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THE POLYGON EXPLORATION PROBLEM*
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Abstract. We present an on-line strategy that enables a mobile robot with vision to explore
an unknown simple polygon. We prove that the resulting tour is less than 26.5 times as long as the
shortest watchman tour that could be computed off-line.

Our analysis is doubly founded on a novel geometric structure called the angle hull. Let D be a
connected region inside a simple polygon, P. We define the angle hull of D, AH(D), to be the set of
all points in P that can see two points of D at a right angle. We show that the perimeter of AH(D)
cannot exceed in length the perimeter of D by more than a factor of 2. This upper bound is tight.

Key words. angle hull, competitive strategy, computational geometry, curve length, motion
planning, navigation, on-line algorithm, optimum watchman tour, polygon, robot

AMS subject classifications. 68U05, 68U30

PII. S0097539799348670

1. Introduction. In the last decade, the path planning problem of autonomous
mobile systems has received a lot of attention in the communities of robotics, compu-
tational geometry, and on-line algorithms; see, e.g., Rao et al. [23], Blum, Raghavan,
and Schieber [5], and the surveys by Mitchell [21] in Sack and Urrutia [25] and by
Berman [4] in Fiat and Woeginger [13]. We are interested in strategies that are cor-
rect, in that the robot will accomplish its mission whenever this is possible, and in
performance guarantees that allow us to relate the robot’s cost to the cost of an
optimal off-line solution or to other complexity measures of the scene.

In this work we are addressing a basic problem in this area. Suppose a mobile
robot has to explore an unknown environment modeled by a simple polygon. The
robot starts from a given point, s, on the polygon’s boundary. It is equipped with a
vision system that continuously provides the visibility of the robot’s current position.
When each point of the polygon has at least once been visible, the robot returns to s.!

In the on-line polygon exploration problem we ask for a competitive exploration
strategy that guarantees that the robot’s path will never exceed in length a constant
competitive factor times the length of the optimum watchman tour through s, i.e.,
of the shortest tour inside the polygon that contains s and has the property that
each point of the polygon is visible from some point of the tour. This approach to
evaluating the performance of an on-line strategy goes back to Sleator and Tarjan [27].
A priori it is not clear whether a competitive exploration strategy exists.
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n the absence of holes, the robot has seen each point inside the polygon as soon as it has seen
each point on its boundary.
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Even the off-line version of the polygon exploration problem is not easy. Here
we are given a simple polygon and have to compute the optimum watchman tour
through a specified boundary point, s. Initially this problem has been suspected to
be NP-hard. Chin and Ntafos [9] were the first to provide a polynomial time solution.
They have shown how to compute the optimum watchman tour in time O(n?), where
n denotes the number of vertices of the polygon. Later, their result has been improved
by Tan and Hirata [28]; see also the updates in [14, 29].

Carlsson, Jonsson, and Nilsson [7] have proven that the optimum watchman tour
without a specified point s can be computed in time O(n?®). Furthermore, Carlsson
and Jonsson [6] proposed an O(n%) algorithm for computing the shortest path inside
a simple polygon from which each point of the boundary is visible when start and end
points are not specified. In these papers it is always assumed that the range of the
robot’s visibility is unbounded. Some authors have also studied the case of limited
visibility, e.g., Arkin, Fekete, and Mitchell [3] and Ntafos [22].

As to the on-line version of the polygon exploration problem, Deng, Kameda,
and Papadimitriou [11] were the first to claim that a competitive strategy does exist.
In their seminal paper they discussed a factor of 2016 for a greedy off-line approach
which has to be implemented as an on-line strategy. For the rectilinear case, they
gave a complete and elegant proof in [12]; here the greedy strategy can be applied
that performs surprisingly well.

The first proof for the more difficult case of nonrectilinear simple polygons has
been given in our conference paper [15]. There we have provided an on-line exploration
strategy and sketched a proof that the tour it generates in any polygon is not longer
than 133 times the length of the optimum watchman tour. One of the main difficulties
with this analysis was in establishing reasonably sharp length estimates for robot paths
of complex structure and in relating them to the optimum watchman tour.

The present paper contains the first complete presentation and analysis of an
exploration strategy for simple polygons. As compared to the conference version [15],
this full paper has been greatly simplified and describes a new analysis that is built on
an interesting geometric relation between the robot’s path and the optimum watchman
tour. This relation is expressed in terms of the angle hull, a novel geometric structure.
With these improvements we are able to show that an unknown polygon can be
explored, from a given boundary point, s, by a tour at most 26.5 times as long as the
shortest watchman tour containing s.

Of course, there is still a considerable gap between this upper bound and the
lower bound of (14 /2)/2 given in [11]; however, experiments with our new strategy
suggest that its actual performance is much better than the bound proven here; we
conjecture a number far below 10.

The organization of this paper is as follows. Section 2 contains a hierarchical
description of the strategy and of its analysis. In section 2.1 we first discuss how to
explore a single corner, that is, a single reflex vertex one of whose adjacent edges
has not yet been visible. By reflex verter we denote a vertex of the polygon whose
internal angle exceeds 180°; all other vertices are called convex. The robot explores
these corners in a sophisticated order: Of all reflex vertices that touch the visible area
from the right, the robot attempts to explore the one that is clockwise first on the
polygon’s boundary as seen from the starting point, s. However, the vertex hereby
specified may change as the robot moves. From our angle hull result we obtain a
bound on the length of the resulting path in terms of the length of the shortest path
that leads to the final position.
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Then, in section 2.2, we use this technique for efficiently exploring groups of right
reflex vertices in clockwise order. The length of the resulting local tour is shown to
be bounded by the perimeter of the relative convex hull of certain base points times
a constant. In analogy to the standard definition of convex hulls, the relative convex
hull, RCH(D), of a subset D of a polygon P is the smallest subset of P that contains D
and, for any two points of D, the shortest path in P connecting them.

In section 2.3 we show how the robot recursively detects and explores an exhaus-
tive system of groups of right and left reflex vertices. Groups of vertices that are on
sufficiently different recursive levels give rise to base point sets whose RCHs are mutu-
ally invisible. Therefore, the sum of their hulls’ perimeters is less than the perimeter
of the RCH of their union. In Lemma 2.6 we will show that each base point can see
two points of the optimum watchman tour, Wop¢, at an angle of 90°; therefore, all
base points must be contained in the angle hull of W,p¢. Consequently, the perimeter
of the RCH of the base points must be less than the perimeter of the RCH of the
angle hull of Wyp¢. The latter, in turn, can only be less than or equal to the perimeter
of the RCH of Wppt itself, because the perimeter of the RCH of a connected object
is no longer than the perimeter of the object itself. Now we can apply our angle hull
result a second time in estimating the perimeter of the angle hull of Wy against the
length of Wop¢ itself. This way we have bounded the length of the whole exploration
path walked by the robot by a multiple of the length of the optimum watchman path,
Vvopt-

Our analysis greatly benefits from this new geometric structure we propose to call
the angle hull. Let D be a simple polygon contained in another simple polygon, P.
Then the angle hull, AH(D), of D consists of all points in P that can see two points
of D at an angle of 90°. The boundary of AH(D) can be described as the path of a
diligent photographer who uses a 90° angle lens and wants to take a picture of D that
shows as large a portion of D as possible but no walls of P. Before taking the picture,
the photographer walks around D, in order to inspect all possible viewpoints.

In section 3 we prove that the photographer’s path is at most twice as long as the
perimeter of her model, D.

2. The strategy and its analysis. Let P be a simple polygon and let s be a
point on its boundary. The shortest path tree of s consists of all shortest paths from s
to the vertices of P. Its internal nodes are reflex vertices of P. Those vertices touching
a shortest path from the right are called right reflex vertices; left reflex vertices are
defined accordingly. If we follow the shortest path from s to reflex vertex v, one of its
adjacent polygon edges remains invisible until v is actually reached. The extension
into the polygon of this invisible edge is called a cut of P with respect to s.

Exploring a polygon P is equivalent to visiting all of its cuts with respect to the
start point s.

Figure 2.1 shows an example of the optimum watchman tour, Wopt, containing
a boundary point, s. Tan and Hirata [28] have provided an off-line algorithm for
computing Wpp¢ within time O(n?) for a polygon of n edges.

We say a vertex has been discovered after it has been visible at least once from
the robot’s current position. A reflex vertex is unexplored as long as its cut has not
been reached, and fully explored thereafter.

In an unknown polygon, even exploring a single reflex vertex requires a little care.
For example, one cannot afford to go straight to the vertex in order to get to its cut:
The cut could be passing by the start point very closely, so that a much shorter path
would be optimal.



Downloaded 11/26/13 to 131.220.3.27. Redistribution subject to SIAM license or copyright; see http://www .siam.org/journals/ojsa.php

580 F. HOFFMANN, C. ICKING, R. KLEIN, AND K. KRIEGEL

FiG. 2.1. The optimum watchman tour visits all cuts of the polygon.

We avoid this difficulty as follows. Whenever the robot wants to explore a right
reflex vertex, r, visible from some local start point, p, it approaches r along the
clockwise oriented circle spanned by p and by r, denoted by circ (p, r), i.e., the smallest
circle that contains p and r.

Consequently, when the robot reaches the cut of r at some point ¢, the ratio of
the length of the circular arc from p to ¢ over their euclidean distance is bounded by
5 ~ 1.57.

One might wonder if the subproblem of exploring a single vertex can be solved
more efficiently by using curves other than circular arcs. This is, in fact, the case;
Icking, Klein, and Ma [20] have shown that an optimum ratio of & 1.212 is achieved by
curves that result from solving certain differential equations. However, these curves
are lacking a useful property possessed by circular arcs: The intersection point, ¢, of
the circular arc with the cut is just the point on the cut closest to p, due to Thales’s
theorem.? This property turns out to be very helpful in our analysis.

In rectilinear polygons, the cut of each visible reflex vertex is known, and two
cuts can cross only perpendicularly. This makes it possible to apply a simple greedy
exploration strategy: The robot always walks to the cut of the next reflex vertex, in
clockwise order, one of whose edges is invisible; see Deng, Kameda, and Papadim-
itriou [12].

For general polygons, this greedy approach is bound to fail, as Figure 2.2 illus-
trates. The example polygon shown there suggests exploring left and right reflex
vertices separately. However, it is not really obvious how to do this in general, since,
e.g., the existence of a left reflex vertex at the end of a long chain of right vertices is
initially not known to the robot. Therefore, it seems necessary to partition left and
right reflex vertices into compact groups that can be explored one by one.

2.1. Exploring a single vertex. The essential subtask of the robot’s strategy
is in exploring a single vertex. This is handled by the following procedure, Explore-
RightVertex. We first list the complete pseudocode of the procedure, then we explain
its steps and notation in detail.

2Thales’s theorem: an angle inscribed in a semicircle is always a right angle.
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Fic. 2.2. Visiting cuts in the order in which their vertices appear on the boundary does not
lead to a competitive strategy.

PROCEDURE ExploreRightVertex (inout TargetList, inout ToDoList );
BasePoint := CP;
Target := First (TargetList);

if Target not visible then
walk on shortest path from BasePoint to Target
until Target becomes visible;

Back := last vertex before CP on shortest path from BasePoint to CP;

walk clockwise along circ (Back, Target)
while maintaining TargetList and ToDoList

whenever First (TargetList) changes let Target := First (TargetList);
whenever Back becomes invisible update Back;

exceptions for walking along the circle:
if the boundary of P blocks the walk on the current circle then
walk clockwise along the boundary
until the circular walk is again possible;
if Target is becoming invisible then
walk towards Target
until the blocking vertex is reached;

until Target is fully explored;

end ExploreRight Vertex;

We are using the abbreviation CP to denote the robot’s current position. Proce-
dure ExploreRight Vertex works on two lists of vertices, TargetList and ToDoList. On
entry, TargetList contains a list of right vertices, sorted in clockwise order along the
boundary, that have already been discovered but not yet explored. When Explore-
RightVertex is called for the very first time, TargetList contains exactly those right
vertices that are visible from the start point, s, and have an invisible edge. ToDo-
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List can be thought of as a long-term agenda that is passed to ExploreRight Vertex;
however, this procedure will only add to this list but not carry out one of the tasks.

In our pseudocode, CP (current position) is a global variable whose value can be
changed only by walk statements. The robot’s current position on calling Explore-
RightVertex is called a base point.

The robot wants to explore the first vertex, Target, of TargetList. This vertex
may have been discovered at an earlier stage, so that it may no longer be visible from
the current position. In this case, the robot walks along the shortest path towards
Target until it becomes visible again. Note that this shortest path is known to the
robot; in fact a shortest path is always known between two points that have been seen
(which would not be the case for polygons with holes).

Now the robot starts approaching Target along the circular arc spanned by the
base point and by Target. On the way, a new right vertex, r, may be discovered. If
one of its edges is invisible, r gets inserted into TargetList, provided that a certain
criterion is met. Namely, the shortest path from the current stage point—a vertex
defined one level up in the strategy—to r must not contain left turns. A right vertex
that violates this criterion is ignored for now. A precise definition of a stage point is
given in section 2.2.

It may happen that the vertex r newly discovered and inserted into TargetList
comes before Target in clockwise order. In this case the robot ceases approaching
its old target and starts exploring, from its current position, vertex r. This way, the
vertex Target currently under exploration may repeatedly change.

It may also happen that the robot loses sight of the base point from which the
current execution of procedure ExploreRightVertex has started. Namely, the robot’s
view of the base point may become obstructed by some left or right reflex vertex, by;
examples will be shown in Figure 2.3. In this case, the exploration of the current
Target no longer proceeds along the circle spanned by the base point and by Target;
instead, it switches to the circle spanned by Target and by b;. As the robot continues,
its view of by may become obstructed by some reflex vertex by, and so on. These reflex
vertices, by, bo,..., b; define the shortest path from the base point to the robot’s
current position, and the robot explores Target along the circle spanned by Target
and b;. This last reflex vertex of the chain is named Back in the code. If the robot
reaches the cut of Target at some point ¢, it arrives there at a right angle by the
Thales property. Consequently, the shortest path in P from the base point to the cut
goes through by, bs,..., b; and ends in c.

If the robot crosses the cut of a right vertex different from Target the former
vertex is removed from TargetList because it has been explored on the way, this
is done in the “while maintaining TargetList” step. Eventually, the target itself is
deleted from the list when its cut has been reached.

When a right reflex vertex is explored, all of its children in the shortest path tree
have already been discovered. Those right vertices having a left child are inserted
into ToDoList, as candidates for future stages, together with references to their left
children.

Finally, there are some exceptional events procedure ExploreRight Vertex needs to
take care of. If the robot’s circular exploration path hits the boundary of the polygon,
the robot follows the boundary until a circular path again becomes possible. If the
robot’s view of the target vertex is about to be blocked, the robot walks straight to
the blocking vertex and continues from there on a circular path.
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For ease of reference we summarize the rules by which ExploreRight Vertex pro-
ceeds.

1. The current target vertex, i.e., the vertex whose cut we are intending to reach
at the moment, is always the clockwise first among those right reflex vertices
that have been discovered but not yet fully explored, i.e., the first element
of TargetList. Only such right vertices can be in TargetList whose shortest
paths from the stage point make only right turns.

2. To explore a right reflex vertex, r, we follow the clockwise oriented circle
spanned by r and by the last vertex before CP on the shortest path from the
base point to CP.

3. When the view to the current target vertex gets blocked (or when the bound-
ary is hit) we walk straight towards the blocking vertex (or follow the bound-
ary) until motion according to rule 2 becomes possible again.

Figure Figure 2.3 demonstrates how this strategy works. Initially, r3 is the only
right vertex visible; consequently, TargetList contains only rs, and the robot’s path
begins with a circular arc spanned by s and by r3. At point a, right vertex ro becomes
visible. It is situated before r3 on the boundary; therefore, the robot switches to
exploring 79, according to rule 1. Note that the circle spanned by s and by 79 is
passing through a, too, so that it is in fact possible to apply rule 2 at this point.

S

Fic. 2.3. While executing ExploreRightVertex, the target vertex is initially r3, then changes
to ro and finally to ry.

At point b, vertex ro would become invisible if the robot were to follow the
circular arc. But now rule 3 applies, causing the robot to walk straight to the left
reflex vertex [. From there, a circular motion is again possible; but the shortest path
from s to CP now contains vertex [. By rule 2, the robot continues its approach to
ro along the arc spanned by [ and by ro.

Notice that at vertex [, also the right vertex h becomes visible, but it is ignored
because its shortest path from s makes a left turn at [.

From c on, the shortest path to s is the line segment. Since the circle spanned by s
and by ry is passing through ¢, the robot proceeds along that circle, applying rule 2.
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At d, the shortest path to s changes again; now it contains vertex r3. The robot
walks along the circle spanned by r3 and ro, and gets to point e from which vertex r;
becomes visible. From here, the robot explores rq, following the circle spanned by r3
and by 71, the former changing to o at f. Eventually, the robot arrives at 1, thereby
fully exploring r1. Here procedure ExploreRight Vertex terminates.

In order to provide an upper bound on the length of the resulting path we need
to give the definition of the angle hull. A detailed discussion of this topic will follow
in section 3.

Let D be a bounded, connected region in the plane. For convenience, we shall
assume that D is a simple polygon, but our results can easily be generalized to curved
objects by approximation. Now suppose that a photographer wants to take a picture
of D that shows as large a portion of D as possible, but no white space. The photo-
grapher is using a fixed angle lens. For now, we assume that the angle equals 90°;
later, at the end of section 3.2, we will see how to generalize to arbitrary angles.

Before taking the picture, the diligent photographer walks around D and inspects
all possible viewpoints. We are interested in comparing the length of the photo-
grapher’s path to the perimeter of the object, D.

—
F1G. 2.4. Drawing the angle hull AH(D) of a region D.

In the simple outdoor setting there are no obstacles that can obstruct the photo-
grapher’s view of D; this situation is depicted in Figure 2.4. At each point of the
path, the two sides of the lens’ angle touch the boundary of D from the outside, in
general at a single vertex each.

While the right angle is touching two vertices, v and w, of D, its apex describes a
circular arc spanned by v and w, as follows from Thales’ theorem. All points enclosed
by the photographer’s path, and no other, can see two points of D at a 90° angle; we
call this point set the angle hull of D and denote it by AH(D).

Only such vertices can be touched by the right angle that are situated on the
convex hull of D. Consequently, the photographer’s path depends on the convex hull,
CH(D), of D, rather than on D itself, therefore we have AH(D) = AH(CH(D)).
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It is not hard to see that, without further obstacles, the perimeter of the angle
hull is at most 7/2 times the perimeter of D; the worst case occurs when D is a line
segment or a rectangle; see [16].

However, for our application we need to analyze the indoor setting where D is
contained in a simple polygon P whose edges give rise to visibility constraints. The
photographer does not want any wall segments to appear in the picture; thus, the
viewing angle can now be constrained in different ways: Either side may touch a
convex vertex of D that is included in the angle, as before, or it may touch a reflex
vertex of P that is excluded; see Figure 2.5.

F1a. 2.5. The angle hull AH(D) inside a polygon P.

Any combination of these cases is possible.

As a consequence, the photographer’s path contains circular arcs spanned by
vertices of D and of P; in addition, it may contain segments of edges of P that
prevent the photographer from stepping back far enough; see Figure 2.5.

Formally, we define the angle hull, AH(D), of D with respect to P to be the set
of all points of P that can see two points of D at a right angle. Its boundary equals
the photographer’s path. In the indoor setting, the angle hull AH (D) depends only
on the relative convex hull, RCH (D), of D; in other words AH(D) = AH(RCH(D)).

In section 3 we show that the angle hull can have at most twice the perimeter
of D.

Coming back to our exploration strategy, the crucial observation is that its path
is essentially an angle hull (AH).

LEMMA 2.1. Assume the robot starts at the base point and invokes procedure
ExploreRight Vertex. Suppose this procedure terminates with the robot reaching the
cut of target vertex r1 at point c. Then the shortest path, R, inside P from the base
point to the cut also reaches the cut at c. Moreover the robot’s path is part of the
boundary of the angle hull AH(R) of R except for straight line segments leading to
blocking vertices.

Proof. In the discussion of procedure ExploreRightVertex above in this section,
we have already shown that the robot’s path and the shortest path to the cut arrive
at the same point c.

Now let ¢ be a point on the robot’s path that is not contained on a straight line
segment of the path. Assume that, at ¢, the robot is exploring right reflex vertex ro,
as in the example shown in Figure 2.3. Since r5 and r; are in convex position relative
to the base point, vertex ro lies on the shortest path, R, from the base point to ry.
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Now consider the shortest path, T', from the base point to t. As a consequence
of rule 2 and by Thales’ theorem, the last line segment, F, of T' is perpendicular to
the line through ¢ and r5. Since the backward prolongation of F is bound to hit R,
we know that point ¢ can see two points of R at a right angle. Thus, ¢ belongs to the
angle hull AH(R); it lies on the boundary because the angle’s sides are both touching
reflex vertices of P or endpoints of the path R. ]

To estimate the length of the path from the base point to the cut we make use of
the analysis of the angle hull from section 3.

LEMMA 2.2. The robot’s path from the base point to the cut of the target vertex
explored by procedure ExploreRightVertex is not longer than twice the length of the
shortest path.

Proof. If the robot’s path contains straight line segments leading to blocking
vertices, like the segment from b to [ in Figure 2.3, these segments are replaced by
circular arcs in the angle hull AH(R). Thus, the robot’s path to the cut of r; cannot
be longer than the angle hull’s perimeter. If it ends at the point ry itself, as in
Figure 2.3, we can apply Theorem 3.5—which states that the arc length of the angle
hull of a polygon D in P is less than twice as long as D’s boundary—to the shortest
path as D and obtain the desired upper bound.

If the robot reaches the cut of r; at some point different from 71, we can arrive
at the same conclusion using Corollary 3.6. ]

It is important to note that procedure ExploreRightVertex ignores such vertices
as h in Figure 2.3, whose shortest paths from the current stage point include left
turns. Otherwise, it would not be clear how to apply Lemma 2.1.

There is a symmetric procedure ExploreLeft Vertex which is identical to Explore-
RightVertex, except that left/right and clockwise/counterclockwise are exchanged.

2.2. Exploring a group of vertices. Each exploration of a group of vertices
starts from a stage point. The importance of stage points lies in the fact that they are
visited by the optimum watchman tour, Wypt, too. The first stage point encountered
is the robot’s start point, s. All stage points are vertices of the shortest path tree of
s; the shortest path from s to any vertex of a group leads through the group’s stage
point.

The exploration of a group of right vertices is performed by procedure Explore-
RightGroup.

PROCEDURE ExploreRightGroup (in TargetList, out ToDoList );
StagePoint := CP;
ToDoList := empty list;
while TargetList is not empty do
ExploreRightVertex (TargetList, ToDoList );
(* CP is now on the cut, C, of the last target. *)

walk to the point on C' that is closest to StagePoint
while maintaining TargetList and ToDolList;

walk on the shortest path back to StagePoint;

end ExploreRightGroup;

The stage point of a right group is always a left vertex. Initially, ToDoList is
empty, whereas TargetList contains a sorted list of unexplored right vertices whose
shortest path from the base point makes only right turns. Among them are all unex-
plored right vertices visible from StagePoint.
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Roughly, the group exploration proceeds by repeatedly calling procedure Explore-
RightVertex introduced in section 2.1 until TargetList becomes empty. Afterwards,
all right vertices initially present in TargetList have been explored, together with their
purely right descendants in the shortest path tree of s. Here, vertex w is called a purely
right descendant of vertex v in the shortest path tree of s if w is a right vertex and if
the path from v to w makes only right turns. This set of vertices constitutes a group,
by definition.

On returning from a call to ExploreRight Vertex the robot has just explored the
clockwise first vertex of TargetList and is now situated on this vertex’s cut. Before it
continues, the robot walks along this cut to the point closest to the stage point; this
will be the base point in the next execution of ExploreRightVertex. The reason for
this step will become clear in the proof of Lemma 2.5; essentially, it keeps the robot
closer to the optimum watchman tour.

Once the last vertex of TargetList has been explored, the robot walks back to the
stage point, thus completing the exploration of the group. Now ToDoList contains,
of all right vertices explored, those who have left children, together with references to
the latter.

T1

T2

Fic. 2.6. Ezxploring a group of right vertices.

For an example, see Figure 2.6. Point s is the stage point and also the first
base point, and ExploreRightVertex is called with First (TargetList) = rg. While
exploring rg, point 71 is discovered at point a and becomes First (TargetList). At
CP = b procedure ExploreRightVertex returns. Meanwhile, o and r; have been
added to TargetList while r; and rg have been removed. Point b is also the closest
point to s on the current cut.

As we continue with exploring First (TargetList) = rq, point r5 gets explored on
the way. Once the cut of ry is reached, we walk to ¢, the closest point to s on the cut.
Similar for r3; while walking along the cut to the point closest to s, which is r3 itself,
r4 gets explored and no unexplored right vertices remain.

As before with ExploreRight Vertex, for ExploreRightGroup we also have a sym-
metric counterpart, ExploreLeftGroup.

First we prove a useful structural result which says that the shortest paths to the
base points fan out in the same order as the base points are generated.

LEMMA 2.3.  Suppose that procedure ExploreRightGroup generates the base
points by, ..., by, in m consecutive calls of subroutine ExploreRight Vertex. Then the
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shortest paths from the stage point to by, ..., by, are in clockwise order.

Proof. Let base point b; be situated on the cut of right reflex vertex v;. Since
each call to ExploreRightVertex explores the clockwise first right vertex that is still
unexplored, vy,...,v,, appear in clockwise order on the boundary. The stage point
must be situated below the cuts of v; and v;41 as these are unexplored right vertices.
The same holds for the last point, p, the shortest paths from the stage point to b;
and b; 11 have in common. Moreover, b; must be below the cut of v;11 because the
latter is still unexplored when the robot reaches b;; see Figure 2.7. Since neither of
the shortest paths nor the cut between v; and b; can be penetrated by the polygon’s
boundary, the claim follows. ]

Fic. 2.7. As seen from p, the shortest path to b; runs to the left of the shortest path to bj41.

Now we turn to analyzing the length of the path the robot spends on exploring a
group of vertices.

LEMMA 2.4. The robot’s path between two consecutive base points is at most
3 times as long as the shortest path.

Proof. Let us call the base points by and be, and let ¢ be the point where cut(vs)
is reached. Then c is also the cut’s closest point to by, by Lemma 2.1. By Lemma 2.2,
the robot’s path to ¢ is not longer than twice the length of the shortest path from b,
to ¢ and therefore is also not longer than twice the length of the shortest path from b,
to be; see Figure 2.8.

It remains to account for the walk along the cut from c¢ to by. This line segment
can be orthogonally projected onto the shortest path from b; to by and, therefore, it
must be shorter.

Observe that Figure 2.8 is in fact generic: As seen from s, the shortest path to
b1 runs to the left to the shortest path to by, by Lemma 2.3; base point b; must be
located below the cut of vs; the shortest paths from b; to ¢ and from s to by cannot
cross because they are both shortest paths to this cut. 0

The next steps consist of comparing the length of an ExploreRightGroup tour
with the relative convex hull of the base points visited.

LEMMA 2.5. The length of a path caused by a call to ExploreRightGroup does not
exceed 3v/2 times the perimeter of the relative convex hull of the base points visited.

Proof. Let sp be the stage point and sp = by, ...,bm_1,b,m = sp be the sequence
of base points visited by ExploreRightGroup. Due to Lemma 2.3, by, ..., b,,_1 appear
in clockwise order as leaves of the shortest path tree from sp to by,...,bn_1. So, even
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cut(v2) c b2 V2

Fic. 2.8. Line segment cba must be shorter than the shortest path from by to ba.

factor 3 of Lemma 2.4 would apply if all base points b; were vertices of their relative
convex hull, RCH, in P. In the following we show how to reduce to this case.

Suppose that for i < k —2 the base points b; and by, are situated on the boundary
of RCH and the points b;41, ..., by—1 in between are not. The shortest path from sp
to the cut of each of them must have a right angle to the cut because of Lemma 2.1;
see Figure 2.9.

.Tj

i
sp YY)

FiG. 2.9. The cut of vertex r; containing the base point b; must not intersect the shortest path
from sp to bj_1.

For ¢« < j < k, the cut of b; must pass above b;_; because otherwise its cut
would intersect every possible path from s to b;_1, in particular the robot’s path,
contradicting the fact that vertex r; is explored after rj_;.

While maintaining these properties, we move the base points one after the other
such that the path b;,...,b; becomes even longer. For all vertices v of this path,
starting with b;_; and going back to b; 1, we do the following. If the path from b;
to by makes a left turn at v, like at b;4; in Figure 2.9, then we move v to the point
on the shortest path from sp to v’s successor such that the left turn is a right angle;
see b; +1- Note that every left turn must be an obtuse angle which again is due to the
fact that the cut of b; must pass above b;_;. In case of a right turn we do nothing.
Eventually, we end up with a path whose left turns are all right angles.
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Now a maximal sequence of right turns, in the example the chain from b; to b;- 11
can be replaced by one left turn of 90° which is clearly longer than the chain, see b;
and the rectangle with vertices b;, b;», and b} 41- Finally, no right turn remains and
the new path makes only one left turn of 90° for which the claim is obvious. 0

In relating the robot’s path to the optimum watchman tour, the following lemma,
is crucial.

LEMMA 2.6. All base points are contained in the angle hull AH(Wppt).

Proof. A base point b is, by definition, the closest point to s of a cut. The
optimum watchman tour Wopt connects the start point s to the cut. Let E be the
last edge of the shortest path from s to the cut, i.e., to b.

In most cases, edge F is orthogonal to the cut. Then we have a right angle at b
whose one side goes along the cut and touches Wypt, while the other side K extends
edge E. Either the other endpoint of £ equals s, so that K touches Wyp¢ in s, or K
separates s and the cut because P is simple, and Wp¢ must also be touched by K.

In the remaining case, when there is no right angle between edge E and the cut,
point b must be one endpoint of the cut, i.e., it is the target vertex itself or the other
endpoint. In both cases the inner angle between E' and the cut is necessarily greater
than 90°, otherwise there would be a shorter path to the cut. As before either E or
its extension meets Wopt. 0

2.3. Subdividing the polygon. Now we want to combine the exploration of
several groups of vertices to finally explore the whole polygon P. This is done by
making the ExploreGroup-procedures recursive.

PROCEDURE ExploreRightGroupRec (in TargetList );
ExploreRightGroup ( TargetList, ToDoList );  (* ToDoList gets filled in. *)

Clean up ToDoList:
retain only those right vertices in ToDoList
which are highest up in the shortest path tree;

for all vertices v of ToDoList in clockwise order do
walk on the shortest path to v;  (* connect stage points *)
ExploreLeftGroupRec( {all known left descendants of v in counterclw. order} );

end ExploreRightGroupRec;

The task of ExploreRightGroupRec is to explore, from the current position CP,
all vertices in the input parameter TargetList and everything behind.

ExploreRight GroupRec performs in three steps. The TargetList is handed over
to ExploreRightGroup, so CP is the new stage point, and after the exploration we
are back at this point. We are given a ToDoList of candidates for stage points in
recursive explorations.

The next step is a necessary cleanup for the ToDoList, which contains all purely
right descendants of the current stage point which have left children. Some of these
right vertices are descendants of others in this list; they must be removed from the list.
Only maximal (highest up) right vertices are retained; these will become stage points
in further steps. To each of these future stage points we associate a list of all known
left descendants that were referenced in ExploreRight Vertex and ExploreRightGroup.

Finally, the remaining vertices in ToDoList are visited in clockwise order, at
each vertex procedure ExploreLeftGroupRec is called to explore the list of all known
left descendants (as TargetList) from there. ExploreLeftGroupRec is the symmetric
counterpart of ExploreRightGroupRec with one particularity. In the for loop, the
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vertices in ToDoList are also visited in clockwise order. The reason for this will
become clear in the proof of Theorem 2.10.

To conclude the bottom-up presentation of our strategy, we show the main pro-
gram. Its task is, of course, to explore a given polygon, P, starting at a boundary
point, s. First, in a call to the nonrecursive ExploreRightGroup, the right vertices
visible from s are explored. The next target list contains all left children of the right
vertices just explored and the left vertices visible from s. All these, and everything
behind, gets explored by a call to the recursive ExploreLeftGroupRec with this target
list.

PROCEDURE ExplorePolygon (in P, in s);

ExploreRightGroup ( {clockwise list of all right vertices visible from s}, ToDoList );

TargetList := {all left children of the vertices of ToDoList};
Add all left vertices visible from s into TargetList and sort counterclockwise;
ExploreLeftGroupRec ( TargetList );

end ExplorePolygon;

Each call of ExploreRightGroup or ExploreLeftGroup generates a set of base
points; the first base point of the set is the stage point. For estimating the length of
the complete tour, we distribute all these sets into three categories.

The set of base points generated by the call of ExploreRightGroup in Explore-
Polygon belongs to category 0. For the remaining sets, we use their level of recursion
to determine their category: the set of base points generated by a call of ExploreRight-
Group or ExploreLeftGroup at total recursion depth i belongs to category (i mod 3).

For example, the very first call of ExploreLeftGroup belongs to category 1, and
the calls of ExploreRightGroup one level deeper belong to category 2. All calls of
ExploreLeftGroup have an odd level, and all calls of ExploreRightGroup an even
level.

A key observation is that two sets of base points of the same category will be
mutually invisible; see Lemma 2.7 below. Thus the three categories will contribute a
factor of 3 to the final analysis in Theorem 2.10 below.

One might wonder why the first nonrecursive call of ExploreRightGroup in pro-
cedure ExplorePolygon is necessary. Without this call the right vertices visible from s,
and everything behind, would not be explored because procedure ExploreLeft GroupRec
deals exclusively with left vertices visible from s and recursively with their offspring.

LEMMA 2.7. The relative convex hulls of two sets of base points of the same
category are mutually invisible, with a possible exception for their stage points.

Proof. The recursion depths of two sets of base points, B; and Bs, of the same
category differ by a multiple of 3, possibly 0, as explained above. Let s; # so be the
stage points of By, resp., By. We distinguish two cases depending on the shortest
paths from s to s; and ss.

If stage point s; is not on the shortest path from s to s and vice versa then let s
be the vertex where the shortest paths from s to s; and s, separate. Without loss
of generality we assume that ss is a left vertex and that the clockwise order on the
boundary is sg, s1, s2. The left picture in Figure 2.10 shows such a situation.

The base points of By are on cuts of right vertices whose shortest paths from sq all
pass through ss. Therefore, the shortest path from sg to s is invisible from any point
of By, except so. But this shortest path separates By from Bjp, they are therefore
mutually invisible, except for s; and sy. This argument easily extends to the convex
hulls as well.
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Fi1G. 2.10. Base points in B2 cannot see By, two cases.

Otherwise assume that s; lies on the shortest path from s to so, see the right
picture in Figure 2.10. Then the recursion depths of By and Bs differ by at least
three. Similar to the previous case, no point of By can see the shortest path from so
to its parent stage point, but this path definitely separates B; and Bs.

Note that a difference of three levels is really necessary. If Bs is only two levels
deeper than B; then the stage points s; and s are of the same type and the parent
stage point of sy can be a direct descendant of s;, and therefore it can very well be
contained in RCH(By). |

As a consequence, we conclude that the union of all base points of one category
has no shorter perimeter than the perimeters of all of its sets of base points together.
Let per(RCH(A)) denote the perimeter of the relative convex hull of set A.

LEMMA 2.8. Let By and By be two sets of base points of the same category.
Then we have per(RCH(B1)) + per(RCH(B2)) < per(RCH(B1 U By)).

As a consequence, we can estimate the path length caused by all calls of Explore-
RightGroup or ExploreLeftGroup in the same category.

LEMMA 2.9.  The path length caused by all calls of ExploreRightGroup and
ExploreLeftGroup in one category is less than 6v/2 < 8.5 times the length of Wopt -

Proof. Let the category consist of sets B;, i = 1,..., of base points. By Lem-
ma 2.5, the length of the path created by one call of ExploreRightGroup or Explore-
LeftGroup with set B; is not greater than 3v/2 per(RCH(B;)).

The relative convex hulls RCH(B;) are mutually invisible (Lemma 2.7); hence we
conclude from Lemma 2.8 for the path length, L, caused by all calls of ExploreRight-
Group or ExploreLeftGroup of this category,

L <3V2 ) per(RCH(B;)) < 3v2per <RCH (U Bl->> .

All base points considered are contained in the angle hull of Wyp¢, as Lemma 2.6
has shown, hence the perimeter of their relative convex hull is shorter than the perime-
ter of RCH(AH(Wypt))-

The perimeter of RCH(AH(Wypt)) is not longer than the perimeter of the angle
hull of Wyp¢ itself. By Theorem 3.5 this is not greater than twice the length of Wopt
and the claim follows. a
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As the main result for our complete strategy, we obtain a factor of 26.5.

THEOREM 2.10. For a polygon, P, and a start point s on the boundary of P,
a procedure call ExplorePolygon (P, s) explores the polygon and returns to s. The
total path length used is less than (18\/§—|— 1) < 26.5 times the length of the optimum
watchman tour from s.

Proof. Since we have three categories of base point sets, all ExploreRightGroup
and ExploreLeftGroup calls together cause a path length of less than 3 - 6v/2] Wopt|-

It remains to bound the path length caused by the walks during the for loops of
ExploreRightGroupRec and ExploreLeftGroupRec. They connect only stage points
by shortest paths, and all those stage points are visited in clockwise order along the
boundary of P, independently of whether this is done in ExploreRightGroupRec or
ExploreLeftGroupRec.

The optimum watchman path visits all stage points, and some of them even twice.
In any case the sequence of stage points as they appear on the boundary of P is a
subsequence of the boundary points of P that are visited by Wypt because Wypt can
not properly cross itself. Therefore, we can be sure that all those walks together make
up for an additional path length of at most |Wpt|. O

3. The angle hull. In on-line navigation algorithms for autonomous robots,
analyzing the length of the robot’s path is often a complicated issue. Sometimes, only
the discovery of certain structural properties has led to a reasonably sharp analysis;
see [1, 18, 19, 20] and Rote [24].

Here we provide a new result of this type. It is crucial in analyzing our on-line
strategy of section 2, and it seems also to be interesting in its own right.

For convenience, we repeat the definition of the angle hull. Let D be a simply
connected region contained in a simple polygon P, then the angle hull, AH(D), of D
with respect to P consists of all points of P that can see two points of D at a right
angle. Note that D itself is included in AH (D). The boundary of the angle hull was
denoted the photographer’s path of D in section 2.1; for an example see Figure 2.5.

We are now going to analyze the length of the photographer’s path, i.e., the
perimeter of the angle hull. In section 3.1 we show that, in the indoor setting, the
angle hull may have twice the perimeter of D, in the limit. Then, in section 3.2, we
prove that this is the worst that can happen.

3.1. The lower bound. We start with the proof that the angle hull of a set D
contained in a polygon P can be twice as long as the perimeter of D. Our construction
is rather simple, D is a line segment and P is a jagged halfcircle. Region D is called
relatively convex iff D = RCH(D).

LeEmMMA 3.1. Let e > 0. There is a polygon, P, and a relatively convex region,
D, inside P, for which the boundary of the angle hull AH(D) with respect to P is
longer than 2 — € times the boundary of D.

Proof. As our region D, we take a horizontal line segment of length 1. Let py,

.., Pn, be equidistant points on the halfcircle spanned by D, where py and p,, are the
endpoints of D; see Figure 3.1. From each point p; we draw the right angle to the
endpoints of D. Let P be the concatenation of the upper envelope of these angles and
its reflection at D. Then we have P = AH(D) by construction. Let us analyze the
upper envelope.

We will show that the length of the jagged line from pg to p,, is less than 2, but
comes arbitrarily close to 2, as n increases. Let ¢; be the intersection of the segments
popi+1 and p; p,. If we rotate, for all i, the ascending segments ¢; p;+1 about pg
onto D (see the dotted arcs in Figure 3.1), these segments cover disjoint pieces of D,
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Pi+1

Pn

F1G. 3.1. The boundary of the upper envelope of the right angles is less than 2|D)|.

so the total length of all ascending segments is always less than 1. By symmetry, the
same bound holds for the descending segments. It remains to show that the ascending
length can come arbitrarily close to 1.

Consider the triangle p; g; p;, where p} is the orthogonal projection of p; onto pg ;.
Point py is closer to p; than to p;, so for the distances from pg to p; and to ¢; we have

/ / . T
[po il =[popil <| poail = popil = |p ail = [pi il sin o~
The total length of all ascending segments is therefore 1 minus the following rest:

. .
Z(|p0 ¢l —|popil) < Sln%zi: i ¢i| < sin P

(3

For n — oo, this tends to 0. The last inequality holds because ), |p; ¢;| < 1 is the
length of all descending segments. a

The proof also works for nonequidistant points as long as the maximum distance
between subsequent points tends to 0. We are obliged to Seidel [26] for this elegant
proof of Lemma 3.1.

3.2. The upper bound. Interestingly, the same jagged lines as used in the proof
of Lemma 3.1 are also very useful in the proof of the upper bound. For any circular
arc C' we can construct a jagged line by distributing auxiliary points along C' and by
taking the upper envelope of the right angles at these points whose sides pass through
the two spanning vertices of C; see Figure 3.2. We denote with jagged length, J(C),
of C' the limit of the lengths of these jagged lines as the maximum distance between
subsequent points tends to 0. This limit is well defined, i.e., it does not depend on
how the points are chosen. In the proof of Lemma 3.1 we have already seen how
to determine this length by separately estimating the lengths of the ascending and
descending segments. For the jagged length of a circular arc with diameter 1 from
angle « to angle 3 (see Figure 3.2), we obtain analogously to the proof of Lemma 3.1

J(C) =sinfB — sina — cos B + cos «,

which can also be written as

B
J(C) = / (cosy +sinvy) dy.
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Fic. 3.2. Analyzing the jagged length, J(C), of a circular arc C.

LEMMA 3.2. The jagged length of an arc is always greater than the arc length
itself.

Proof. Consider a circle with diameter d and a circular arc a on its boundary.
Two lines from an arbitrary point on the boundary through the endpoints of the arc
always intersect in the same angle ¢, by the generalized Thales’s theorem. For the
length of a, we have |a| = ¢d; see Figure 3.3.

AN

d
)

FiG. 3.3. |a|] = ¢d.

So the arc length of the arc C in Figure 3.2 equals § — «, and we have

p B
J(C):/ (cos’y+sin7)d72/ ldy=08-a;

the inequality follows from cos+y +siny > 1 for v € [0, 7]. |

The integral form for the jagged length also has a geometric interpretation. Let us
consider a right angle with slope v contained in the halfcircle, as shown in Figure 3.2.
The length of the two sides of the right angle equals cosy 4+ sin~y. If we define

o { length of the right angle if its apex is contained in C,
v =

0 otherwise,

we obtain the nice form

z
J(C) = C, dy.
0
This form is used in the proof of the next lemma.
LEMMA 3.3. Let D be a line segment, and let P be a surrounding polygon such
that P and the angle hull AH(D) with respect to P touch only at vertices of P; see
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D

F1G. 3.4. For a line segment D we have J(AH(D)) = J(B) = 2|D|.

Figure 3.4. Then the arc length of AH(D) with respect to P from one endpoint of D
to the other is less than 2|D|.

Proof. By Lemma 3.2, the arc length of AH(D) is certainly shorter than the
jagged length of AH(D), i.e., the sum of the jagged lengths of all circular arcs of
AH(D), and we obtain

length(AH(D)) < J(AH(D)) = > J(C)
CeAH(D)

S /Oind'y:/OE Yooy

CeAH(D) CeAH(D)

But for any angle v the sum over the lengths of the right angles of slope v which
are contained in the halfcircles of the different circular arcs of AH(D) is equal to the
length, B, of the big right angle in the halfcircle B spanned by the two endpoints
of D, which means that

/2 DR dvz/szdW:J(B):2|D|. O
0 \cearn(p) 0

Note that in the proof of Lemma 3.3 the halfcircle B does not depend on P, and
J(AH(D)) = J(B) therefore means that the jagged lengths of the angle hulls of D
for different surrounding polygons P are all identicall We may also say that we have
bounded the length of the angle hull with respect to a surrounding polygon P by the
jagged length of the angle hull without obstacles.

LEMMA 3.4. The statement of Lemma 3.3 remains true if D is a convex chain
instead of a line segment.

Proof. We consider a convex chain, D, and a surrounding polygon, P, such that P
and the angle hull AH(D) with respect to P touch only at vertices of P.

We make a construction similar to the proof of Lemma 3.3. For an angle v we
find the tangent to D with that slope. Starting with the touching vertex we go into
direction ~ until we hit an arc of the angle hull, then we turn by a right angle and
go to the vertex of P (or D) that co-spans the current arc. Here we turn back to
the original direction and continue accordingly to obtain a connected chain of right
angles; see Figure 3.5.
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AH(D)

~

Fi1c. 3.5. Three chains of right angles which are all of the same length.

This chain has the same length as the two sides of the “unfolded” big right angle
of slope v which generates the angle hull without obstacles. As before, this shows
that the jagged length of the angle hull does not depend on P.

Now it is not difficult to see how long it really is. Consider the set of halfcir-
cles spanned by the segments of D. Analogously to the previous construction, we
can construct the chain of right angles of slope v below these halfcircles which again
has the same length. But these right angles represent the jagged lengths of the
isolated segments, and each of them equals twice the length of the segment, by
Lemma 3.3. Therefore the total length of the angle hull of D is less than twice
the length of D. ]

To obtain our main result we need to consider an arbitrary surrounding polygon P
that influences the angle hull not only with acute reflex vertices but also with its edges.

THEOREM 3.5. Let P be a simple polygon containing a relatively convex poly-
gon D. The arc length of the boundary of the angle hull, AH(D), with respect to P
is less than 2 times the length of D’s boundary. This bound is tight.

The bound also holds if there are several obstacles instead of P that influence the
angle hull and also if their boundaries consist of arbitrary curves.

Proof. Each convex chain of D can be treated separately because the angle hull
must pass through the reflex vertices of D.

First, we consider the angle hull AH;(D) with respect to only the vertices of P
as obstacle points. Its arc length is less than 2|D|, by Lemma 3.4.

Now also the edges come into play. The angle hull AHs(D) with respect to the
whole of P contains circular arcs and some pieces of P’s edges, for an example see
Figure 2.5. The circular arcs of AH2(D) are also part of AH1 (D).

For every piece of an edge which contributes to AHz(D), the piece’s two endpoints
are also on the boundary AH1(D). Therefore, AH2(D) can only be shorter than
AHy (D).

The bound is tight by Lemma 3.1.

The proof easily generalizes to the case of several obstacles around D that influ-
ence the angle hull instead of P. Indeed, we have never used the fact that the parts
of P that are touching the angle hull are connected by edges of P. And if we have
several obstacles, we can always connect them to a single one by edges which do not
influence the angle hull.
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The proof carries over to arbitrary curves by approximation of these curves with
polygons. 0

The following variation of Theorem 3.5 for an “incomplete angle hull” is used for
analyzing the exploration strategy in section 2.

COROLLARY 3.6. Consider a convex chain, D, from s to t and its angle hull
from s to some point g. The jagged length of this part of the angle hull is bounded by
twice the length of the shortest path around D from s to g.

Proof. Let m be the last segment of D and let a be the angle between m and the
last segment of the shortest path from s to g; see Figure 3.6.

- NI
™M COS O
AL
’ a
K t
: m
v D

Fic. 3.6. The cut of r1 is reached at point g.

The jagged length of the angle hull from g to ¢ equals m(1 + sina — cosa). The
path, L, from the base point to g can therefore be estimated in the following way,
using Theorem 3.5:

L <2|D| —m(1l+sina — cosa)
=2(|D|] = m+ mcosa) + m(1 — cosa — sin @)
< 2(]D| — m+ mcosa).

The last inequality holds because of 0 < a < 7. But [D| —m +mcos« is exactly the
length of the shortest path from the base point to g. ]

Remark. The result of Theorem 3.5 can be generalized to angles ¢ # 90°. Namely,
for the jagged length of a circular arc C' spanned with fixed angle ¢ by a chord of
length 1 from angle o to angle § we have

Jp(C) = (sin 8 — sinaw — cos 3 + cos a)cos.¢;2+1
sin” ¢

from which a tight factor of 2(cos¢ 4 1)/sin?¢ follows; see [16] for this and other
interesting extensions. Interestingly, the angle hull with respect to an arbitrary angle
has independently been described, in a different context and without estimations
about its length, by de Berg et al. [10]—this corresponds to our “outdoor setting”—
and in the successor article by Cheong and van Qostrum [8] for the “indoor setting,”
i.e., with obstacles.

4. Conclusions. We have seen that a combination of suitable analysis tech-
niques is necessary for proving an upper bound for the competitive factor of a rather
simple strategy. Still, we believe that its actual performance, even in the worst case,
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is considerably better than the proven bound. Establishing a lower bound for polygon
exploration, higher than the trivial (1 4+ v/2)/2 =~ 1.207, and closing the gap to the
upper bound seem to be challenging problems.

There are many interesting variations and generalizations of the polygon explo-
ration problem. For example, one could study different cost models for the robot’s
motion. Also, the case of polygons with holes deserves investigation. Here the off-
line problem becomes NP-hard, by reduction from the traveling salesperson problem.
Recently, Albers, Kursawe, and Schuierer [2] have shown that in a rectilinear envi-
ronment no better competitive factor than O(vk) can be achieved for the on-line
problem in the presence of k rectilinear holes, what was known before only for general
polygons.

We have also introduced a new type of hull operator that suits us well in analyzing
the on-line exploration strategy and that is interesting in its own right. Here we have
analyzed the perimeter of the angle hull, AH(D), in terms of the perimeter of the
region D. A number of interesting questions remain open: If we consider a subset
of D, is the perimeter of its angle hull always shorter than the perimeter of AH(D)?
Does the iterated construction of the angle hull approximate a circle? How can angle
hulls be generalized, and analyzed, in three dimensions?
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