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Abstract

Consider a robot that has to travel from a start location

s to a target t in an environment with opaque obstacles

that lie in its way. The robot always knows its current

absolute position and that of the target. It does not,

however, know the positions and extents of the obsta-

cles in advance; rather, it finds out about obstacles as

it encounters them. We compare the distance walked

by the robot in going from .s to t to the length of the

shortest path between s and t in the scene. We describe

and analyze robot strategies that minimize this ratio

for different kinds of scenes. In particular, we consider

the cases of rectangular obstacles aligned with the axes,

rectangular obstacles in more general orientations, and

wider classes of convex bodies both in two and three

dimensions. We study scenes with non-convex obsta-

cles, which are related to the study of maze-traversal.

We also show scenes where randomized algorithms are

provably better than deterministic algorithms.

1. Motivation and Results

Practical work on robot motion planning falls into

two categories: motion planning through a known

scene, in which the robot has a complete map of the

environment, and motion planning through an un-

known scene in which an autonomous robot must

find its way through a new environment (see, for

example, [6, 8, 9, 13, 15] and references therein).

Virtually all previous theoretical work ([23] and ref-
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erences therein) has focused on the former problem.

Papadimitriou and Yannakakis [17] studied the lat-

ter problem, which is also the subject of this paper:

the design and evaluation of strategies for naviga-

tion in an unknown environment. The unfamiliar

environment may be either a warehouse or a fac-

tory floor whose contents are frequently moved, or

a remote terrain such as Mars [21]. The design

and evaluation of algorithms for such navigation is

a natural algorithmic problem that deserves more

theoretical study.

1.1. Model

A scene S consists of a start point s and a tar-

get t, together with a set of opaque, impenetra-

ble, non-overlapping obstacles none of which con-

tains s or t. The target t may be a point, or a

polygon/polyhedron, or an infinite wall. To avoid

certain degeneracies, we assume that a unit circle

(unit sphere in three dimensions) can be inscribed

in each obstacle; this guarantees that the obstacles

have a certain minimum “thickness”.

A point robot has to travel from s to t, and it

knows both its current absolute position and the

position of t. In walking towards -t it must cir-

cumvent the obstacles in S. The robot does not

know the positions and extents of these obstacles

in advance; rather, it finds out about obstacles as

it encounters them. Where two obstacles touch,

we assume that the robot can “squeeze” between

them. Thus a scene that consists only of convex

obstacles cannot have a non-convex obstacle com-

posed of abutting or overlapping convex obstacles.

The most natural mechanism for the robot to

learn about a scene is vision: the robot discovers

obstacles as they come into its view, and uses this

information to decide how to proceed towards t.

For simplicity of exposition in this version, we as-

sume that when the robot first sees an obstacle
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it is given the shape, size and position of the ob-

stacle (even though much of that obstacle may be

invisible from where it stands). However, we show

how many of our algorithms can be made to work

with essentially the same upper bounds (up to a

constant fact or) under a considerably weaker as-

sumption — a tactile robot that learns about ob-

stacles only by bumping into them and moving

along them. For this we use variants on the “dou-

bling” strategies of Baeza-Yates et al. [1], Details

are omitted in this version.

Let I?(S) be the total distance walked by a robot

-R in going from s to t in scene S, and let d(~)

denote the length of the shortest path in. the scene

between s and t (because of the obstacles, this may

be substantially larger than the Euclidean distance

between s and t).Let S(n) denote the set of scenes

in which the Euclidean distance between s and t is

n. Following the lead of [17], we use as the figure

of merit for the robot the ratio

R($)
P(R, n) = max —

sEs(n) d(s) ‘

and study its growth as a function of n.

For convenience, we put the scene in Carte-

sian coordinates, using “north” / “soutlh” to de-

note the direction of increasing/decreasing y

value, “east” /“west” for the direction of increas-

ing/decreasing z value, and “up”/ “down” for the

direction of increasing/decreasing z value, respec-

tively. The start point s is always assumed to be

at the origin.

1.2. Summary of Results

We first consider scenes where t is a point and the

obstacles are rectangles with sides parallel to the

axes (rat her than squares as in [17]). Surprisingly,

even this problem turns out to be quite compli-

cated, Any robot purporting to achieve a ratio p

on such scenes must achieve a ratio of at most p on

both the following special cases.

1.

2.

Scenes in which t is an infinite line and the

obstacles are oriented rectangles. We call this

case the wall problem.

Scenes in which the obstacles are oriented rect-

angles that are confined to lie within a square

“room”. Here .s is a point on a wall of the

room and t is a point in the room. We call

this the room problem. This intriguing speciaJ

case is of interest in its own right as a model

for navigation in a bounded region such as a

warehouse.

Section 2 describes an optimal algorithm for the

wall problem. The algorithm achieves an upper

bound of O(W) on the ratio p(l?, n), matching the

lower bound of [17]. To devise this algorithm we de-

velop a general “sweep’) paradigm that is fairly nat-

ural: a human lost in a strange city would probably

do a similar search. We extend this approach to

three dimensions, proving a tight bound of @(n2/3)

for the ratio in this case.

Section 3 considers the room problem. The al-

gorithm for this problem achieves a ratio p(R, n) =

2’-, for some constant c. We conjecture that

this is not optimal, and suspect that a constant

ratio is achievable. The approach taken by this al-

gorithm is different from the one taken for the wall

problem. Here, we develop a “calliper” method

that pins the target down to lie within a sequence

of advancing paths. Intriguingly, in the room prob-

lem d(~) < 2n for all S. To see this, suppose that s

is the south-west corner of the room. Observe that

the length of the greedy path from the target t to

the start point s (a path that travels due south if

possible and otherwise due west) is the L1 distance

between s and t (Fig 2). In contrast, going from s

to t seems considerably harder, with greedy paths

froms not guaranteed to go anywhere near t.Thus

getting out of a room is easy, but getting in to-

wards a small target seems to be hard. We extend

the rQom problem to scenes containing arbitrary

polygonal obstacles. We show that d(~) can now

be as large as n312. Unlike the case of oriented rect-

angles the greedy path is no longer guaranteed to

find an inexpensive way out of the room. For these

scenes we give a lower bound of Q(W) on P(R, n),

for any deterministic algorithm and a randomized

algorithm that achieves P(R, n) = O(@).

Section 4 shows how to combine our solutions

for the wall and room problems to obtain a tight

bound of O(W) for point-to-point navigation in

scenes consisting of oriented rectangular obstacles.

The solution extends to three dimensions, yielding
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a tight bound of @(n2i3) for navigating through

oriented cuboids.

In Section 5 we give a randomized algorithm for

certain cases of the wall problem in two and three

dimensions. We show that the (expected) ratio of

our algorithm is < 2’ ~l”~m]”glogm (for some con-

stant c), which is much smaller than the corre-

sponding deterministic lower bound. This demon-

strates the power of randomization in navigation.

Section 6 deals with non-convex obstacles (and

therefore mazes). We give a lower bound for ran-

domized algorithms, and show that a determinis-

tic algorithm of Rao et al. [19] meets this bound.

The algorithm is memory-intensive, and so we offer

an alternative algorithm that is very simple, mem-

oryless, randomized and achieves the same upper

bound in the plane.

We conclude with open problems in Section 7.

1.3. Related Previous Theoretical Work

The first paper to consider the ratio p(R, n) is that

Papadimitriou and Yannakakis [17]. They proved

that when s and t are points in the plane, and

all obstacles are squares, p(R, n) is at least 1.5,

and complement this with an algorithm attaining

P(R, n) < 1.5 + o(l) for all n. They also show

that when t is an infinite wall at distance n. from

s and the obstacles are oriented rectangles, then

p(R, n) is Q(@). Coffman and Gilbert [7] study

the performance of simple heuristics in the presence

of randomly placed obstacles. Kalyanasundaram

and Pruhs [10] consider scenes in which all obsta-

cles have bounded aspect ratios. Lumelsky and

Stepanov [13] earlier gave a simple navigation algo-

rithm that guarantees R(S) to be bounded by d(,~)

plus the sum of the perimeters of all obstacles, with

no restrictions on the aspect ratios or the convex-

ity of the obstacles. Their algorithm does not min-

imize the ratio p. Several papers (see [16, 19, 20]

and references therein) give algorithms for building

up a map of a scene by exploring it entirely. Maze-

traversal has received considerable attention in the

past in various papers [4, 12, 18], none of which

considers the ratio metric.

The ratio measure P(R, n) has close connections

to the competitiveness measure used in the study of

on-line algorithms [5, 14, 22]; indeed, our problem

resembles an on-line setting in which the obstacles

encountered by the robot form a sequence of “re-

quests”, and we compare its total cost R(S) to the

“off-line cost” d($). It is therefore worth point-

ing out some key differences between the models:

(a) In the navigation problem the robot has a def-

inite target towards which it moves, while there

is no such notion in on-line paging [22], for ex-

ample. (b) The robot can move back and forth

through the scene, re-visiting previously seen ob-

stacles, thus having some control on the requests it

encounters in the future. (c) Competitive analysis

deals with request sequences of arbitrary (possi-

bly infinite) length, whereas here we have a fixed

number of obstacles in the scene. Thus we cannot

cast our navigation problem in a standard on-line

framework such as the server problem [14] or met-

rical task systems [5]. Nevertheless, the analogy

with on-line algorithms proves useful in the study

of randomized navigation (Section 5).

2. The Wall Problem

In this section we consider scenes in which t is an

infinite wall at distance n from s, and the obsta-

cles are rectangles whose sides are parallel to the

axes. Without loss of generality assume that t is

a vertical wall to the east of s. We call the width

of an obstacle its dimension parallel to the z axis,

and the height of an obstacle its dimension paral-

lel to the y axis. To avoid degeneracies we assume

that the width and the height of every obstacle is

at least one.

We present an algorithm that achieves ratio

P(R, n) = @(rein{@, 1 + k/d(S)}), where h is the

total height of the obst acles seen by the robot. This

matches the lower bound proven in [17], so our al-

gorithm is optimal up to constant factors.

The algorithm maintains four variables: the win-

dow size, W, a threshold, T, a sweep direction, and

a sweep counter. Initially, W is set to n, the sweep

direction is south, and the sweep counter is set to

zero. The threshold ~ is always set to W/@.

We begin with a high-level view of the algorithm

and its analysis. The algorithm maintains a win-

dow of varying size around the x-axis. The robot

makes & sweeps in directions alternating between

north and south for each window size. Upon com-
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pletion of these @ sweeps the window size is dou-

bled. Given a window of size W (which ranges from

y=+w/2 tog= –W/2), the distance walked

by the robot in sweeping is O(W@). ~Ne show

that the shortest path that cuts through all the @

sweeps has length Q(@r) = Q(W). Let Wf be the

window size at the time the robot reaches t. We

prove that the total distance walked by the robot

is O(min{n + h, JVjfi}), while d(~) = Q(lVj).

We now describe the algorithm. Starting from

point s, the robot travels due east until it either

reaches t or hits an obstacle, say at (x, y). Let yn

and y~ be the absolute values of the y-cocmdinates

of the north and south corners of the obstacle. Be-

low, we assume that the current sweep direction is

south, the other case is symmetric. The next steps

are determined by the following rules:

Rule 1: If the distance to the nearest corner is less

than ~, then the robot goes “around” the obstacle.

Specifically, it travels either south or north to the

nearest corner, then east along the width of the ob-

stacle until it reaches the opposite corner (or until

it reaches t and stops). Then, it travels along the

height of the obstacle arriving at point (z + w, y),

where w is the width of the obstacle. (See Fig.

l(a).) From this point it continues to travel due

east until it hits the next obstacle.

(a)

I

Figure 1: Going around an obstacle

Rule 2: If y. > lV/2 and y. > lV/2 (i.e., the obsta-

cle extends past both sides of the window), then the

robot travels to the corner that extends less past

the window side; that is, it goes north if yn < y,

and south otherwise. From this corner it continues

to travel east, after setting the sweep counter to

one, the window size W to 2(min{yn, y$}), and the

threshold ~ to W/fi. The sweep direction is set

to north if the robot is at the south-east corner and

to south otherwise. (See Fig. l(b).)

Rule 3: Otherwise (i.e., the distance to the nearest

corner is more than ~, and the obstacle does not ex-

tend past both sides of the window), then the robot

travels to the nearest corner, and then east along

the width of the obstacle until it reaches the oppo-

site corner (or until it reaches t and stops). If the

robot is at the south east corner then it continues

to travel east. (Recall that the sweep direction is

south. ) Otherwise, i.e., i t is at the north-east cor-

ner, it travels south along the height of the obstacle

until it reaches either the south east corner of the

obstacle or the point (Z + w, —W’/2), and then pro-

ceeds due east. (See Fig. l(c). ) In the latter case

it increments the sweep counter by one, and flips

the sweep direction. If the counter is greater than

W, it resets the counter to zero and doubles the

window size and the threshold.

Theorem 1: The total distance walked by the

robot is O(min{n + i, lVj@}).

Proofi Since the robot walks only along the

borders of the obstacles and never backtracks, it

is clear that the total distance is no more than

O(n + E).

To prove that the distance is also bounded by

O(lVjfi), we divide the path taken by the robot

into three components: (1) horizontal segments, (2)

segments walked south and north “along” obstacles

using Rule 1, and (3) segments walked south and

north using the other rules.

Notice that (i) the total distance walked east is

n = O(J$’j@), and (ii) since the width of each

obstacle is at least one unit, the total dist ante

walked south and north using Rule 1 is bounded

by nrj = 0( Wj@), where rj is the final thresh-

old. It suffices to bound the third component as

well. Fix a window size W. The distance walked

by the robot using Rules 2,3 to complete one sweep

is O(W). Since the robot does at most @ sweeps
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for each window size we get that the total distance

for a fixed window size is O(Wfi). The window

size is at least doubled each time it is changed, and

thus the total distance travelled over all window

sizes is also O(Wffi). •l

Theorem 2: The shortest patA from s tot, d(~),

is Q(Wf).

Proof: Since we are interested in the value of the

shortest path up to a constant factor, we may as-

sume that the path consists only of horizontal and

vertical segments. The length of the horizontal seg-

ments is clearly Q(n). If TVf = n then we are done.

Assume not; in this case we prove that the length

of the vertical segments is Q(Wf).

Suppose that the robot has completed at least

& sweeps for some window size. Let W be the

largest such window size. We claim that the verti-

cal component of d(~) is $2(W). To see this, note

that to cut through all the @ sweeps the shortest

path may either go “around” all the sweeps walking

distance W, or walk a vertical distance of at least

~ in each sweep, totaling fi~ = W. If Wj < 2W

then we are done. Otherwise (i.e., Wf > 2W, or

there is no window for which the robot has com-

pleted @ sweeps), then it must be the case that

Wj is determined by rule 2, in which case the short-

est path is clearly fl(Wj). ❑

Extension to Three Dimensions. We now

very briefly sketch extensions of the sweep

paradigm to three dimensions. By an argument

similar to that in [17], it can be shown that the

ratio for point-to-wall navigation in three dimen-

sions is Q(n213). (Details omitted here. ) Our al-

gorithm for point-to-wall navigation matches the

lower bound to within a constant factor provided

every obstacle is a general cylinden its intersection

with every plane perpendicular to the x-axis is ei-

ther a fixed closed curve (possibly non-convex), or

empty. As in the two dimensional case, we main-

tain a threshold and a window that grow together.

The three-dimensional analog of the sweep is a spi-

ral. The spacing of successive orbits of the spiral

is chosen to to keep the cost of the robot to within

n2t3 of the shortest path.

3. The Room Problem

In this section we consider scenes in which the ob-

stacles are oriented rectangles confined to lie within

a square room such that no obstacle touches the

room walls. The point s is on the border of the

room and -t is in the center. (See Fig. 2.) Results

pertaining to t elsewhere in the room are similar

and omitted here. Later, we extend our results

to rectangular rooms. Since travel along the room

walls is ‘(cheap”, we may assume s is in the south-

west corner of the room, and for convenience we let

t have coordinates (n, n), so the distance from s to

t is in fact nfi. Also, for simplicity, we assume all

obstacles have corners at integral (z, y) points,

Define a greedy (+z, +y) path to be a path that

travels due east if possible and otherwise due north.

Similarly, define greedy (+y, +z) paths, (+z, –Y)

paths, and so forth, to be ones that travel in the

first direction if possible and otherwise the second

direction. A brute-force (+z) path is one that trav-

els due east, going around obstacles in its way along

the shorter direction, but otherwise maintaining

a constant y coordinate. A monotone path from

(z1, !h) to (z2, Y2) is me where the z and y coor-
dinates never decrease along the direction of the

straight-line path. For example, if X2 > ZI and

Y2 < w; then the z coordinate will never decrease

and the g coordinate will never increase. Notice

that a greedy path is always monotone.

We now describe an algorithm achieving R(S) =

0(n312), and thus P(R, n) = O(m). An improve-

ment that uses this algorithm recursively achieves

P(R, n) = 0(2CG).

The algorithm maintains the following invariant

at the start of each iteration: the robot knows of

a monotone path from a point (xo, n) to a point

(n, Ye), where O < ZO, yO < n, that is crossed by no

obstacle. Furthermore, it is positioned on a point

of this monotone path. We begin with $0 = y. = O,

where the known path is just along the room bor-

ders. Each loop through the algorithm will increase

either Z. or go by at least an amount W, walking

a distance of only O(n). Since each of Z. and go

can be increased by this amount only @ times,

the total distance walked by the robot to reach t is

0(n312).

The algorithm consists of four steps. For this
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------ --- The south-west greedy path from t

A <+y, +x> monotone path

Figure2: The Room Problem

first version of the algorithm, let m = @.

Algorithm Oriented-Room-Find

Step 1: Travel to location t’ = (z. + m, y. + m).

If this point happens to be inside an obstacle, or

“below” our current monotone path, then any other

point to its north-east that is to the soutlh-west of

t will do. In particular, if t’ is inside an obstacle,

then either the north-west or the south-east corner

of the obstacle is to the south-west oft and may be

used. If t’is below the monotone path, any point on

the monotone path (that is not inside an obstacle)

to the south-west oft may be used.

Step 2: Make a greedy (+z, +y) path from t’until

either the z or y coordinate equals n. Without loss

of generality, assume that the robot has traveled to

the west oft, so the current coordinates are (2, n)

for ~ < n. Notice that ~ z Z. + m since the path

was greedy.

Step 3: Let zo +- i. Travel a greedy ,(+z, –y)

path from (f, n) until either a point (n, j) is

reached (in which case yO + j), or the previous

monotone path is hit. In either case we now have

a new monotone path from (zo, n) to (n, yo) with

Z. increased by at least m. (Similarly, the robot

would travel a greedy ( –z, +y) path if it had hit

to the south of target t in step 2.)

Step 4: Ifxo<n–rnoryo <n-m then go back

to Step 1. Otherwise, perform a modified version

of Step 1 with t’= t,and stop.

The distance walked performing Step 1 is

O(m2) = O(n) since the robot may travel along the

monotone boundary to a point with y-coordinate

equal to that of t’,and then travel in a brute-force

(+z) path to t’. The brute-force (+z) path trav-

els at most 2m distance for every unit of progress

in the +x direction made, since the lower end of

any obstacle encountered cannot extend below the

monotone pat h. Steps 2 and 3 together require

travel at most a distance 3n since each consists of

a single greedy path, and in the two paths together

at least one coordinate is non-decreasing. Since

these steps are iterated at most 2m times, the to-

tal distance traveled is at most 0(n3/2).

We can improve the result to O(n.2c@) by us-
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ing algorithm Oriented-Room-Find recursively to

reach temporary destination t’in Step 1, and then

optimizing the value of m – the z (and y) coor-

dinate distance from the start point to t’. Define

T(n) to be the total distance traveled to reach t

at z (and y) coordinate distance n from the start

point. For a fixed value of m, the distance traveled

at each iteration of Step 1 is at most l’(m), while

the distance traveled at each iteration of Steps 2

and 3 is at most 3n. The number of iterations is at

most 2n/m, so the recursion is:

T(n) < ~ [T(m)+ 3n] ,

which solves to T(n) = nl+ci=.

3.1. Arbitrary Rectangular Obstacles

What if rectangular obstacles with sides not paral-

lel to the axes are allowed? We begin by proving

two theorems that demonstrate the difference be-

tween scenes cent aining only oriented rectangular

obstacles, and scenes containing arbitrary rectan-

gular obstacles.

Theorem 3: There exist scenes S containing rect-

angular obstacles whose sides are at arbitrary an-

gles for which d(S) 2 xn312/27.

Thus, the length of the shortest path betweens and

t is not always bounded above by the L1 distance

as in the oriented case.

Theorem 4: For any deterministic robot R, there

exist scenes S containing rectangular obstacles

whose sides are at arbitrary angles for which

p(R, n) = Q(@).

Thus, the upper bound for oriented rectangles can-

not be achieved in this case.

Proof of Theorem 3: Consider n/9 + 1 circles

centered at t, with radii n/3 + 3i, i = 0,. . n/9.

Inscribe in each a regnlar @-gon. Rotate all the

polygons inscribed in circles of radii n/3 + 3i for

even i by an angle x /fi. Each edge of each poly-

gon can now be replaced by a rectangular obstacle

of unit width (in the radial direction) and length

very nearly the length of that edge. Now, any

obstacle-avoiding path between s and t has to walk

a distance of at least 2r@/3 going from a point

on the circle with radius n/3 + 6i to a point on the

circle with radius n/3 + 6i + 6, for O < i < n/18.

•1

Proof of Theorem 4: Consider the scene de-

scribed in the proof of Theorem 3. We allow a

(deterministic) robot to walk from s to t.We now

remove from the scene any obstacle not touched

by the robot. Let T be the number of obstacles

it touches. It can be shown that the robot pays

a cost at least T@/4. A pigeonholing argument

shows that d(S) < 4T. Following a technique from

[17], the argument can be made to work even when

the robot uses vision. ❑

We now turn to upper bounds. Define the an-

gle of a rectangle to be the angle of its longest

edge. We first describe a modification of algorithm

Oriented-Room-Find to handle not just obstacles

of angles of O and m/2, but obstacles angled in the

range [0, m/2] as well, retaining the same perfor-

mance. Note that we do not allow obstacles an-

gled in the remaining range of (m/2, m). Then,

we describe how this new algorithm can be modi-

fied for scenes S where there is a known excluded

range (dl, d2) of angles (for example, dl = 7r/5 and

d2 = m/4). Let ii = n/a, where a = d2–d1. Our al-

gorithm achieves R(S) = O(h), if ii = Q(nl+’), for

some constant e, and R(S) = O(ii. 2’-) other-

wise. The length of the shortest path in such scenes

is O(n). We remark that for “practical” cases it

may be enough to consider scenes where there is a

known excluded range, since usually the number of

different angles of the obstacles in real-life scenes

is small.

Finally, we give a randomized algorithm that

achieves p(R, n) = A regardless of the angles of

the obstacles.

The idea for the situation where angles are in

the range [0, 7r/2] is as follows. First, let us treat

the obstacles as infinitesimally thin lines, say along

a longest edge (the thickness of obstacles can be

handled separately). Since every obstacle has an-

gle in the range [0, m/2], we can still perform greedy

(+x, +Y) and (+Y, +z) paths. The problem is that

we can no longer make the greedy (+z, –y) path re-

quired in Step 3 of Oriented-Room-Find. Instead,

we will use binary search to find a point (z’, y’)



either directly north or east of # with the follow-

ing property: a greedy (+x, +y) path frc)m (z’, y’)

hits a point (n, ~) to the south of t and a greedy

(+Y, +2) path from (z’, y’) hits a point (~, n) to

the west of t. So, consider just the condition that

we begin with a (not necessarily monotone) known

path of length O(n) from the line y = n to the line

x = n with least y value go and least z value Zo.

Then, we will have produced a new such path with

either the least z value or least y value increased

by m’.

This strategy can be used for a smaller range

(dl, dz) of excluded angles by just performing a

rotation and a coordinate transformation on the

space. Essentially, instead of writing t as n; + nJ

for orthogonal unit vectors Z and ~, we may write

t as (n’d! + n“d~ ), where d; and d; are unit vec-

tors in the dl and d2 directions. It is not diffi-

cult to see that both n’ and n“ are O(n/a), where

a=d2–dl. Let ii= n/a.. The performance of

the previous algorithm after the transformation is

R(S) = O(h), if ii = Q(nl+c), for some constant c,

and R($) = O(fi . 2c@) otherwise.

Theorem 5: There is a deterministic algorithm

for the room problem with an excluded range of

angles a that achieves a ratio R(S) = O (ii), if

ii = Q(nl+C), for some constant c, and R(S) =

O(ii . 2’=) otherwise. Here ii = n/a.

Consider now the general case where the angles

of the obstacles may be in any range. A sim-

ple pigeonholing argument implies that a, constant

fraction of the ranges [i~/fi, (i + 1)~/~, for

1 < i < V have the property that the total area

of the obstacles angled in this range is no more

than 2/@ of the total area. Thus the total area

of obstacles in such a range is always 0(n3i2).

Consider a randomized algorithm that first

guesses such a range. It then applies the above al-

gorithm assuming that there are no obstacles with

angles in this range, on actually encountering any

obstacle in this range, it just goes around the ob-

stacle at cost at most the area of the obstacle. Thus

the total cost paid by the algorithm on such obsta-

cles is O (n3j2). The expected totaJ dist ante walked

by this algorithm is given by the recursicm:

T(n) s ~ [T(m)+ 3n3i2] ,
m

whose solution is T(n) = n3i2.

Theorem 6: There is a randomized algorithm

achieving a ratio that is O(W) for the room prob-

lem provided every obstacle is a rectangle within

which a unit circle can be inscribed.

4. Point-to-point Navigation

We combine the algorithms for the wall and room

problems to obtain an algorithm for navigation in

scenes where t is a point at (n, n) and the obsta-

cles are oriented rectangles with no bound on their

extents.

The robot starts by taking a greedy (+z, +g)

path from s until it reaches a point s’ with either

z or y coordinate equal to t. Suppose that s’ and

t have the same y-coordinate. The robot now uses

the sweep algorithm for the wall problem to travel

to a point on the vertical wall containing t.Notice

that the path taken by the robot in the sweep al-

gorithm is a path from s’ to a point (n, yo) where

[!Jo - nl ~ d(~) that never decreases in the ~ direc-
tion. This path can be used to obtain a monotone

path from (n, yo) to a point (zo, n) with Z. z 0. Fi-

nally the robot invokes the algorithm for the room

problem to arrive at t using the monotone path as

the room walls.

We analyze the distance walked by the robot.

The distance traveled using the algorithm for the

wall problem is at most O(min{n + h, Wffi}),

where IVf is the size of the last window considered.

The size of the (rectangular) room then created is

at most n x IVf. So, using the algorithm from sec-

tion 3, the distance walked to reach t is O(WfJ@.

If Wf = O(n) then we are done since the length of

the shortest path from s to t is at least 2n. Sup-

pose that this is not the case. By Theorem 2, the

length of the shortest path from s’ to t is fl(Wf).

Since the length of the shortest path from s’ to s

is at most 2n, d(~) = Q(Wj – 2n) = Q(Wf). We

therefore have the following theorem.

Theorem 7: For two dimensional scenes S in

which s and t are points and every obstacle is a

rectangle whose sides are parallel to the axes our

algorithm achieves a ratio ofp(l?, n) = O(@.
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Extension to Three Dimensions. As in two

dimensions, we give an upper bound for point-to-

point navigation that matches the lower bound to

within a constant factor provided every obstacle

is a cuboid whose sides are parallel to the axes.

Also as in two dimensions, our upper bound for

point-to-point navigation comes from combining an

algorithm for point-to-wall navigation and another

for the room problem.

It suffices to combine the three dimensional

sweep algorithm with the two-dimensional room al-

gorithm to obtain a three-dimensional navigation

algorithm for which we prove:

Theorem 8: For three dimensional scenes S in

which s and t are points and every obstacle is a

cu boid whose sides are parallel to the axes our al-

gorithm achieves a ratio of p(l?, n) = 0(n2/3).

5. The Power of Randomization

We now consider randomized robots that toss

coins as they walk from s to t. The scene S is

fixed in advance by an oblivious adversary [2] who

knows the randomized algorithm, but not the coin

tosses made by the robot during a walk. The

cost of robot R on scene S is now a random

variable; we thus define the ratio p(li?, n) to be

maxsc~f~) ~[R(S)] /d(S). The main result of this

section is a randomized algorithm for the wall prob-

lem that achieves a ratio that is 2°(@0gn10g10g’)

provided the obstacles are all vertical line segments

of integral x-coordinates and the robot is allowed

vision. Notice that for this situation, the robot

can see the entire “column” of obstacles directly in

front of it; that is, if the robot is at a point with Z-

coordinate in the range (i – 1, i) for integer i, it can

see all obstacles of z-coordinate i. To keep with our

previous conventions on the thickness of obstacles,

we could equivalently consider obstacles of width

between one and two having their left walls only at

even z-coordinates; this would still allow the robot

to see an entire “column” at once.

The Papadimitriou-Yannakakis lower bound of

Q(A) still holds for deterministic algorithms for

this restricted class of scenes [17]. So, for such

scenes, a randomized algorithm is provably better

than a deterministic one. We leave as an open ques-

tion whether one can achieve similar bounds for the

more general wall problem.

The idea for the randomized algorithm is to

view the problem as a k-server problem on (k + 1)

equally-spaced points on a line, and then use as

a subroutine known randomized strategies [3] for

that server problem. In fact, our problem can be

better described as a metrical task system of [5],

but we will use the language of servers here. In the

lower bound direction, a recent result of Karloff et

al. for the server problem shows that even for the

special case of scenes we consider, no randomized

algorithm can achieve a constant ratio [11].

Theorem 9: The randomized algorithm below

achieves a ratio that is 2°(d10g n 10glOg’) for the wa]~

problem in the plane where the robot uses vision

and the obstacles are vertical line segments at in-

tegral x-coordinates.

Proof: We map the navigation problem to a k-

server problem on (k + 1) equally-spaced points

on the line as follows. Let n = k + 1 and de-

fine the spacing between adjacent points on the

line to be W/n, where W is the size of a win-

dow of y-coordinates considered by the robot. Each

point in the server problem corresponds to a range

of lV/n y-coordinates for the navigation problem.

The “hole” (the point without a server) represents

the range of y-coordinates currently inhabited by

the robot.

We begin with W = n and start the hole at

the center of the line. Each time the robot sees

a column of obstacles, the robot notes all points

in the server problem corresponding to ranges

that are completely blocked by obstacles. It then

makes enough requests to the server problem on

those points so that for any reasonable (lazy) algo-

rithm [14] the hole no longer resides on such points.

The robot now moves in they direction to the range

corresponding to the new location of the hole. It

then moves an additional at most W/n + 1 dis-

tance to find a point in that range not blocked by

any obstacle, and from there goes forward in the

+Z direction to the next column. So, the distance

moved by the robot is at most the on-line server

cost, plus W/n + 1 for each unit moved in the +Z

direction.
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There is a randomized strategy for k servers on

k+ 1 equally-spaced points on the line that achieves

a competitiveness at most 2c~T against

the oblivious adversary [3]. The off-line server cost

in the above transformation is a lower bound on the

shortest path for the robot problem as lcmg as the

off-line cost is less than W. If the off-line server

cost reaches W, we then just double the window

width and restart the server algorithm, each point

now corresponding to a larger range of y values.

Note that the off-line server cost could be a bit

lower than the length of the shortest path since we

do not make requests to points corresponding to

y-value ranges only partially blocked by obstacles.

As mentioned previously, the on-line cost for the

robot is a most the on-line cost for the server prob-

lem, plus W/n + 1 for each unit advance in the z

direction. So, the total distance traveled by the——

robot is at most (Wf

2d(S)2c~ log n log log n

6. Non-convex

+ n) + wf2’@g”@10g” <
•1

Obstacles

When the obstacles are non-convex, the scene can

be a maze. In this case it is easy to see that P(S, n)

cannot be bounded by any function of n (the Eu-

clidean dist ante between s and t). Instead, we

prove a ratio between E(S) and d(S) as a function

of the total number of vertices in all the obstacles,

pq.

Theorem 10: No randomized algorithm achieves

a ratio better than [Vi/8.

Proof Outline: Consider the maze in Fig. 3. It

has lV[/8 passages that could lead from s to t. An

algorithm attempts various passages in turn, until

it finds the sole passage open to t.For any random-

ized algorithm, there is one passage whose expected

“time to attempt” is ~ (] V\/8)/2; this passage is

left open to t. The robot walks 2d(S) on every

failure before that attempt. U

The bound applies a fortiori to deterministic algo-

rithms. Rao et al. [19] give a deterministic algo-

rithm that explores a maze by building a map of

the scene, proceeding at each step to that unex-

plored vertex of the maze that is nearest to those

vertices that have already been visited. It is easy to

I

1

SiYm

II
1

I

Figure 3: A maze achieving the lower bound

show that this algorithm achieves a ratio of at most

2\Vl, matching the above lower bound to within a

constant. This algorithm is memory intensive, and

this may be a handicap when space is limited or

the scene changes quickly enough that a map is

not worth building. In the full paper we offer a

simple, memoryless randomized alternative.

7. Open Problems

What is the tight bound for the room problem

with oriented rectangular obstacles?

We use the “minimum thickness” requirement
— that each obstacle be large enough that a

unit circle can be inscribed in it — in bound-

ing the cost of Step 1 of our algorithm for the

room problem. Can we dispense with this re-

quirement for the case of oriented rect angu-

lar obstacles? (By Theorem 3, we know that

this cannot be done for non-oriented rectangu-

lar obstacles.) This may be possible if we can

give an algorithm achieving a ratio that is a

constant, independent of n.

Can a randomized algorithm for the room

problem beat deterministic algorithms?

Extend the sweep algorithm for the wall prob-

lem to handle arbitrary polygonal obstacles,
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and hence obtain an algorithm for point-to-

point navigation with these obstacles.

Extend all of the above to three dimensions.

Give an algorithm that achieves a prov-

ably good ratio for three-dimensional scenes

with non-convex obstacles (three-dimensional

mazes).
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