEPE, SCHUIERER, AND SEMRAU

-0.5

0

Y

-0.5 0.5X

Fig. 3.6. The curves fulfilling condition (3.4) for all values of φ and A.

3.4. Checking the requirements. We want to check that the curve defined
by (3.8) and (3.9) in section 3.3 satisfies condition (3.1). The arc length of the curve
from angle φ1 to φ2 has to be compared to the right side of (3.1). Because of (3.3)
the min in (3.1) can be dropped.

For l0 = r0 we trivially have equality in (3.1). W.l.o.g. we can assume l0 > r0
and A > 0. The other case is symmetric. It suffices to check

∫ φ2

φ1

√
X ′(φ)2 + Y ′(φ)2 dφ ≤ Kφ1 lφ1 −Kφ2 lφ2 for all

π

2
≤ φ1 < φ2 < π .

Here, X ′(φ) and Y ′(φ) denote the derivatives of X(φ) and Y (φ) from (3.8) and (3.9)
in φ. The inequality is equivalent to

∫ φ2

φ1

√
X ′(φ)2 + Y ′(φ)2 dφ ≤

∫ φ2

φ1

−(Kφlφ)′ dφ for all
π

2
≤ φ1 < φ2 < π ,(3.10)

since Kφlφ is a differentiable function in φ. It is sufficient to show that in (3.10) one
integrant dominates the other. In the following we will try to simplify this task.

By some transformations (for details see section A.3 of the appendix), we obtain

lφ =
Kφ

A
X(φ) +

A

2Kφ
and therefore Kφlφ =

K2
φ

A
X(φ) +

A

2
.(3.11)

Thanks to an idea by Seidel [41] we can make use of the substitution t = tan φ
2
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AN OPTIMAL COMPETITIVE STRATEGY FOR STREETS 473

in Kφ, X(φ), Y (φ), and Kφlφ. Thus, we get the functions

K(t) :=

√
(1 + t)2

1 + t2
,

X(t) :=
A

2tK
2
(t)

√
(1 + t)2 −A2 =

A(1 + t2)
√

(1 + t)2 −A2

2t(1 + t)2
,

Y (t) :=

(
A2

K
2
(t)

− 1

)
1

2t
=

A2(1 + t2) − (1 + t)2

2t(1 + t)2
,

Kl(t) :=
K

2
(t)

A
X(t) +

A

2
=

√
(1 + t)2 −A2

2t
+

A

2

with the identities K(tan φ
2 ) = Kφ, X(tan φ

2 ) = X(φ), Y (tan φ
2 ) = Y (φ), and

Kl(tan φ
2 ) = Kφlφ. The simple identities are proven in section A.4 of the appendix.

We will now simplify (3.10) using terms of the identities above. The left-hand
side of (3.10) is equivalent to

∫ φ2

φ1

√(
d

dφ

(
X (tan(φ/2))

))2

+

(
d

dφ

(
Y (tan(φ/2))

))2

dφ

(3.12)

=

∫ φ2

φ1

d

dφ
(tan(φ/2))

√((
d

dt
X

)
(tan(φ/2))

)2

+

((
d

dt
Y

)
(tan(φ/2))

)2

dφ,

whereas the right-hand side of (3.10) is equivalent to

∫ φ2

φ

− d

dφ

(
Kl (tan(φ/2))

)
dφ =

∫ φ2

φ

− d

dφ
(tan(φ/2))

(
d

dt
Kl

)
(tan(φ/2)) dφ.(3.13)

By applying the rule of substitution to (3.12) and (3.13), (3.10) is equivalent to

∫ tan
φ2
2

tan
φ1
2

√(
d

dt
X(t)

)2

+

(
d

dt
Y (t)

)2

dt ≤
∫ tan

φ2
2

tan
φ1
2

− d

dt
Kl(t) dt .(3.14)

The function tan φ
2 is positive, continuous, and monotonically increasing for π

2 ≤
φ < π. Then it suffices to show that in (3.14) one integrand dominates the other one
for every t in the integration interval [tan φ1

2 , tan φ2

2 ] for all π
2 ≤ φ1 < φ2 < π. We

make use of the following facts. For every t ∈ [tan φ1

2 , tan φ2

2 ] there is always a unique

φ ∈ [φ1, φ2] with t = tan φ
2 . Additionally we can assume A <

√
1 + sinφ from (3.5).

Altogether, it suffices to prove that√
X

′
(t)2 + Y

′
(t)2 ≤ −Kl

′
(t)(3.15)

holds for t = tan φ
2 , π

2 ≤ φ < π, and 0 < A <
√

1 + sinφ. Here for convenience X
′
(t),

Y
′
(t), and Kl

′
(t) denote the derivatives of the corresponding functions in t. We insert

the following identities (see section A.5 of the appendix for details) into (3.15).

−Kl
′
(t) =

(1 + t) −A2

2t2
√

(1 + t)2 −A2
,
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474 ICKING, KLEIN, LANGETEPE, SCHUIERER, AND SEMRAU

X
′
(t) =

A
(
A2

(
(1 + t)3 − 4t2

)
− 1 − 4t− 4t2 + t4

)
2(1 + t)3t2

√
(1 + t)2 −A2

,

Y
′
(t) =

(1 + t)3 −A2
(
(1 + t)3 − 4t2

)
2(1 + t)3t2

.

Note that −Kl
′
(t) > 0 follows from t ≥ tan π

4 = 1 and A2 < 2; see (3.5). Thus, after
squaring, the following remains to be shown:

F (t, A) ≥ 0 for all t = tan
φ

2
,

π

2
≤ φ < π, and 0 < A <

√
1 + sinφ where

F (t, A) :=
(
Kl

′
(t)

)2

−
(
X

′
(t)2 + Y

′
(t)2

)
=

−(t− 1)A2
(
(A2 − 1)(t2 + 3) − 4t

)
4(1 + t)3t2 ((1 + t)2 −A2)

.

The last inequality is proven in section A.6 of the appendix. The denominator of
F (t, A) is positive since t ≥ tan π

4 = 1 and A2 < 2 holds; see (3.5). Therefore it
suffices to show that

(A2 − 1)(t2 + 3) − 4t ≤ 0 .(3.16)

We minimize our chances to satisfy (3.16) if A achieves a maximal value greater than 1.
Substituting A2 by 1 + sin(φ), the greatest possible value for A2, and t by tan φ

2 , the
inequality (3.16) holds if

2 cosφ tan
φ

2
≤ 0 .

The details are given in section A.7 of the appendix. The last inequality holds for
π
2 ≤ φ < π. This proves (3.15) and therefore (3.1) for the curves of section 3.3.

3.5. Opening angles below 90◦. So far we have seen that there is a strategy
that is competitive with factor

√
2 for opening angles greater than or equal to π

2 .
There are already methods to accomplish the task for funnels with opening angles
running from an initial angle φ0 < π

2 to an opening angle of π
2 . As was already shown

by Semrau [42] and also in López-Ortiz [28], any strategy which achieves a factor ≥
√

2
for all funnels with φ0 ≥ π

2 can be adapted to the general case without changing its
factor. They suggest a walk along the fixed angular bisector of the current pair vl
and vr until an opening angle of π

2 is reached. If the opening angle of π
2 is reached,

one can proceed, for example, with the strategy given in section 3.3. So we are done
here.

In the following we show that our idea is universal, and for completeness we
consider the case 0 < φ < π

2 analogously. Looking backwards as in section 3.2 we can

assume that there is a strategy which is competitive with factor
√

2 starting at point
p2 with a opening angle π

2 ≥ φ2 > 0. Again we want to extend the strategy to initial
opening angles φ1 at starting points p1 with π

2 ≥ φ2 > φ1 > 0; see again Figure 3.2.
The only difference to the former consideration is that the factor need not vary any
longer with respect to the opening angle. The worst-case factor of

√
2 is already in

use, and we want to achieve this factor when starting at p1.
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AN OPTIMAL COMPETITIVE STRATEGY FOR STREETS 475

Thus, with the same arguments and notation as in section 3.2, it suffices to show
that there is a strategy so that

w ≤ min(
√

2 l1 −
√

2 l2,
√

2 r1 −
√

2 r2)(3.17)

holds between the changes of vl and vr as long as the opening angle is smaller than π
2 .

Again, similar to section 3.3, we want to satisfy (3.17) and therefore require that

√
2 (l1 − l2) =

√
2 (r1 − r2) or, equivalently, (l2 − r2) = (l1 − r1) .(3.18)

We consider two cases: For l0 = r0 we follow the fixed angular bisector in the triangle
defined by l0, r0, and φ0. In this case, as already stated in the beginning of section 3.4
with l0 = r0, the equality

w = Kφ1 l1 −Kφ2 l2 = Kφ1r1 −Kφ2r2

holds. Then (3.17) follows from Kφ1
≤ Kφ2

≤
√

2 for π
2 ≥ φ2 > φ1 > 0.

If we start with an initial difference 1 > D := (l0−r0) > 0 at point s, (3.18) means
that we follow the current angular bisector (CAB) of vl and vr, and the resulting curve
is a hyperbola through s with fix-points vl and vr; see Icking, Klein, and Langetepe
[20]. For the street problem the strategy CAB was already successfully analyzed for
small angles in López-Ortiz and Schuierer [31]. We show that our approach works
as well. The transformations of sections 3.3 and 3.4 become much easier since the
constant does not depend on φ, and all transformations are presented in detail in
section A.8 of the appendix. We proceed as before and obtain the coordinates

X(φ) =
D

2
cot

φ

2

√(
1 + tan2 φ

2

)
−D2,

Y (φ) =
1

2
cot

φ

2
(D2 − 1).

Now Kφlφ simplifies to

√
2 lφ =

√
2

D
X(φ) +

D√
2
.

In this case there is no need to simplify the terms by a substitution. In analogy to the
previous section it suffices to prove that in (3.10) one integrand dominates the other
one; that is, √

X ′(φ)2 + Y ′(φ)2 ≤ −(Kφlφ)′(3.19)

for all π
2 ≥ φ > 0 and 0 < D < 1. Altogether it suffices to show

F (φ,D) ≥ 0 for all 0 < φ ≤ π

2
and 0 < D < 1, where

F (φ,D) := X ′(φ)2
(

2

D2
− 1

)
− Y ′(φ)2

=
(D2 − 1)2

(
1 − tan2 φ

2

)
4(cosφ− 1)2

((
1 + tan2 φ

2

)
−D2

) .D
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476 ICKING, KLEIN, LANGETEPE, SCHUIERER, AND SEMRAU

It remains to be shown that

1 − tan2 φ

2
≥ 0 and 1 + tan2 φ

2
−D2 ≥ 0

holds, which follows from D2 < 1 and tan φ
2 ≤ 1 for π

2 ≥ φ > 0. See section A.8 of
the appendix for all details.

3.6. The main result. To summarize, our strategy for searching a goal in an
unknown street works as follows.

Strategy WCA (worst-case aware). If the initial opening angle is less than π
2 , walk

along the current angular bisector of vl and vr until a right opening angle is
reached.
Depending on the actual parameters φ0, l0, and r0, walk along the corre-
sponding curve from section 3.3 until one of vl and vr changes. Switch over
to the curve corresponding to the new parameters φ1, l1, and r1. Continue
until the line tl tr is reached.

Theorem 3.2. By using strategy WCA we can search a goal in an unknown
street with a competitive factor of

√
2 at the most. This is optimal.

The proof can be found in sections 3.1 through 3.5. In Figure 3.7 a complete path
of WCA inside a street is shown.

s

t

Fig. 3.7. A street and the path generated by WCA.

4. Conclusions. We have developed a competitive strategy for walking in streets
which guarantees an optimal factor of

√
2 at the most in the worst case, thereby set-

tling an old open problem. Furthermore, the strategy is even better for an initial
opening angle φ0 > π

2 , in which case an optimal factor Kφ0 =
√

1 + sinφ0 between

1 and
√

2 is achieved.
It would be interesting to see if there are substantially different but also optimal

strategies.

Appendix. Formal calculations. This appendix contains the formal calcu-
lations needed in the main text. They are presented in a resolution that makes it
possible to follow step by step. Nevertheless, the reader might prefer to enter start
and target formulae into some math-tool, for example, Maple or Mathematica, and
have correctness checked automatically.
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AN OPTIMAL COMPETITIVE STRATEGY FOR STREETS 477

A.1. Definition of the circle and the hyperbola. We choose a coordinate
system with horizontal axis vl vr, the midpoint being the origin. We scale the coordi-
nate system so that the distance from vl to vr equals 1. Let p be the point at a fixed
opening angle φ on the curve we want to construct. Then two constraints must be
met. First, the difference l(p)−r(p) of the length from p to vl and vr, correspondingly,
must equal A

Kφ
. The locus of all such points p is a hyperbola. Second, p sees vl and

vr at the angle φ. The locus of all these points p is a circle; see Figure A.1.

vrvl

φ

p

r(p)
a

b

φ
2

1
4

π − φ

(0, 0)

1
2

z x

l(p)

Fig. A.1. The right arc of the hyperbola defined by vl, vr, and (l(p) − r(p)) = A
Kφ

and the

circle through vl and vr defined by angle φ.

The hyperbola reads

X2

a2
− Y 2

b2
= 1 ,

where 2a = (l(p) − r(p)) = A
Kφ

and b2 + a2 = e2 = 1
4 hold. So we have a2 = ( A

2Kφ
)2

and b2 = 1
4 − ( A

2Kφ
)2. The circle is defined by

X2 + (Y − x)
2

= z2 .(A.1)

It remains to compute the parameters of the circle, x and z. From the law of sine we
get

z

sin π
2

=
1

2 sin(π − φ)
=

1

2 sinφ
,

z − x

sin
(
π − π

2 − φ
2

) =
z − x

cos φ
2

=
1

2 sin φ
2

,

and therefore z = 1
2 sinφ and

x = z − 1

2
cot

φ

2
=

1

2 sinφ
− 1

2
cot

φ

2
=

1 − 2 cos2 φ
2

4 sin φ
2 cos φ

2

= −cotφ

2
.
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478 ICKING, KLEIN, LANGETEPE, SCHUIERER, AND SEMRAU

A.2. Intersection of the circle and the hyperbola. In order to verify the
expressions

X(φ) =
A

2
·

cot φ
2

1 + sinφ

√(
1 + tan

φ

2

)2

−A2,(A.2)

Y (φ) =
1

2
cot

φ

2

(
A2

1 + sinφ
− 1

)
,(A.3)

we insert them into the equations

X2(
A

2Kφ

)2 − Y 2(
1
2

)2 − (
A

2Kφ

)2 = 1,(A.4)

X2 +

(
Y +

cotφ

2

)2

=
1

4 sin2 φ
.(A.5)

For (A.4) we have

(
A
2 · cot φ

2

1+sinφ

√(
1 + tan φ

2

)2

−A2

)2

(
A

2Kφ

)2 −

(
1
2 cot φ

2

(
A2

1+sinφ − 1
))2

(
1
2

)2 − (
A

2Kφ

)2

=

(
cot φ

2

Kφ

)2 ((
1 + tan

φ

2

)2

−A2

)
−

cot2 φ
2

((
A
Kφ

)2

− 1

)2

1 −
(

A
Kφ

)2

=

(
cot φ

2

Kφ

)2 ((
1 + tan

φ

2

)2

−A2

)
+ cot2

φ

2

((
A

Kφ

)2

− 1

)

= cot2
φ

2

⎛
⎜⎝
(
1 + tan φ

2

)2

1 + sinφ
− 1

⎞
⎟⎠ = 1 .

The conclusion is true since the identity

1 + sinφ = 1 +
2 tan φ

2

1 + tan2 φ
2

=

(
1 + tan φ

2

)2

1 + tan2 φ
2

(A.6)

holds.
For proving (A.5) we argue as follows:

⎛
⎝A

2
·

cot φ
2

1 + sinφ

√(
1 + tan

φ

2

)2

−A2

⎞
⎠

2

+

(
1

2
cot

φ

2

(
A2

1 + sinφ
− 1

)
+

cotφ

2

)2

=

(
A

2
·

cot φ
2

1 + sinφ

)2 ((
1 + tan

φ

2

)2

−A2
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+

(
1

2
cot

φ

2

(
A2

1 + sinφ
− 1

))2

+ cot
φ

2

(
A2

1 + sinφ
− 1

)
cotφ

2
+

(
cotφ

2

)2

=

(
A

2
·

cot φ
2

1 + sinφ

)2 (
1 + tan

φ

2

)2

+

(
1

2
cot

φ

2

)2 (
−2

A2

1 + sinφ
+ 1

)
+ cot

φ

2

(
A2

1 + sinφ
− 1

)
cotφ

2
+

(
cotφ

2

)2

=

(
cot φ

2

2
− cotφ

2

)2

+
A2 cot2 φ

2

4(1 + sinφ)

⎛
⎜⎝
(
1 + tan φ

2

)2

1 + sinφ
− 2 + 2

cotφ

cot φ
2

⎞
⎟⎠

=
1

4 sin2 φ
+

A2 cot2 φ
2

4(1 + sinφ)

(
tan2 φ

2
+ 1 − 2 +

1 − tan2 φ
2

tan φ
2

tan
φ

2

)

=
1

4 sin2 φ
+

A2 cot2 φ
2

4(1 + sinφ)
· 0 =

1

4 sin2 φ
.

Here we made use of (A.6) and the identities

(
cot φ

2

2
− cotφ

2

)2

=
1

4

(
sinφ

1 − cosφ
− cosφ

sinφ

)2

=
1

4

1

sin2 φ

and

cotφ =
1 − tan2 φ

2

2 tan φ
2

.

A.3. Representation of lφ. Considering the hyperbola (see Figure 3.5), we
have

lφ =

√(
X(φ) +

1

2

)2

+ Y 2(φ)

(3.6)
=

√√√√√
(
X(φ) +

1

2

)2

−X2(φ) −
(

1

2

)2

+

(
A

2Kφ

)2

+

(
1
2

)2(
A

2Kφ

)2X
2(φ)

=

√(
Kφ

A

)2

X2(φ) + X(φ) +

(
A

2Kφ

)2

=

√(
Kφ

A
X(φ) +

A

2Kφ

)2

=
Kφ

A
X(φ) +

A

2Kφ
.

A.4. Applying the substitution t = tan φ
2
. Applying (A.6) and t = tan φ

2
we have

Kφ =
√

1 + sinφ =

√
(1 + t)2

1 + t2
=: K(t) .(A.7)
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480 ICKING, KLEIN, LANGETEPE, SCHUIERER, AND SEMRAU

A straightforward application of (A.7) and t = tan φ
2 to (A.2) and (A.3) leads to

X(φ) =
A

2tK
2
(t)

√
(1 + t)2 −A2 =

A(1 + t2)
√

(1 + t)2 −A2

2t(1 + t)2
=: X(t) ,

Y (φ) =

(
A2

K
2
(t)

− 1

)
1

2t
=

A2(1 + t2) − (1 + t)2

2t(1 + t)2
=: Y (t) .

Using the representations of X(t) and K(t) we conclude that

Kφlφ =
Kφ

A
X(φ) +

A

2Kφ
=

K
2
(t)

A
X(t) +

A

2
=

√
(1 + t)2 −A2

2t
+

A

2
=: Kl(t)

holds.

A.5. Computing the derivatives in t. We apply simple derivation rules:

−Kl
′
(t) = −

(
(1 + t)

2t
√

(1 + t)2 −A2
−

√
(1 + t)2 −A2

2t2

)

= −
(
t(1 + t) − (1 + t)2 + A2

2t2
√

(1 + t)2 −A2

)

=
(1 + t) −A2

2t2
√

(1 + t)2 −A2
,

Y
′
(t) =

(
A2(1 + t2)

2t(1 + t)2
− 1

2t

)′

=
2tA2

2t(1 + t)2
+ A2(1 + t2)

(
− (1 + t)2 + 2(1 + t)t

2(1 + t)4t2

)
+

1

2t2

=
(1 + t)3 −A2

(
−2t2(1 + t) + (1 + t2)(1 + 3t)

)
2(1 + t)3t2

=
(1 + t)3 −A2

(
(1 + t)3 − 4t2

)
2(1 + t)3t2

,

X
′
(t) =

(
A(1 + t2)

2t(1 + t)2

√
(1 + t)2 −A2

)′

=

(
2tA

2t(1 + t)2
+ A(1 + t2)

(
− (1 + t)2 + 2(1 + t)t

2(1 + t)4t2

))√
(1 + t)2 −A2

+
1 + t√

(1 + t)2 −A2

A(1 + t2)

2t(1 + t)2

=
−A((1 + t)3 − 4t2)

2(1 + t)3t2
√

(1 + t)2 −A2
((1 + t)2 −A2) +

t(1 + t)2A(1 + t2)

2(1 + t)3t2
√

(1 + t)2 −A2
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=
−A((1 + t)3 − 4t2)((1 + t)2 −A2) + t(1 + t)2A(1 + t2)

2(1 + t)3t2
√

(1 + t)2 −A2

=
A(A2

(
(1 + t)3 − 4t2

)
) −A

(
((1 + t)3 − 4t2)(1 + t)2 − t(1 + t)2(1 + t2)

)
2(1 + t)3t2

√
(1 + t)2 −A2

=
A(A2

(
(1 + t)3 − 4t2

)
) −A((1 + t)5 − (1 + t)2(4t2 + t + t3))

2(1 + t)3t2
√

(1 + t)2 −A2

=
A(A2

(
(1 + t)3 − 4t2

)
) −A((1 + t)5 − (1 + 2t + t2)(4t2 + t + t3))

2(1 + t)3t2
√

(1 + t)2 −A2

=
A(A2

(
(1 + t)3 − 4t2

)
) −A((1 + t)5 − t− 6t2 − 10t3 − 6t4 − t5)

2(1 + t)3t2
√

(1 + t)2 −A2

=
A
(
A2

(
(1 + t)3 − 4t2

)
− 1 − 4t− 4t2 + t4

)
2(1 + t)3t2

√
(1 + t)2 −A2

.

A.6. How to get F (t, A). We will make use of the following identities:

2(t2 − 2t− 1) − (4t2 − (1 + t)3) + 2(1 + t) = (1 + t)(t2 + 1),(A.8)

(t2 − 2t− 1)(1 + t)2 = (t4 − 1 − 4t− 4t2),(A.9)

(t− 1)(t + 3)t2 = −3t2 + 2t3 + t4

= −2(1 + t)3 − (t2 − 2t− 1)2

+(1 + t)2 − 8t2(1 + t) + 2(1 + t)4,(A.10)

(1 + t)3 + (4t2 − (1 + t)3)(t2 + 1) = t2(1 − t)(t2 + 3) .(A.11)

F (t, A) := Kl
′
(t)2 −X

′
(t)2 − Y

′
(t)2

=

(
(1 + t) −A2

2t2
√

(1 + t)2 −A2

)2

−
(
A
(
A2

(
(1 + t)3 − 4t2

)
− 1 − 4t− 4t2 + t4

)
2(1 + t)3t2

√
(1 + t)2 −A2

)2

−
(

(1 + t)3 −A2
(
(1 + t)3 − 4t2

)
2(1 + t)3t2

)2

=

(
((1 + t) −A2)(1 + t)3

)2
(2(1 + t)3t2)

2
((1 + t)2 −A2)

−
(
A
(
A2

(
(1 + t)3 − 4t2

)
− 1 − 4t− 4t2 + t4

))2
(2(1 + t)3t2)

2
((1 + t)2 −A2)

−
(
(1 + t)3 −A2

(
(1 + t)3 − 4t2

))2 (
(1 + t)2 −A2

)
(2(1 + t)3t2)

2
((1 + t)2 −A2)

=
(1 + t)6A4 − 2(1 + t)7A2 + (1 + t)8

(2(1 + t)3t2)
2
((1 + t)2 −A2)
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− ((1 + t)3 − 4t2)2A6 + 2(t4 − 1 − 4t− 4t2)((1 + t)3 − 4t2)A4

(2(1 + t)3t2)
2
((1 + t)2 −A2)

− (t4 − 1 − 4t− 4t2)2A2

(2(1 + t)3t2)
2
((1 + t)2 −A2)

−−((1 + t)3 − 4t2)2A6 + (−2(1 + t)3(4t2 − (1 + t)3) + (4t2 − (1 + t)3)2(1 + t)2)A4

(2(1 + t)3t2)
2
((1 + t)2 −A2)

− (−(1 + t)6 + 2(1 + t)5(4t2 − (1 + t)3))A2 + (1 + t)8

(2(1 + t)3t2)
2
((1 + t)2 −A2)

(A.9)
= A4 (1 + t)6 + 2(t2 − 2t− 1)(1 + t)2(4t2 − (1 + t)3)

(2(1 + t)3t2)
2
((1 + t)2 −A2)

+A4−(−2(1 + t)3(4t2 − (1 + t)3) + (4t2 − (1 + t)3)2(1 + t)2)

(2(1 + t)3t2)
2
((1 + t)2 −A2)

+A2−2(1 + t)7 − (t2 − 2t− 1)2(1 + t)4 − (−(1 + t)6 + 2(1 + t)5(4t2 − (1 + t)3))

(2(1 + t)3t2)
2
((1 + t)2 −A2)

= A4 (1 + t)6 + (1 + t)2(4t2 − (1 + t)3)(2(t2 − 2t− 1) − (4t2 − (1 + t)3) + 2(1 + t))

(2(1 + t)3t2)
2
((1 + t)2 −A2)

+A2−2(1 + t)7 − (1 + t)4(t2 − 2t− 1)2 + (1 + t)6 − 2(1 + t)5(4t2 − (1 + t)3))

(2(1 + t)3t2)
2
((1 + t)2 −A2)

(A.8)
= A4 (1 + t)6 + (1 + t)2(4t2 − (1 + t)3)(1 + t)(t2 + 1)

(2(1 + t)3t2)
2
((1 + t)2 −A2)

+A2 (1 + t)
(
−2(1 + t)3 − (t2 − 2t− 1)2 + (1 + t)2 − 8t2(1 + t) + 2(1 + t)4

)
(1 + t)3(2t2)2 ((1 + t)2 −A2)

(A.10)
= A4 (1 + t)3 + (4t2 − (1 + t)3)(t2 + 1)

(1 + t)3(2t2)2 ((1 + t)2 −A2)
+ A2 (1 + t)(t− 1)(t + 3)t2

(1 + t)3(2t2)2 ((1 + t)2 −A2)

(A.11)
= A4 −t2(t− 1)(t2 + 3)

(1 + t)3(2t2)2 ((1 + t)2 −A2)
+ A2 (1 + t)(t− 1)(t + 3)

4t2(1 + t)3 ((1 + t)2 −A2)

=
−(t− 1)A2

(
(A2 − 1)(t2 + 3) − 4t

)
4(1 + t)3t2 ((1 + t)2 −A2)

.

A.7. Transformation of the nominator of F (t, A).

sinφ

(
tan2 φ

2
+ 3

)
− 4 tan

φ

2
= sinφ

(
2 tan φ

2

sinφ
+ 2

)
− 4 tan

φ

2
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= 2 sinφ− 2 tan
φ

2

= 2 sin
φ

2

(
2 cos

φ

2
− 1

cos φ
2

)

= 2 sin
φ

2

(
2 cos2 φ

2 − 1

cos φ
2

)

= 2 sin
φ

2

(
cosφ

cos φ
2

)
= 2 cosφ tan

φ

2
.

A.8. The simple case φ < π
2
. In order to obtain

X(φ) =
D

2
cot

φ

2

√(
1 + tan2 φ

2

)
−D2,

Y (φ) =
1

2
cot

φ

2
(D2 − 1),

and

Kφlφ :=
√

2 lφ =

√
2

D
X(φ) +

D√
2
,

we simply replace A
Kφ

by D in (3.8), (3.9), and (3.11). For (3.8), which corresponds

to X(φ), we have to make use of identity (A.6).
Since we did not make use of a substitution here, the derivatives in φ are given

as follows:

−(Kφlφ)′ = −
√

2

D
X ′(φ),

Y ′(φ) = − 1

4 sin2 φ
2

(D2 − 1)

=
(D2 − 1)

2(cosφ− 1)
,

X ′(φ) =

(
D

2
cot

φ

2

√(
1 + tan2 φ

2

)
−D2

)′

=
D

2(cosφ− 1)

√(
1 + tan2 φ

2

)
−D2 +

D

2
cot

φ

2

⎛
⎜⎜⎝

− tan φ
2

1

cos2 φ
2

2

√(
1 + tan2 φ

2

)
−D2

⎞
⎟⎟⎠

=

D
(cosφ−1)

((
1 + tan2 φ

2

)
−D2

)
− D

2
1

cos2 φ
2

2

√(
1 + tan2 φ

2

)
−D2

=

D(1−D2)
(cosφ−1) +

D tan2 φ
2

(cosφ−1) −
D
2

1

cos2 φ
2

2

√(
1 + tan2 φ

2

)
−D2
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=
D(1 −D2)

2(cosφ− 1)

√(
1 + tan2 φ

2

)
−D2

.

It remains to compute F (φ,D).

F (φ,D) := (Kφlφ)2 − (X ′(φ))2 − (Y ′(φ))2

= X ′(φ)2
(

2

D2
− 1

)
− Y ′(φ)2

=
D2(1 −D2)2

(
2
D2 − 1

)
4(cosφ− 1)2

((
1 + tan2 φ

2

)
−D2

) − (D2 − 1)2

4(cosφ− 1)2

=
(D2 − 1)2

(
(2 −D2) −

((
1 + tan2 φ

2

)
−D2

))
4(cosφ− 1)2

((
1 + tan2 φ

2

)
−D2

)

=
(D2 − 1)2

(
1 − tan2 φ

2

)
4(cosφ− 1)2

((
1 + tan2 φ

2

)
−D2

) .
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