## Online Motion Planning, WT 13/14 <br> Exercise sheet 8 <br> University of Bonn, Inst. for Computer Science, Dpt. I

- You can hand in your written solutions until Tuesday, 17.12., 14:15, in room E.06.


## Exercise 22: Looking around a corner

Compute the competitive factors of the following strategies for looking around a corner, given by the vertices of the exploration paths they specify. Here the starting point of our robot is the origin $(0,0)$ of the coordinate system and the corner is at position $(0,1)$.
a) $P_{1}=(-1,0), P_{2}=(-1,2), P_{3}=(0,2)$.
b) $P_{1}=\left(-1, \frac{1}{2}\right), P_{2}=(0,1)$.
c) $P_{1}=\left(-\frac{\sqrt{2}}{4}, \frac{2-\sqrt{2}}{4}\right), P_{2}=\left(-\frac{1}{2}, \frac{1}{2}\right), P_{3}=\left(-\frac{\sqrt{2}}{4}, \frac{2+\sqrt{2}}{4}\right), P_{4}=(0,1)$.

In part $c$ ), it suffices

- to provide a function that computes, for a given angle $\gamma$ at the corner (see Figure 1), the distance the robot moves before it can look around the corner for the first time.
- to determine the distance moved by the optimal offline strategy, depending on $\gamma$.

Note that in this exercise we require that the additive constant, $\alpha$, in the definition of the competitive factor is 0 .

Please turn the page!


Figure 1: The angle $\gamma$.

## Exercise 23: Properties of the angle hull

Let for a polygon $P$ in the free plane $A(P)$ denote the length of the boundary of its angle hull, $B(P)$ denote the length of its boundary.
a) Give an example of a polygon $P$ with $A(P)=\frac{\pi}{2} B(P)$.
b) Give an example of a polygon $P$ with $A(P) \leq \frac{101}{100} B(P)$.
c) Show that for every $x \in \mathbb{R}$ there is a $P$ such that $B(P) \geq x A(P)$.

## Exercise 24: The kernel of an orthogonal polygon (4 points)

Give a strategy for a robot at start position $s$ in an unknown orthogonal simple polygon $P$ that reaches the kernel of $P$ on an optimal $L_{1}$-path, or reports after a finite amount of time that $\operatorname{ker}(P)$ is empty.

