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Embedding Finite Metric
Spaces into Normed Spaces

15.1 Introduction: Approximate Embeddings

We recall that a metric space is a pair (X, ρ), where X is a set and ρ: X×X →
[0,∞) is a metric, satisfying the following axioms: ρ(x, y) = 0 if and only if
x = y, ρ(x, y) = ρ(y, x), and ρ(x, y) + ρ(y, z) ≥ ρ(x, z).

A metric ρ on an n-point set X can be specified by an n×n matrix of
real numbers (actually

(n
2

)
numbers suffice because of the symmetry). Such

tables really arise, for example, in microbiology: X is a collection of bacterial
strains, and for every two strains, one can obtain their dissimilarity, which
is some measure of how much they differ. Dissimilarity can be computed
by assessing the reaction of the considered strains to various tests, or by
comparing their DNA, and so on.1 It is difficult to see any structure in a
large table of numbers, and so we would like to represent a given metric
space in a more comprehensible way.

For example, it would be very nice if we could assign to each x ∈ X a point
f(x) in the plane in such a way that ρ(x, y) equals the Euclidean distance of
f(x) and f(y). Such representation would allow us to see the structure of the
metric space: tight clusters, isolated points, and so on. Another advantage
would be that the metric would now be represented by only 2n real numbers,
the coordinates of the n points in the plane, instead of

(n
2

)
numbers as be-

fore. Moreover, many quantities concerning a point set in the plane can be
computed by efficient geometric algorithms, which are not available for an
arbitrary metric space.

1 There are various measures of dissimilarity, and not all of them yield a metric,
but many do.
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This sounds very good, and indeed it is too good to be generally true: It
is easy to find examples of small metric spaces that cannot be represented in
this way by a planar point set. One example is 4 points, each two of them
at distance 1; such points cannot be found in the plane. On the other hand,
they exist in 3-dimensional Euclidean space.

Perhaps less obviously, there are 4-point metric spaces that cannot be
represented (exactly) in any Euclidean space. Here are two examples:

The metrics on these 4-point sets are given by the indicated graphs; that is,
the distance of two points is the number of edges of a shortest path connecting
them in the graph. For example, in the second picture, the center has distance
1 from the leaves, and the mutual distances of the leaves are 2.

So far we have considered isometric embeddings. A mapping f : X → Y ,
where X is a metric space with a metric ρ and Y is a metric space with
a metric σ, is called an isometric embedding if it preserves distances, i.e.,
if σ(f(x), f(y)) = ρ(x, y) for all x, y ∈ X . But in many applications we
need not insist on preserving the distance exactly; rather, we can allow some
distortion, say by 10%. A notion of an approximate embedding is captured
by the following definition.

15.1.1 Definition (D-embedding of metric spaces). A mapping f : X →
Y , where X is a metric space with a metric ρ and Y is a metric space with
a metric σ, is called a D-embedding, where D ≥ 1 is a real number, if there
exists a number r > 0 such that for all x, y ∈ X ,

r · ρ(x, y) ≤ σ(f(x), f(y)) ≤ D · r · ρ(x, y).

The infimum of the numbers D such that f is a D-embedding is called the
distortion of f .

Note that this definition permits scaling of all distances in the same ratio
r, in addition to the distortion of the individual distances by factors between
1 and D. If Y is a Euclidean space (or a normed space), we can rescale the
image at will, and so we can choose the scaling factor r at our convenience.

Mappings with a bounded distortion are sometimes called bi-Lipschitz
mappings. This is because the distortion of f can be equivalently defined using
the Lipschitz constants of f and of the inverse mapping f−1. Namely, if we
define the Lipschitz norm of f by ‖f‖Lip = sup{σ(f(x), f(y))/ρ(x, y): x, y ∈
X, x (= y}, then the distortion of f equals ‖f‖Lip · ‖f−1‖Lip.

We are going to study the possibility of D-embedding of n-point metric
spaces into Euclidean spaces and into various normed spaces. As usual, we
cover only a small sample of results. Many of them are negative, showing
that certain metric spaces cannot be embedded too well. But in Section 15.2
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we start on an optimistic note: We present a surprising positive result of
considerable theoretical and practical importance. Before that, we review a
few definitions concerning #p-spaces.

The spaces !p and !d
p. For a point x ∈ Rd and p ∈ [1,∞), let

‖x‖p =
( d∑

i=1

|xi|p
)1/p

denote the #p-norm of x. Most of the time, we will consider the case p = 2,
i.e., the usual Euclidean norm ‖x‖2 = ‖x‖. Another particularly important
case is p = 1, the #1-norm (sometimes called the Manhattan distance). The
#∞-norm, or maximum norm, is given by ‖x‖∞ = maxi |xi|. It is the limit of
the #p-norms as p → ∞.

Let #dp denote the space Rd equipped with the #p-norm. In particular, we
write #d2 in order to stress that we mean Rd with the usual Euclidean norm.

Sometimes we are interested in embeddings into some space #dp, with p
given but without restrictions on the dimension d; for example, we can ask
whether there exists some Euclidean space into which a given metric space
embeds isometrically. Then it is convenient to speak about #p, which is the
space of all infinite sequences x = (x1, x2, . . .) of real numbers with ‖x‖p < ∞,

where ‖x‖p =
(∑∞

i=1 |xi|p
)1/p

. In particular, #2 is the (separable) Hilbert
space. The space #p contains each #dp isometrically, and it can be shown that
any finite metric space isometrically embeddable into #p can be isometrically
embedded into #dp for some d. (In fact, every n-point subspace of #p can be
isometrically embedded into #dp with d ≤

(
n
2

)
; see Exercise 15.5.2.)

Although the spaces #p are interesting mathematical objects, we will not
really study them; we only use embeddability into #p as a convenient short-
hand for embeddability into #dp for some d.

Bibliography and remarks. This chapter aims at providing an
overview of important results concerning low-distortion embeddings
of finite metric spaces. The scope is relatively narrow, and we almost
do not discuss even closely related areas, such as isometric embeddings.
A survey with a similar range is Indyk and Matoušek [IM04], and one
mainly focused on algorithmic aspects is Indyk [Ind01]; however, both
are already outdated because of a very rapid development of the field.

For studying approximate embeddings, it may certainly be help-
ful to understand isometric embeddings, and here extensive theory is
available. For example, several ingenious characterizations of isometric
embeddability into #2 can be found in old papers of Schoenberg (e.g.,
[Sch38], building on the work of mathematicians like Menger and von
Neumann). A book devoted mainly to isometric embeddings, and em-
beddings into #1 in particular, is Deza and Laurent [DL97].
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Another closely related area is the investigation of bi-Lipschitz
maps, usually (1+ε)-embeddings with ε > 0 small, defined on an open
subset of a Euclidean space (or a Banach space) and being local home-
omorphisms. These mappings are called quasi-isometries (the defini-
tion of a quasi-isometry is slightly more general, though), and the
main question is how close to an isometry such a mapping has to be,
in terms of the dimension and ε; see Benyamini and Lindenstrauss
[BL99], Chapters 14 and 15, for an introduction.

Exercises

1. Consider the two 4-point examples presented above (the square and the
star); prove that they cannot be isometrically embedded into #22. 2 Can
you determine the minimum necessary distortion for embedding into #22?

2. (a) Prove that a bijective mapping f between metric spaces is a D-
embedding if and only if ‖f‖Lip · ‖f−1‖Lip ≤ D. 1

(b) Let (X, ρ) be a metric space, |X | ≥ 3. Prove that the distortion
of an embedding f : X → Y , where (Y, σ) is a metric space, equals the
supremum of the factors by which f “spoils” the ratios of distances; that
is,

sup
{
σ(f(x), f(y))/σ(f(z), f(t))

ρ(x, y)/ρ(z, t)
: x, y, z, t ∈ X, x (= y, z (= t

}
.

2

15.2 The Johnson–Lindenstrauss Flattening Lemma

It is easy to show that there is no isometric embedding of the vertex set
V of an n-dimensional regular simplex into a Euclidean space of dimension
k < n. In this sense, the (n+1)-point set V ⊂ #n2 is truly n-dimensional.
The situation changes drastically if we do not insist on exact isometry: As
we will see, the set V , and any other (n+1)-point set in #n2 , can be almost
isometrically embedded into #k2 with k = O(log n) only!

15.2.1 Theorem (Johnson–Lindenstrauss flattening lemma). Let X
be an n-point set in a Euclidean space (i.e., X ⊂ #2), and let ε ∈ (0, 1]
be given. Then there exists a (1+ε)-embedding of X into #k2 , where k =
O(ε−2 log n).

This result shows that any metric question about n points in #n2 can
be considered for points in #O(log n)

2 , if we do not mind a distortion of the
distances by at most 10%, say. For example, to represent n points of #n2 in
a computer, we need to store n2 numbers. To store all of their distances, we
need about n2 numbers as well. But by the flattening lemma, we can store



15.2 The Johnson–Lindenstrauss Flattening Lemma 369

only O(n log n) numbers and still reconstruct any of the n2 distances with
error at most 10%.

Various proofs of the flattening lemma, including the one below, provide
efficient randomized algorithms that find the almost isometric embedding
into #k2 quickly. Numerous algorithmic applications have recently been found:
in fast clustering of high-dimensional point sets, in approximate searching
for nearest neighbors, in approximate multiplication of matrices, and also in
purely graph-theoretic problems, such as approximating the bandwidth of a
graph or multicommodity flows.

The proof of Theorem 15.2.1 is based on the following lemma, of inde-
pendent interest.

15.2.2 Lemma (Concentration of the length of the projection). For
a unit vector x ∈ Sn−1, let

f(x) =
√

x2
1 + x2

2 + · · · + x2
k

be the length of the projection of x on the subspace L0 spanned by the first
k coordinates. Consider x ∈ Sn−1 chosen at random. Then f(x) is sharply
concentrated around a suitable number m = m(n, k):

P[f(x) ≥ m + t] ≤ 2e−t2n/2 and P[f(x) ≤ m − t] ≤ 2e−t2n/2,

where P is the uniform probability measure on Sn−1. For n larger than a

suitable constant and k ≥ 10 lnn, we have m ≥ 1
2

√
k
n .

In the lemma, the k-dimensional subspace is fixed and x is random. Equiv-
alently, if x is a fixed unit vector and L is a random k-dimensional subspace
of #n2 (as introduced in Section 14.3), the length of the projection of x on L
obeys the bounds in the lemma.

Proof of Lemma 15.2.2. The orthogonal projection p: #n2 → #k2 given by
(x1, . . . , xn) +→ (x1, . . . , xk) is 1-Lipschitz, and so f is 1-Lipschitz as well.
Lévy’s lemma (Theorem 14.3.2) gives the tail estimates as in the lemma
with m = med(f). It remains to establish the lower bound for m. It is not
impossibly difficult to do it by elementary calculation (we need to find the
measure of a simple region on Sn−1). But we can also avoid the calculation
by a trick combined with a general measure concentration result.

For random x ∈ Sn−1, we have 1 = E
[
‖x‖2

]
=

∑n
i=1 E

[
x2

i

]
. By symme-

try, E
[
x2

i

]
= 1

n , and so E
[
f2

]
= k

n . We now show that, since f is tightly
concentrated, E

[
f2

]
cannot be much larger than m2, and so m is not too

small.
For any t ≥ 0, we can estimate

k

n
= E

[
f2

]
≤ P[f ≤ m + t] · (m + t)2 + P[f > m + t] · max

x
(f(x)2)

≤ (m + t)2 + 2e−t2n/2.
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Let us set t =
√

k/5n. Since k ≥ 10 lnn, we have 2e−t2n/2 ≤ 2
n , and from

the above inequality we calculate m ≥
√

(k−2)/n − t ≥ 1
2

√
k/n.

Let us remark that a more careful calculation shows that m =
√

k/n +
O( 1√

n
) for all k. !

Proof of the flattening lemma (Theorem 15.2.1). We may assume
that n is sufficiently large. Let X ⊂ #n2 be a given n-point set. We set k =
200ε−2 ln n (the constant can be improved). If k ≥ n, there is nothing to
prove, so we assume k < n. Let L be a random k-dimensional linear subspace
of #n2 (obtained by a random rotation of L0).

The chosen L is a copy of #k2 . We let p: #n2 → L be the orthogonal projection
onto L. Let m be the number around which ‖p(x)‖ is concentrated, as in
Lemma 15.2.2. We prove that for any two distinct points x, y ∈ #n2 , the
condition

(1 − ε
3 )m ‖x − y‖ ≤ ‖p(x) − p(y)‖ ≤ (1 + ε

3 )m ‖x − y‖ (15.1)

is violated with probability at most n−2. Since there are fewer than n2 pairs of
distinct x, y ∈ X , there exists some L such that (15.1) holds for all x, y ∈ X .
In such a case, the mapping p is a D-embedding of X into #k2 with D ≤
1+ε/3
1−ε/3 < 1+ε (for ε ≤ 1).

Let x and y be fixed. First we reformulate the condition (15.1). Let u =
x− y; since p is a linear mapping, we have p(x)−p(y) = p(u), and (15.1) can
be rewritten as (1− ε

3 )m ‖u‖ ≤ ‖p(u)‖ ≤ (1+ ε
3 )m ‖u‖. This is invariant under

scaling, and so we may suppose that ‖u‖ = 1. The condition thus becomes
∣∣∣‖p(u)‖ − m

∣∣∣ ≤ ε
3m. (15.2)

By Lemma 15.2.2 and the remark following it, the probability of violating
(15.2), for u fixed and L random, is at most

4e−ε2m2n/18 ≤ 4e−ε2k/72 < n−2.

This proves the Johnson–Lindenstrauss flattening lemma. !

Alternative proofs. There are several variations of the proof, which are
more suitable from the computational point of view (if we really want to
produce the embedding into #O(log n)

2 ).
In the above proof we project the set X on a random k-dimension-

al subspace L. Such an L can be chosen by selecting an orthonormal ba-
sis (b1, b2, . . . , bk), where b1, . . . , bk is a random k-tuple of unit orthogo-
nal vectors. The coordinates of the projection of x to L are the scalar
products 〈b1, x〉, . . . , 〈bk, x〉. It turns out that the condition of orthogonal-
ity of the bi can be dropped. That is, we can pick unit vectors b1, . . . , bk ∈
Sn−1 independently at random and define a mapping p: X → #k2 by x +→
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(〈b1, x〉, . . . , 〈bk, x〉). Using suitable concentration results, one can verify that
p is a (1+ε)-embedding with probability close to 1. The procedure of picking
the bi is computationally much simpler.

Another way is to choose each component of each bi from the normal
distribution N(0, 1), all the nk choices of the components being independent.
The distribution of each bi in Rn is rotationally symmetric (as was mentioned
in Section 14.1). Therefore, for every fixed u ∈ Sn−1, the scalar product 〈bi, u〉
also has the normal distribution N(0, 1) and ‖p(u)‖2, the squared length of
the image, has the distribution of

∑k
i=1 Z2

i , where the Zi are independent
N(0, 1). This is the well known Chi-Square distribution with k degrees of
freedom, and a strong concentration result analogous to Lemma 15.2.2 can
be found in books on probability theory (or derived from general measure-
concentration results for the Gaussian measure or from Chernoff-type tail
estimates). A still different method, particularly easy to implement but with
a more difficult proof, uses independent random vectors bi ∈ {−1, 1}n.

Bibliography and remarks. The flattening lemma is from John-
son and Lindenstrauss [JL84]. They were interested in the following
question: Given a metric space Y , an n-point subspace X ⊂ Y , and a
1-Lipschitz mapping f : X → #2, what is the smallest C = C(n) such
that there is always a C-Lipschitz mapping f̄ : Y → #2 extending f?
They obtained the upper bound C = O(

√
log n ), together with an

almost matching lower bound.
The alternative proof of the flattening lemma using independent

normal random variables was given by Indyk and Motwani [IM98]. A
streamlined exposition of a similar proof can be found in Dasgupta and
Gupta [DG03]. For more general concentration results and techniques
using the Gaussian distribution see, e.g., [Pis89], [MS86].

Achlioptas [Ach03] proved that the components of the bi can also
be chosen as independent uniform ±1 random variables. Here the dis-
tribution of 〈bi, u〉 does depend on u but the proof shows that for every
u ∈ Sn−1, the concentration of ‖p(u)‖2 is at least as strong as in the
case of the normally distributed bi. This is established by analyzing
higher moments of the distribution.

The sharpest known upper bound on the dimension needed for a
(1+ε)-embedding of an n-point Euclidean metric is 4

ε2 (1 + o(1)) ln n,
where o(1) is with respect to ε → 0 [IM98], [DG03], [Ach03]. The
main term is optimal for the current proof method; see Exercises 3
and 15.3.4.

The Johnson–Lindenstrauss flattening lemma has been applied
in many algorithms, both in theory and practice; see the survey
[Ind01] or, for example, Kleinberg [Kle97], Indyk and Motwani [IM98],
Borodin, Ostrovsky, and Rabani [BOR99].
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Exercises

1. Let x, y ∈ Sn−1 be two points chosen independently and uniformly at
random. Estimate their expected (Euclidean) distance, assuming that n
is large. 3

2. Let L ⊆ Rn be a fixed k-dimensional linear subspace and let x be a
random point of Sn−1. Estimate the expected distance of x from L, as-
suming that n is large. 3

3. (Lower bound for the flattening lemma)
(a) Consider the n+1 points 0, e1, e2, . . . , en ∈ Rn (where the ei are the
vectors of the standard orthonormal basis). Check that if these points
with their Euclidean distances are (1+ε)-embedded into #k2 , then there
exist unit vectors v1, v2, . . . , vn ∈ Rk with |〈vi, vj〉| ≤ 100ε for all i (= j
(the constant can be improved). 2

(b) Let A be an n×n symmetric real matrix with aii = 1 for all i and
|aij | ≤ n−1/2 for all j, j, i (= j. Prove that A has rank at least n

2 . 4

(c) Let A be an n×n real matrix of rank d, let k be a positive integer,
and let B be the n×n matrix with bij = ak

ij . Prove that the rank of B is
at most

(
k+d

k

)
. 4

(d) Using (a)–(c), prove that if the set as in (a) is (1+ε)-embedded into
#k2 , where 100n−1/2 ≤ ε ≤ 1

2 , then

k = Ω
(

1
ε2 log 1

ε

log n

)
.

3

This proof is due to Alon (unpublished manuscript, Tel Aviv University).

15.3 Lower Bounds By Counting

In this section we explain a construction providing many “essentially dif-
ferent” n-point metric spaces, and we derive a general lower bound on the
minimum distortion required to embed all these spaces into a d-dimensional
normed space. The key ingredient is a construction of graphs without short
cycles.

Graphs without short cycles. The girth of a graph G is the length of
the shortest cycle in G. Let m(#, n) denote the maximum possible number
of edges of a simple graph on n vertices containing no cycle of length # or
shorter, i.e., with girth at least #+1.

We have m(2, n) =
(n
2

)
, since the complete graph Kn has girth 3. Next,

m(3, n) is the maximum number of edges of a triangle-free graph on n vertices,
and it equals 0n

2 1 · 2n
2 3 by Turán’s theorem; the extremal example is the

complete bipartite graph K$n/2%,&n/2'. Another simple observation is that for
all k, m(2k+1, n) ≥ 1

2m(2k, n). This is because any graph G has a bipartite
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subgraph H that contains at least half of the edges of G.2 So it suffices to
care about even cycles and to consider # even, remembering that the bounds
for # = 2k and # = 2k+1 are almost the same up to a factor of 2.

Here is a simple general upper bound on m(#, n).

15.3.1 Lemma. For all n and #,

m(#, n) ≤ n1+1/$"/2% + n.

Proof. It suffices to consider even # = 2k. Let G be a graph with n vertices
and m = m(2k, n) edges. The average degree is d̄ = 2m

n . There is a subgraph
H ⊆ G with minimum degree at least δ = 1

2 d̄. Indeed, by deleting a vertex
of degree smaller than δ the average degree does not decrease, and so H can
be obtained by a repeated deletion of such vertices.

Let v0 be a vertex of H . The crucial observation is that, since H has no
cycle of length 2k or shorter, the subgraph of H induced by all vertices at
distance at most k from v0 contains a tree of height k like this:

v0

The root has δ successors and the other inner vertices of the tree have δ − 1
successors (H may contain additional edges connecting the leaves of the tree).
The number of vertices in this tree is at least 1+δ+δ(δ−1)+· · ·+δ(δ−1)k−1 ≥
(δ−1)k, and this is no more than n. So δ ≤ n1/k+1 and m = 1

2 d̄n = δn ≤
n1+1/k + n. !

This simple argument yields essentially the best known upper bound.
But it was asymptotically matched only for a few small values of #, namely,
for # ∈ {4, 5, 6, 7, 10, 11}. For m(4, n) and m(5, n), we need bipartite graphs
without K2,2; these were briefly discussed in Section 4.5, and we recall that
they can have up to n3/2 edges, as is witnessed by the finite projective plane.
The remaining listed cases use clever algebraic constructions.

For the other #, the record is also held by algebraic constructions; they
are not difficult to describe, but proving that they work needs quite deep
mathematics. For all # ≡ 1 (mod4) (and not on the list above), they yield
m(#, n) = Ω(n1+4/(3"−7)), while for # ≡ 3 (mod 4), they lead to m(#, n) =
Ω(n1+4/(3"−9)).

Here we prove a weaker but simple lower bound by the probabilistic
method.
2 To see this, divide the vertices of G into two classes A and B arbitrarily, and

while there is a vertex in one of the classes having more neighbors in its class
than in the other class, move such a vertex to the other class; the number of
edges between A and B increases in each step. For another proof, assign each
vertex randomly to A or B and check that the expected number of edges between
A and B is 1

2 |E(G)|.
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15.3.2 Lemma. For all # ≥ 3 and n ≥ 2, we have

m(#, n) ≥ 1
9 n1+1/("−1).

Of course, for odd # we obtain an Ω(n1+1/("−2)) bound by using the lemma
for #−1.

Proof. First we note that we may assume n ≥ 4"−1 ≥ 16, for otherwise, the
bound in the lemma is verified by a path, say.

We consider the random graph G(n, p) with n vertices, where each of the(
n
2

)
possible edges is present with probability p, 0 < p < 1, and these choices

are mutually independent. The value of p is going to be chosen later.
Let E be the set of edges of G(n, p) and let F ⊆ E be the edges contained

in cycles of length # or shorter. By deleting all edges of F from G(n, p), we
obtain a graph with no cycles of length # or shorter. If we manage to show,
for some m, that the expectation E[|E \ F |] is at least m, then there is an
instance of G(n, p) with |E \ F | ≥ m, and so there exists a graph with n
vertices, m edges, and of girth greater than #.

We have E[|E|] =
(
n
2

)
p. What is the probability that a fixed pair e =

{u, v} of vertices is an edge of F? First, e must be an edge of G(n, p), which
has probability p, and second, there must be path of length between 2 and
#−1 connecting u and v. The probability that all the edges of a given potential
path of length k are present is pk, and there are fewer than nk−1 possible
paths from u to v of length k. Therefore, the probability of e ∈ F is at most∑"−1

k=2 pk+1nk−1, which can be bounded by 2p"n"−2, provided that np ≥ 2.
Then E[|F |] ≤

(n
2

)
· 2p"n"−2, and by the linearity of expectation, we have

E[|E \ F |] = E[|E|] − E[|F |] ≥
(n
2

)
p

(
1 − 2p"−1n"−2

)
.

Now, we maximize this expression as a function of p; a somewhat rough but
simple choice is p = n1/(!−1)

2n , which leads to E[|E \ F |] ≥ 1
9n1+1/("−1) (the

constant can be improved somewhat). The assumption np ≥ 2 follows from
n ≥ 4"−1. Lemma 15.3.2 is proved. !

There are several ways of proving a lower bound for m(#, n) similar to that
in Lemma 15.3.2, i.e., roughly n1+1/"; one of the alternatives is indicated in
Exercise 1 below. But obtaining a significantly better bound in an elementary
way and improving on the best known bounds (of roughly n1+4/3") remain
challenging open problems.

We now use the knowledge about graphs without short cycles in lower
bounds for distortion.

15.3.3 Proposition (Distortion versus dimension). Let Z be a d-di-
mensional normed space, such as some #dp, and suppose that all n-point metric
spaces can be D-embedded into Z. Let # be an integer with D < # ≤ 5D (it
is essential that # be strictly larger than D, while the upper bound is only
for technical convenience). Then
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d ≥ 1
log2

16D"
"−D

· m(#, n)
n

.

Proof. Let G be a graph with vertex set V = {v1, v2, . . . , vn} and with
m = m(#, n) edges. Let G denote the set of all subgraphs H ⊆ G obtained
from G by deleting some edges (but retaining all vertices). For each H ∈ G,
we define a metric ρH on the set V by ρH(u, v) = min(#, dH(u, v)), where
dH(u, v) is the length of a shortest path connecting u and v in H .

The idea of the proof is that G contains many essentially different metric
spaces, and if the dimension of Z were small, then there would not be suffi-
ciently many essentially different placements of n points in Z.

Suppose that for every H ∈ G there exists a D-embedding fH : (V, ρH) →
Z. By rescaling, we make sure that 1

D ρH(u, v) ≤ ‖fH(u) − fH(v)‖Z ≤
ρH(u, v) for all u, v ∈ V . We may also assume that the images of all points
are contained in the #-ball BZ(0, #) = {x ∈ Z: ‖x‖Z ≤ #}.

Set β = 1
4 ( "

D−1). We have 0 < β ≤ 1. Let N be a β-net in BZ(0, #). The
notion of β-net was defined above Lemma 13.1.1, and that lemma showed that
a β-net in the (d−1)-dimensional Euclidean sphere has cardinality at most
( 4
β )d. Exactly the same volume argument proves that in our case |N | ≤ (4"

β )d.
For every H ∈ G, we define a new mapping gH : V → N by letting gH(v)

be the nearest point to fH(v) in N (ties resolved arbitrarily). We prove that
for distinct H1, H2 ∈ G, the mappings gH1 and gH2 are distinct.

The edge sets of H1 and H2 differ, so we can choose a pair u, v of vertices
that form an edge in one of them, say in H1, and not in the other one (H2).
We have ρH1(u, v) = 1, while ρH2(u, v) = #, for otherwise, a u–v path in H2

of length smaller than # and the edge {u, v} would induce a cycle of length
at most # in G. Thus

‖gH1(u) − gH1(v)‖Z < ‖fH1(u) − fH1(v)‖Z + 2β ≤ 1 + 2β

and

‖gH2(u) − gH2(v)‖Z > ‖fH2(u) − fH2(v)‖Z − 2β ≥ #

D
− 2β = 1 + 2β.

Therefore, gH1(u) (= gH2(u) or gH1(v) (= gH2(v).
We have shown that there are at least |G| distinct mappings V → N . The

number of all mappings V → N is |N |n, and so

|G| = 2m ≤ |N |n ≤
(

4#
β

)nd

.

The bound in the proposition follows by calculation. !

15.3.4 Corollary (“Incompressibility” of general metric spaces). If
Z is a normed space such that all n-point metric spaces can be D-embedded
into Z, where D > 1 is considered fixed and n → ∞, then we have



376 Chapter 15: Embedding Finite Metric Spaces into Normed Spaces

• dimZ = Ω(n) for D < 3,
• dimZ = Ω(

√
n ) for D < 5,

• dimZ = Ω(n1/3) for D < 7.

This follows from Proposition 15.3.3 by substituting the asymptotically
optimal bounds for m(3, n), m(5, n), and m(7, n). The constant of propor-
tionality in the first bound goes to 0 as D → 3, and similarly for the other
bounds.

The corollary shows that there is no normed space of dimension signifi-
cantly smaller than n in which one could represent all n-point metric spaces
with distortion smaller than 3. So, for example, one cannot save much space
by representing a general n-point metric space by the coordinates of points
in some suitable normed space.

It is very surprising that, as we will see later, it is possible to 3-embed all
n-point metric spaces into a particular normed space of dimension close to√

n. So the value 3 for the distortion is a real threshold! Similar thresholds
occur at the values 5 and 7. Most likely this continues for all odd integers D,
but we cannot prove this because of the lack of tight bounds for the number
of edges in graphs without short cycles.

Another consequence of Proposition 15.3.3 concerns embedding into Eu-
clidean spaces, without any restriction on dimension.

15.3.5 Proposition (Lower bound on embedding into Euclidean
spaces). For all n, there exist n-point metric spaces that cannot be em-
bedded into #2 (i.e., into any Euclidean space) with distortion smaller than
c log n/ log log n, where c > 0 is a suitable positive constant.

Proof. If an n-point metric space is D-embedded into #n2 , then by the
Johnson–Lindenstrauss flattening lemma, it can be (2D)-embedded into #d2
with d ≤ C log n for some specific constant C.

For contradiction, suppose that D ≤ c1 log n/ log log n with a sufficiently
small c1 > 0. Set # = 4D and assume that # is an integer. By Lemma 15.3.2,
we have m(#, n) ≥ 1

9n1+1/("−1) ≥ C1n logn, where C1 can be made as large as
we wish by adjusting c1. So Proposition 15.3.3 gives d ≥ C1

5 log n. If C1 > 5C,
we have a contradiction. !

In the subsequent sections the lower bound in Proposition 15.3.5 will be
improved to Ω(log n) by a completely different method, and then we will see
that this latter bound is tight.

Bibliography and remarks. The problem of constructing small
graphs with given girth and minimum degree has a rich history; see,
e.g., Bollobás [Bol85] for most of the earlier results.

In the proof of Lemma 15.3.1 we have derived that any graph of
minimum degree δ and girth 2k+1 has at least 1 + δ

∑k−1
i=0 (δ−1)i ver-

tices, and a similar lower bound for girth 2k is 2
∑k−1

i=0 (δ−1)i. Graphs
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attaining these bounds (they are called Moore graphs for odd girth
and generalized polygon graphs for even girth) are known to exist only
in very few cases (see, e.g., Biggs [Big93] for a nice exposition). Alon,
Hoory, and Linial [AHL02] proved by a neat argument using random
walks that the same formulas still bound the number of vertices from
below if δ is the average degree (rather than minimum degree) of the
graph. But none of this helps improve the bound on m(#, n) by any
substantial amount.

The proof of Lemma 15.3.2 is a variation on well known proofs by
Erdős.

The constructions mentioned in the text attaining the asymptot-
ically optimal value of m(#, n) for several small # are due to Benson
[Ben66] (constructions with similar properties appeared earlier in Tits
[Tit59], where they were investigated for different reasons). As for the
other #, graphs with the parameters given in the text were constructed
by Lazebnik, Ustimenko, and Woldar [LUW95], [LUW96] by algebraic
methods, improving on earlier bounds (such as those in Lubotzky,
Phillips, Sarnak [LPS88]; also see the notes to Section 15.5).

Proposition 15.3.5 and the basic idea of Proposition 15.3.3 were
invented by Bourgain [Bou85]. The explicit use of graphs without
short cycles and the detection of the “thresholds” in the behavior
of the dimension as a function of the distortion appeared in Matoušek
[Mat96b].

Proposition 15.3.3 implies that a normed space that should accom-
modate all n-point metric spaces with a given small distortion must
have large dimension. But what if we consider just one n-point metric
space M , and we ask for the minimum dimension of a normed space Z
such that M can be D-embedded into Z? Here Z can be “customized”
to M , and the counting argument as in the proof of Proposition 15.3.3
cannot work. By a nice different method, using the rank of certain
matrices, Arias-de-Reyna and Rodŕıguez-Piazza [AR92] proved that
for each D < 2, there are n-point metric spaces that do not D-embed
into any normed space of dimension below c(D)n, for some c(D) > 0.
In [Mat96b] their technique was extended, and it was shown that for
any D > 1, the required dimension is at least c(0D1)n1/2$D%, so for a
fixed D it is at least a fixed power of n. The proof again uses graphs
without short cycles. An interesting open problem is whether the pos-
sibility of selecting the norm in dependence on the metric can ever
help substantially. For example, we know that if we want one normed
space for all n-point metric spaces, then a linear dimension is needed
for all distortions below 3. But the lower bounds in [AR92], [Mat96b]
for a customized normed space force linear dimension only for distor-
tion D < 2. Can every n-point metric space M be 2.99-embedded, say,
into some normed space Z = Z(M) of dimension o(n)?
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We have examined the tradeoff between dimension and distortion
when the distortion is a fixed number. One may also ask for the min-
imum distortion if the dimension d is fixed; this was considered in
Matoušek [Mat90b]. For fixed d, all #p-norms on Rd are equivalent
up to a constant, and so it suffices to consider embeddings into #d2.
Considering the n-point metric space with all distances equal to 1,
a simple volume argument shows that an embedding into #d2 has dis-
tortion at least Ω(n1/d). The exponent can be improved by a factor
of roughly 2; more precisely, for any d ≥ 1, there exist n-point met-
ric spaces requiring distortion Ω

(
n1/$(d+1)/2%) for embedding into #d2

(these spaces are even isometrically embeddable into #d+1
2 ). They are

obtained by taking a q-dimensional simplicial complex that cannot
be embedded into R2q (a Van Kampen–Flores complex; for modern
treatment see, e.g., [Sar91] or [Živ97]), considering a geometric real-
ization of such a complex in R2q+1, and filling it with points uniformly
(taking an η-net within it for a suitable η, in the metric sense); see
Exercise 3 below for the case q = 1. For d = 1 and d = 2, this bound
is asymptotically tight, as can be shown by an inductive argument
[Mat90b]. It is also almost tight for all even d. An upper bound of
O(n2/d log3/2 n) for the distortion is obtained by first embedding the
considered metric space into #n2 (Theorem 15.8.1), and then project-
ing on a random d-dimensional subspace; the analysis is similar to
the proof of the Johnson–Lindenstrauss flattening lemma. It would
be interesting to close the gap for odd d ≥ 3; the case d = 1 suggests
that perhaps the lower bound might be the truth. It is also rather puz-
zling that the (suspected) bound for the distortion for fixed dimension,
D ≈ n1/$(d+1)/2%, looks optically similar to the (suspected) bound for
dimension given the distortion (Corollary 15.3.4), d ≈ n1/$(D+1)/2%. Is
this a pure coincidence, or is it trying to tell us something?

Exercises

1. (Erdős–Sachs construction) This exercise indicates an elegant proof, by
Erdős and Sachs [ES63], of the existence of graphs without short cycles
whose number of edges is not much smaller than in Lemma 15.3.2 and
that are regular. Let # ≥ 3 and δ ≥ 3.
(a) (Starting graph) For all δ and #, construct a finite δ-regular graph
G(δ, #) with no cycles of length # or shorter; the number of vertices does
not matter. One possibility is by double induction: Construct G(δ+1, #)
using G(δ, #) and G(δ′, #−1) with a suitable δ′. 4

(b) Let G be a δ-regular graph of girth at least #+1 and let u and v be
two vertices of G at distance at least #+2. Delete them together with
their incident edges, and connect their neighbors by a matching:
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u

v

"

Check that the resulting graph still does not contain any cycle of length
at most #. 2

(c) Show that starting with a graph as in (a) and reducing it by the
operations as in (b), we arrive at a δ-regular graph of girth #+1 and with
at most 1 + δ + δ(δ−1) + · · · + δ(δ−1)" vertices. What is the resulting
asymptotic lower bound for m(n, #), with # fixed and n → ∞? 1

2. (Sparse spanners) Let G be a graph with n vertices and with positive real
weights on edges, which represent the edge lengths. A subgraph H of G is
called a t-spanner of G if the distance of any two vertices u, v in H is no
more than t times their distance in G (both the distances are measured
in the shortest-path metric). Using Lemma 15.3.1, prove that for every
G and every integer t ≥ 2, there exists a t-spanner with O

(
n1+1/$t/2%)

edges. 4

3. Let Gn denote the graph arising from K5, the complete graph on 5 ver-
tices, by subdividing each edge n−1 times; that is, every two of the orig-
inal vertices of K5 are connected by a path of length n. Prove that the
vertex set of Gn, considered as a metric space with the graph-theoretic
distance, cannot be embedded into the plane with distortion smaller than
const · n. 3

4. (Another lower bound for the flattening lemma)
(a) Given ε ∈ (0, 1

2 ) and n sufficiently large in terms of ε, construct a
collection V of ordered n-tuples of points of #n2 such that the distance of
every two points in each V ∈ V is between two suitable constants, no two
V (= V ′ ∈ V can have the same (1+ε)-embedding (that is, there are i, j
such that the distances between the ith point and the jth point in V and
in V ′ differ by a factor of at least 1+ε), and log |V| = Ω(ε−2n logn). 4

(b) Use (a) and the method of this section to prove a lower bound of
Ω( 1

ε2 log 1
ε

log n) for the dimension in the Johnson–Lindenstrauss flatten-
ing lemma. 2

15.4 A Lower Bound for the Hamming Cube

We have established the existence of n-point metric spaces requiring the
distortion close to log n for embedding into #2 (Proposition 15.3.5), but we
have not constructed any specific metric space with this property. In this
section we prove a weaker lower bound, only Ω(

√
log n ), but for a specific

and very simple space: the Hamming cube. Later on, we extend the proof
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method and exhibit metric spaces with Ω(log n) lower bound, which turns
out to be optimal. We recall that Cm denotes the space {0, 1}m with the
Hamming (or #1) metric, where the distance of two 0/1 sequences is the
number of places where they differ.

15.4.1 Theorem. Let m ≥ 2 and n = 2m. Then there is no D-embedding
of the Hamming cube Cm into #2 with D <

√
m =

√
log2 n. That is, the

natural embedding, where we regard {0, 1}m as a subspace of #m2 , is optimal.

The reader may remember, perhaps with some dissatisfaction, that at the
beginning of this chapter we mentioned the 4-cycle as an example of a metric
space that cannot be isometrically embedded into any Euclidean space, but
we gave no reason. Now, we are obliged to rectify this, because the 4-cycle is
just the 2-dimensional Hamming cube.

The intuitive reason why the 4-cycle cannot be embedded isometrically
is that if we embed the vertices so that the edges have the right length,
then at least one of the diagonals is too short. We make this precise using
a notation slightly more complicated than necessary, in anticipation of later
developments.

Let V be a finite set, let ρ be a metric on V , and let E, F ⊆
(
V
2

)

be nonempty sets of pairs of points of V . As our running example, V =
{v1, . . . , v4} is the set of vertices of the 4-cycle, ρ is the graph metric on
it, E = {{v1, v2}, {v2, v3}, {v3, v4}, {v4, v1}} are the edges, and F =
{{v1, v3}, {v2, v4}} are the diagonals.

E

F
v1 v2

v3v4

Let us introduce the abbreviated notation

ρ2(E) =
∑

{u,v}∈E

ρ(u, v)2,

and let us write

ave2(ρ, E) =

√
1
|E| ρ

2(E).

for the quadratic average of ρ over all pairs in E. We consider the ratio

RE,F (ρ) =
ave2(ρ, F )
ave2(ρ, E)

.

For our 4-cycle, RE,F (ρ) is a kind of ratio of “diagonals to edges” but with
quadratic averages of distances, and it equals 2 (right?).

Next, let f : V → #d2 be a D-embedding of the considered metric space into
a Euclidean space. This defines another metric σ on V : σ(u, v) = ‖f(u) −
f(v)‖. With the same E and F , let us now look at the ratio RE,F (σ).
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If f is a D-embedding, then RE,F (σ) ≥ RE,F (ρ)/D. But according to the
idea mentioned above, in any embedding of the 4-cycle into a Euclidean space,
the diagonals are always too short, and so RE,F (σ) can be expected to be
smaller than 2 in this case. This is confirmed by the following lemma, which
(with xi = f(vi)) shows that σ2(F ) ≤ σ2(E), which gives RE,F (σ) ≤

√
2 and

therefore, D ≥
√

2.

15.4.2 Lemma (Short diagonals lemma). Let x1, x2, x3, x4 be arbitrary
points in a Euclidean space. Then

‖x1 −x3‖2 +‖x2 −x4‖2 ≤ ‖x1 −x2‖2 +‖x2 −x3‖2 +‖x3 −x4‖2 +‖x4 −x1‖2.

Proof. Four points can be assumed to lie in R3, so one could start some
stereometric calculations. But a better way is to observe that it suffices to
prove the lemma for points on the real line! Indeed, for the xi in some Rd we
can write the 1-dimensional inequality for each coordinate and then add these
inequalities together. (This is the reason for using squares in the definition of
the ratio RE,F (σ): Squares of Euclidean distances split into the contributions
of individual coordinates, and so they are easier to handle than the distances
themselves.)

If the xi are real numbers, we calculate

(x1 − x2)2 + (x2 − x3)2 + (x3 − x4)2 + (x4 − x1)2 − (x1 − x3)2 − (x2 − x4)2

= (x1 − x2 + x3 − x4)2 ≥ 0,

and this is the desired inequality. !

Proof of Theorem 15.4.1. We proceed as in the 2-dimensional case. Let
V = {0, 1}m be the vertex set of Cm, let ρ be the Hamming metric, let E be
the set of edges of the cube (pairs of points at distance 1), and let F be the
set of the long diagonals. The long diagonals are pairs of points at distance
m, or in other words, pairs {u, u}, u ∈ V , where u is the vector arising from
u by changing 0’s to 1’s and 1’s to 0’s.

We have |E| = m2m−1 and |F | = 2m−1, and we calculate RE,F (ρ) = m.
If σ is a metric on V induced by some embedding f : V → #d2, we want
to show that RE,F (σ) ≤

√
m; this will give the theorem. So we need to

prove that σ2(F ) ≤ σ2(E). This follows from the inequality for the 4-cycle
(Lemma 15.4.2) by a convenient induction.

The basis for m = 2 is directly Lemma 15.4.2. For larger m, we divide
the vertex set V into two parts V0 and V1, where V0 are the vectors with the
last component 0, i.e., of the form u0, u ∈ {0, 1}m−1. The set V0 induces an
(m−1)-dimensional subcube. Let E0 be its edge set and F0 the set of its long
diagonals; that is, F0 = {{u0, u0}: u ∈ {0, 1}m−1}, and similarly for E1 and
F1. Let E01 = E \ (E0 ∪ E1) be the edges of the m-dimensional cube going
between the two subcubes. By induction, we have
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σ2(F0) ≤ σ2(E0) and σ2(F1) ≤ σ2(E1).

For u ∈ {0, 1}m−1, we consider the quadrilateral with vertices u0, u0, u1, u1;
for u = 00, it is indicated in the picture:

000

001

011

010

111

110

100

101

Its sides are two edges of E01, one diagonal from F0 and one from F1, and
its diagonals are from F . If we write the inequality of Lemma 15.4.2 for this
quadrilateral and sum up over all such quadrilaterals (they are 2m−2, since
u and u yield the same quadrilaterals), we get

σ2(F ) ≤ σ2(E01) + σ2(F0) + σ2(F1).

By the inductive assumption for the two subcubes, the right-hand side is at
most σ2(E01) + σ2(E0) + σ2(E1) = σ2(E). !

Bibliography and remarks. Theorem 15.4.1, found by Enflo
[Enf69], is probably the first result showing an unbounded distortion
for embeddings into Euclidean spaces. Enflo considered the problem of
uniform embeddability among Banach spaces, and the distortion was
an auxiliary device in his proof.

Exercises

1. Consider the second graph in the introductory section, the star with 3
leaves, and prove a lower bound of 2√

3
for the distortion required to

embed into a Euclidean space. Follow the method used for the 4-cycle. 3

2. (Planar graphs badly embeddable into #2) Let G0, G1, . . . be the following
“diamond” graphs:

G0 G1 G2 G3

Gi+1 is obtained from Gi by replacing each edge by a square with two
new vertices. Using the short diagonals lemma and the method of this
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section, prove that any Euclidean embedding of Gm (with the graph
metric) requires distortion at least

√
m+1. 4

This result is due to Newman and Rabinovich [NR03].
3. (Almost Euclidean subspaces) Prove that for every k and ε > 0 there

exists n = n(k, ε) such that every n-point metric space (X, ρ) contains a
k-point subspace that is (1+ε)-embeddable into #2. Use Ramsey’s theo-
rem. 5

This result is due to Bourgain, Figiel, and Milman [BFM86]; it is a kind
of analogue of Dvoretzky’s theorem for metric spaces.

15.5 A Tight Lower Bound via Expanders

Here we provide an explicit example of an n-point metric space that requires
distortion Ω(log n) for embedding into any Euclidean space. It is the vertex
set of a constant-degree expander G with the graph metric. In the proof we
are going to use bounds on the second eigenvalue of G, but for readers not
familiar with the important notion of expander graphs, we first include a
little wider background.

Roughly speaking, expanders are graphs that are sparse but well con-
nected. If a model of an expander is made with vertices being little balls and
edges being thin strings, it is difficult to tear off any subset of vertices, and
the more vertices we want to tear off, the larger effort that is needed.

More formally, we define the edge expansion (also called the conductance)
Φ(G) of a graph G = (V, E) as

min
{

e(A, V \ A)
|A| : A ⊂ V, 1 ≤ |A| ≤ 1

2 |V |
}

,

where e(A, B) is the number of edges of G going between A and B. One can
say, still somewhat imprecisely, that a graph G is a good expander if Φ(G) is
not very small compared to the average degree of G.

In this section, we consider r-regular graphs for a suitable constant r ≥
3, say r = 3. We need r-regular graphs with an arbitrary large number n
of vertices and with edge expansion bounded below by a positive constant
independent of n. Such graphs are usually called constant-degree expanders.3

It is useful to note that, for example, the edge expansion of the n×n planar
square grid tends to 0 as n → ∞. More generally, it is known that constant-
degree expanders cannot be planar; they must be much more tangled than
planar graphs.

The existence of constant-degree expanders is not difficult to prove by the
probabilistic method; for every fixed r ≥ 3, random r-regular graphs provide
3 A rigorous definition should be formulated for an infinite family of graphs. A

family {G1, G2, . . .} of r-regular graphs with |V (Gi)| → ∞ as i → ∞ is a family
of constant-degree expanders if the edge expansion of all Gi is bounded below
by a positive constant independent of i.
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very good expanders. With considerable effort, explicit constructions have
been found as well; see the notes to this section.

Let us remark that several notions similar to edge expansion appear in
the literature, and each of them can be used for quantifying how good an
expander a given graph is (but they usually lead to an equivalent notion of
a family of constant-degree expanders). Often it is also useful to consider
nonregular expanders or expanders with larger than constant degree, but
regular constant-degree expanders are probably used most frequently.

Now, we pass to the second eigenvalue. For our purposes it is most con-
venient to talk about eigenvalues of the Laplacian of the considered graph.
Let G = (V, E) be an r-regular graph. The Laplacian matrix LG of G is an
n×n matrix, n = |V |, with both rows and columns indexed by the vertices
of G, defined by

(LG)uv =






r for u = v,
−1 if u (= v and {u, v} ∈ E(G),
0 otherwise.

It is a symmetric positive semidefinite real matrix, and it has n real eigen-
values µ1 = 0 ≤ µ2 ≤ · · · ≤ µn. The second eigenvalue µ2 = µ2(G) is a
fundamental parameter of the graph G.4

Somewhat similar to edge expansion, µ2(G) describes how much G “holds
together,” but in a different way. The edge expansion and µ2(G) are related
but they do not determine each other. For every r-regular graph G, we have
µ2(G) ≥ Φ(G)2

4r (see, e.g., Lovász [Lov93], Exercise 11.31 for a proof) and
µ2(G) ≤ 2Φ(G) (Exercise 6). Both the lower and the upper bound can almost
be attained for some graphs.

For our application below, we need the following fact: There are constants
r and β > 0 such that for sufficiently many values of n (say for at least
one n between 10k and 10k+1), there exists an n-vertex r-regular graph G
with µ2(G) ≥ β. This follows from the existence results for constant-degree
expanders mentioned above (random 3-regular graphs will do, for example),
and actually most of the known explicit constructions of expanders bound
the second eigenvalue directly.

We are going to use the lower bound on µ2(G) via the following fact:

For all real vectors (xv)v∈V with
∑

v∈V xv = 0, we have
xT LGx ≥ µ2‖x‖2. (15.3)

To understand what is going on here, we recall that every symmetric real n×n
matrix has n real eigenvalues (not necessarily distinct), and the corresponding
4 The notation µi for the eigenvalues of LG is not standard. We use it in order

to distinguish these eigenvalues from the eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn of the
adjacency matrix AG usually considered in the literature, where (AG)uv = 1 if
{u, v} ∈ E(G) and (AG)uv = 0 otherwise. Here we deal exclusively with regular
graphs, for which the eigenvalues of AG are related to those of LG in a very
simple way: λi = r−µi, i = 1, 2 . . . , n, for any r-regular graph.
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n unit eigenvectors b1, b2, . . . , bn form an orthonormal basis of Rn. For the
matrix LG, the unit eigenvector b1 belonging to the eigenvalue µ1 = 0 is
n−1/2(1, 1, . . . , 1). So the condition

∑
v∈V xv = 0 means the orthogonality of

x to b1, and we have x =
∑n

i=1 αibi for suitable real αi with α1 = 0. We
calculate, using xT bi = αi,

xT LGx =
n∑

i=2

xT (αiLGbi) =
n∑

i=2

αiµix
T bi =

n∑

i=2

α2
i µi ≥ µ2

n∑

i=2

α2
i = µ2‖x‖2.

This proves (15.3), and we can also see that x = b2 yields equality in (15.3).
So we can write µ2 = min{xT LGx: ‖x‖ = 1,

∑
v∈V xv = 0} (this is a special

case of the variational definition of eigenvalues discussed in many textbooks
of linear algebra).

Now, we are ready to prove the main result of this section.

15.5.1 Theorem (Expanders are badly embeddable into !2). Let G
be an r-regular graph on an n-element vertex set V with µ2(G) ≥ β, where
r ≥ 3 and β > 0 are constants, and let ρ be the shortest-path metric on V .
Then the metric space (V, ρ) cannot be D-embedded into a Euclidean space
for D ≤ c log n, where c = c(r, β) > 0 is independent of n.

Proof. We again consider the ratios RE,F (ρ) and RE,F (σ) as in the proof
for the cube (Theorem 15.4.1). This time we let E be the edge set of G, and
F =

(V
2

)
are all pairs of distinct vertices. In the graph metric all pairs in E

have distance 1, while most pairs in F have distance about log n, as we will
check below. On the other hand, it turns out that in any embedding into #2
such that all the distances in E are at most 1, a typical distance in F is only
O(1). The calculations follow.

We have ave2(ρ, E) = 1.To bound ave2(ρ, F ) from below, we observe that
for each vertex v0, there are at most 1+ r+ r(r−1)+ · · ·+ r(r−1)k−1 ≤ rk+1
vertices at distance at most k from v0. So for k = logr

n−1
2 , at least half of

the pairs in F have distance more than k, and we obtain ave2(ρ, F ) = Ω(k) =
Ω(log n). Thus

RE,F (ρ) = Ω(log n).

Let f : V → #d2 be an embedding into a Euclidean space, and let σ be the
metric induced by it on V . To prove the theorem, it suffices to show that
RE,F (σ) = O(1); that is,

σ2(F ) = O(nσ2(E)).

By the observation in the proof of Lemma 15.4.2 about splitting into coordi-
nates, it is enough to prove this inequality for a one-dimensional embedding.
So for every choice of real numbers (xv)v∈V , we want to show that

∑

{u,v}∈F

(xu − xv)2 = O(n)
∑

{u,v}∈E

(xu − xv)2. (15.4)
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By adding a suitable number to all the xv, we may assume that
∑

v∈V xv = 0.
This does not change anything in (15.4), but it allows us to relate both sides
to the Euclidean norm of the vector x.

We calculate, using
∑

v∈V xv = 0,
∑

{u,v}∈F

(xu − xv)2 = (n−1)
∑

v∈V

x2
v −

∑

u*=v

xuxv (15.5)

= n
∑

v∈V

x2
v −

( ∑

v∈V

xv

)2

= n‖x‖2.

For the right-hand side of (15.4), the Laplace matrix enters:
∑

{u,v}∈E

(xu − xv)2 = r
∑

v∈V

x2
v − 2

∑

{u,v}∈E

xuxv = xT LGx ≥ µ2‖x‖2,

the last inequality being (15.3). This establishes (15.4) and concludes the
proof of Theorem 15.5.1. !

The proof actually shows that the maximum of RE,F (σ) is attained for the
σ induced by the mapping V → R specified by b2, the eigenvector belonging
to µ2.

The cone of squared !2-metrics and universality of the lower-bound
method. For the Hamming cubes, we obtained the exact minimum distor-
tion required for a Euclidean embedding. This was due to the lucky choice of
the sets E and F of point pairs. As we will see below, a “lucky” choice, leading
to an exact bound, exists for every finite metric space if we allow for sets of
weighted pairs. Let (V, ρ) be a finite metric space and let η, ϕ:

(V
2

)
→ [0,∞)

be weight functions. Let us write

ρ2(η) =
∑

{u,v}∈(V
2)
η(u, v)ρ(u, v)2.

15.5.2 Proposition. Let (V, ρ) be a finite metric space and suppose that
(V, ρ) cannot be D-embedded into #2. Then there are weight functions
η, ϕ:

(V
2

)
→ [0,∞), not both identically zero, such that

ρ2(ϕ) ≥ D2ρ2(η),

while
σ2(ϕ) ≤ σ2(η)

for every metric σ induced on V by an embedding into #2.

Thus, the exact lower bound for the embeddability into Euclidean spaces
always has an “easy” proof, provided that we can guess the right weight
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functions η and ϕ. (As we will see below, there is even an efficient algorithm
for deciding D-embeddability into #2.)

Proposition 15.5.2 is included mainly because of generally useful concepts
appearing in its proof.

Let V be a fixed n-point set. An arbitrary function ϕ:
(V

2

)
→ R, assigning

a real number to each unordered pair of points of V , can be represented by a
point in RN , where N =

(
n
2

)
; the coordinates of such a point are indexed by

pairs {u, v} ∈
(
V
2

)
. For example, the set of all pseudometrics on V corresponds

to a subset of RN called the metric cone (also see the notes to Section 5.5).
As is not difficult to verify, it is an N -dimensional convex polyhedron in RN .
Its combinatorial structure has been studied intensively.

In the proof of Proposition 15.5.2 we will not work with the metric cone
but rather with the cone of squared Euclidean metrics, denoted by L2. We
define

L2 =
{

(‖f(u) − f(v)‖2){u,v}∈(V
2): f : V → #2

}
⊂ RN .

15.5.3 Observation. The set L2 is a convex cone.

Proof. Clearly, if x ∈ L2, then λx ∈ L2 for all λ ≥ 0, and so it suffices
to verify that if x, y ∈ L2, then x + y ∈ L2. Let x, y ∈ L2 correspond
to embeddings f : V → #k2 and g: V → #m2 , respectively. We define a new
embedding h: V → #k+m

2 by concatenating the coordinates of f and g; that
is,

h(v) = (f(v)1, . . . , f(v)k, g(v)1, . . . , g(v)m) ∈ #k+m
2 .

The point of L2 corresponding to h is x + y. !

Proof of Proposition 15.5.2. Let L2 ⊂ RN be the cone of squared Eu-
clidean metrics on V as above and let

K =
{
(xuv){u,v}∈(V

2) ∈ RN : there exists an r > 0 with

r2ρ(u, v)2 ≤ xuv ≤ D2r2ρ(u, v)2 for all u, v
}

.

This K includes all squares of metrics arising by D-embeddings of (V, ρ). But
not all elements of K are necessarily squares of metrics, since the triangle
inequality may be violated. Since there is no Euclidean D-embedding of (V, ρ),
we have K ∩L2 = ∅. Both K and L2 are convex sets in RN , and so they can
be separated by a hyperplane, by the separation theorem (Theorem 1.2.4).
Moreover, since L2 is a cone and K is a cone minus the origin 0, the separating
hyperplane has to pass through 0. So there is a nonzero a ∈ RN such that

〈a, x〉 ≥ 0 for all x ∈ K and 〈a, x〉 ≤ 0 for all x ∈ L2. (15.6)

Using this a, we define the desired η and ϕ, as follows:
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ϕ(u, v) =
{

auv if auv ≥ 0,
0 otherwise;

η(u, v) =
{

−auv if auv < 0,
0 otherwise.

First we show that ρ2(ϕ) ≥ D2ρ2(η). To this end, we employ the property
(15.6) for the following x ∈ K:

xuv =
{
ρ(u, v)2 if auv ≥ 0,
D2ρ(u, v)2 if auv < 0.

Then 〈a, x〉 ≥ 0 boils down to ρ2(ϕ) − D2ρ2(η) ≥ 0.
Next, let σ be a metric induced by a Euclidean embedding of V . This time

we apply 〈a, x〉 ≤ 0 with the x ∈ L2 corresponding to σ, i.e., xuv = σ(u, v)2.
This yields σ2(ϕ) − σ2(η) ≤ 0. Proposition 15.5.2 is proved. !

Algorithmic remark: Euclidean embeddings and semidefinite pro-
gramming. The problem of deciding whether a given n-point metric space
(V, ρ) admits a D-embedding into #2 (i.e., into a Euclidean space without re-
striction on the dimension), for a given D ≥ 1, can be solved by a polynomial-
time algorithm. Let us stress that the dimension of the target Euclidean space
cannot be prescribed in this method. If we insist that the embedding be into
#d2, for some given d, we obtain a different algorithmic problem, and it is not
known how hard it is. Many other similar-looking embedding problems are
known to be NP-hard, such as the problem of D-embedding into #1.

The algorithm for D-embedding into #2 is based on a powerful technique
called semidefinite programming, where the problem is expressed as the exis-
tence of a positive semidefinite matrix in a suitable convex set of matrices.

Let (V, ρ) be an n-point metric space, let f : V → Rn be an embedding,
and let X be the n × n matrix whose columns are indexed by the elements
of V and such that the vth column is the vector f(v) ∈ Rn. The matrix
Q = XT X has both rows and columns indexed by the points of V , and the
entry quv is the scalar product 〈f(u), f(v)〉.

The matrix Q is positive semidefinite, since for any x ∈ Rn, we have
xT Qx = (xT XT )(Xx) = ‖Xx‖2 ≥ 0. (In fact, as is not too difficult to check,
a real symmetric n×n matrix P is positive semidefinite if and only if it can
be written as XT X for some real n × n matrix X .)

Let σ(u, v) = ‖f(u) − f(v)‖ = 〈f(u) − f(v), f(u) − f(v)〉1/2. We can ex-
press

σ(u, v)2 = 〈f(u), f(u)〉 + 〈f(v), f(v)〉 − 2〈f(u), f(v)〉 = quu + qvv − 2quv.

Therefore, the space (V, ρ) can be D-embedded into #2 if and only if there
exists a symmetric real positive semidefinite matrix Q whose entries satisfy
the following constraints:
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ρ(u, v)2 ≤ quu + qvv − 2quv ≤ D2ρ(u, v)2

for all u, v ∈ V . These are linear inequalities for the unknown entries of Q.
The problem of finding a positive semidefinite matrix whose entries sat-

isfy a given system of linear inequalities can be solved efficiently, in time
polynomial in the size of the unknown matrix Q and in the number of the
linear inequalities. The algorithm is not simple; we say a little more about it
in the remarks below.

Bibliography and remarks. Theorem 15.5.1 was proved by Linial,
London, and Rabinovich [LLR95]. This influential paper introduced
methods and results concerning low-distortion embeddings, developed
in local theory of Banach spaces, into theoretical computer science, and
it gave several new results and algorithmic applications. It is very in-
teresting that using low-distortion Euclidean embeddings, one obtains
algorithmic results for certain graph problems that until then could
not be attained by other methods, although the considered problems
look purely graph-theoretic without any geometric structure. A simple
but important example is presented at the end of Section 15.8.

The bad embeddability of expanders was formulated and proved
in [LLR95] in connection with the problem of multicommodity flows
in graphs. The proof was similar to the one shown above, but it es-
tablished an Ω(log n) bound for embedding into #1. The result for
Euclidean spaces is a corollary, since every finite Euclidean metric
space can be isometrically embedded into #1 (Exercise 5). An inequal-
ity similar to (15.4) was used, but with squares of differences replaced
by absolute values of differences. Such an inequality was well known
for expanders. The method of [LLR95] was generalized for embeddings
to #p-spaces with arbitrary p in [Mat97]; it was shown that the mini-
mum distortion required to embed all n-point metric spaces into #p is
of order log n

p , and a matching upper bound was proved by the method
shown in Section 15.8.

The proof of Theorem 15.5.1 given in the text can easily be ex-
tended to prove a lower bound for #1-embeddability as well. It actu-
ally shows that distortion Ω(log n) is needed for approximating the ex-
pander metric by a squared Euclidean metric, and every #1-metric is a
squared Euclidean metric (see, e.g., Schoenberg [Sch38] for a proof)5.

5 Here is an outline of a beautiful proof communicated to me by Assaf Naor.
We represent the given "1 metric by points in L1(R) (functions R → R with
norm ‖f‖1 =

∫
R
|f(x)|dx). The embedding T maps f ∈ L1(R) to g = Tf ∈

L2(R
2) defined by g(x, y) = 1 if f(x) ∈ [0, y] and g(x, y) = 0 otherwise. Showing

‖f1 − f2‖1 =
∫
R2(Tf1(x, y) − Tf2(x, y))2 d(x, y) = ‖Tf1 − Tf2‖2

2 is easy, and

it remains to check (or know) that L2(R2), being a Hilbert space of countable
dimension, is isometric to "2.



390 Chapter 15: Embedding Finite Metric Spaces into Normed Spaces

Squared Euclidean metrics do not generally satisfy the triangle in-
equality, but that is not needed in the proof.

The formulation of the minimum distortion problem for Euclidean
embeddings as semidefinite programming is also due to [LLR95], as
well as Proposition 15.5.2. These ideas were further elaborated and
applied in examples by Linial and Magen [LM00]. The proof of Propo-
sition 15.5.2 given in the text is simpler than that in [LLR95], and it
extends to #p-embeddability (Exercise 4), unlike the formulation of
the D-embedding problem as a semidefinite program. It was commu-
nicated to me by Yuri Rabinovich.

A further significant progress in lower bounds for #2-embeddings of
graphs was made by Linial, Magen, and Naor [LMN02]. They proved
that the metric of every r-regular graph, r > 2, of girth g requires
distortion at least Ω(√g ) for embedding into #2 (an Ω(g) lower bound
was conjectured in [LLR95]). They give two proofs, one based on the
concept of Markov type of a metric space due to Ball [Bal92] and
another that we now outline (adapted to the notation of this section).
Let G = (V, E) be an r-regular graph of girth 2t+1 or 2t+2 for some
integer t ≥ 1, and let ρ be the metric of G. We set F = {{u, v} ∈(
V
2

)
: ρ(u, v) = t}; note that the graph H = (V, F ) is s-regular for

s = r(r−1)t−1. Calculating RE,F (ρ) is trivial, and it remains to bound
RE,F (σ) for all Euclidean metrics σ on V , which amounts to finding
the largest β > 0 such that σ2(E) − β · σ2(F ) ≥ 0 for all σ. Here it
suffices to consider line metrics σ; so let xv ∈ R be the image of v in
the embedding V → R inducing σ. We may assume

∑
v∈V xv = 0 and,

as in the proof in the text, σ2(E) =
∑

{u,v}∈E(xu − xv)2 = xT LGx =
xT (rI−AG)xT , where I is the identity matrix and AG is the adjacency
matrix of G, and similarly for σ2(F ). So we require xT Cx ≥ 0 for all x
with

∑
v∈V xv = 0, where C = (r−βs)I−AG +βAH . It turns out that

there is a degree-t polynomial Pt(x) such that AH = Pt(AG) (here we
need that the girth of G exceeds 2t). This Pt(x) is called the Geronimus
polynomial, and it is not hard to derive a recurrence for it: P0(x) = 1,
P1(x) = x, P2(x) = x2 − r, and Pt(x) = xPt−1(x) − (r−1)Pt−2(x) for
t>2. So C = Q(A) for Q(x) = r−βs−x+Pt(x). As is well known, all
the eigenvalues of A lie in the interval [−r, r], and so if we make sure
that Q(x) ≥ 0 for all x ∈ [−r, r], all eigenvalues of C are nonnegative,
and our condition holds. This leaves us with a nontrivial but doable
calculus problem whose discussion we omit.
Semidefinite programming. The general problem of semidefinite pro-
gramming is to optimize a linear function over a set of positive definite
n×n matrices defined by a system of linear inequalities. This is a con-
vex set in the space of all real n×n matrices, and in principle it is
not difficult to construct a polynomial-time membership oracle for it
(see the explanation following Theorem 13.2.1). Then the ellipsoid
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method can solve the optimization problem in polynomial time; see
Grötschel, Lovász and Schrijver [GLS88]. More practical algorithms
are based on interior point methods. Semidefinite programming is an
extremely powerful tool in combinatorial optimization and other ar-
eas. For example, it provides the only known polynomial-time algo-
rithms for computing the chromatic number of perfect graphs and the
best known approximation algorithms for several fundamental NP-
hard graph-theoretic problems. Lovász’s recent lecture notes [Lov03]
are a beautiful concise introduction. Here we outline at least one lovely
application, concerning the approximation of the maximum cut in a
graph, in Exercise 8 below.
The second eigenvalue. The investigation of graph eigenvalues consti-
tutes a well established part of graph theory; see, e.g., Biggs [Big93]
for a nice introduction. The second eigenvalue of the Laplace matrix as
an important graph parameter was first considered by Fiedler [Fie73]
(who called it the algebraic connectivity). Tanner [Tan84] and Alon
and Milman [AM85] gave a lower bound for the so-called vertex ex-
pansion of a regular graph (a notion similar to edge expansion) in
terms of µ2(G), and a reverse relation was proved by Alon [Alo86a].

There are many useful analogies of graph eigenvalues with the
eigenvalues of the Laplace operator ∆ on manifolds, whose theory is
classical and well developed; this is pursued to a considerable depth in
Chung [Chu97]. This point of view prefers the eigenvalues of the Lapla-
cian matrix of a graph, as considered in this section, to the eigenvalues
of the adjacency matrix. In fact, for nonregular graphs, a still closer
correspondence with the setting of manifolds is obtained with a differ-
ently normalized Laplacian matrix LG: (LG)v,v = 1 for all v ∈ V (G),
(LG)uv = −(degG(u) degG(v))−1/2 for {u, v} ∈ E(G), and (LG)uv = 0
otherwise.
Expanders have been used to address many fundamental problems of
computer science in areas such as network design, theory of compu-
tational complexity, coding theory, on-line computation, and crypto-
graphy; see, e.g., [RVW00] for references.

For random graphs, parameters such as edge expansion or vertex
expansion are usually not too hard to estimate (the technical difficulty
of the arguments depends on the chosen model of a random graph). On
the other hand, estimating the second eigenvalue of a random r-regular
graph is quite challenging, and a satisfactory answer is known only for
r large (and even); see Friedman, Komlós, and Szemerédi [FKS89] or
Friedman [Fri91]. Namely, with high probability, a random r-regular
graph with r even has λ2 ≤ 2

√
r−1 + O(log r). Here the number of

vertices n is assumed to be sufficiently large in terms of r and the
O(·) notation is with respect to r → ∞. At the same time, for every
fixed r ≥ 3 and any r-regular graph on n vertices, λ2 ≥ 2

√
r−1−o(1),
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where this time o(·) refers to n → ∞. So random graphs are almost
optimal for large r.

For many of the applications of expanders, random graphs are
not sufficient, and explicit constructions are required. In fact, explic-
itly constructed expanders often serve as substitutes for truly random
graphs; for example, they allow one to convert some probabilistic algo-
rithms into deterministic ones (derandomization) or reduce the num-
ber of random bits required by a probabilistic algorithm.

Explicit construction of expanders was a big challenge, and it has
led to excellent research employing surprisingly deep results from
classical areas of mathematics (group theory, number theory, har-
monic analysis, etc.). In the analysis of such constructions, one usually
bounds the second eigenvalue (rather than edge expansion or vertex
expansion). After the initial breakthrough by Margulis in 1973 and
several other works in this direction (see, e.g., [Mor94] or [RVW00] for
references), explicit families of constant-degree expanders matching
the quality of random graphs in several parameters (and even super-
seding them in some respects) were constructed by Lubotzky, Phillips,
and Sarnak [LPS88] and independently by Margulis [Mar88]. Later
Morgenstern [Mor94] obtained similar results for many more values of
the parameters (degree and number of vertices). In particular, these
constructions achieve λ2 ≤ 2

√
r−1, which is asymptotically optimal,

as was mentioned earlier.
For illustration, here is one of the constructions (from [LPS88]). Let

p (= q be primes with p, q ≡ 1 (mod4) and such that p is a quadratic
nonresidue modulo q, let i be an integer with i2 ≡ −1 (mod q), and
let F denote the field of residue classes modulo q. The vertex set
V (G) consists of all 2×2 nonsingular matrices over F . Two matrices
A, B ∈ V (G) are connected by an edge iff AB−1 is a matrix of the form(

a0+ia1 a2+ia3

−a2+ia3 a0−ia1

)
, where a0, a1, a2, a3 are integers with a2

0+a2
1+a2

2+

a2
3 = p, a0 > 0, a0 odd, and a1, a2, a3 even. By a theorem of Jacobi,

there are exactly p+1 such vectors (a0, a1, a2, a3), and it follows that
the graph is (p+1)-regular with q(q2−1) vertices. A family of constant-
degree expanders is obtained by fixing p, say p = 5, and letting q →
∞. For an accessible exposition of some of the beautiful mathematics
underlying this construction and a proof that the resulting graphs are
expanders see Davidoff, Sarnak, and Valette [DSV03].

Reingold, Vadhan, and Wigderson [RVW00] discovered an ex-
plicit construction of a different type. Expanders are obtained from
a constant-size initial graph by iterating certain sophisticated prod-
uct operations. Some of their parameters are inferior to those from ⇓ NEW ⇓
[Mar88], [LPS88], [Mor94], but the proof is relatively short, and it uses
only elementary linear algebra. The ideas of the construction later led
to a construction of constant-degree lossless expanders, whose edge
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expansion is much better than can be achieved through bounds on
the second eigenvalue [CRVW02], and to several other applications.
They also inspired a new proof by Dinur [Din05] of the PCP theorem,
arguably one of the greatest theorems of all computer science, which
was thus moved from the category “a booklet presentable in a one-
semester advanced course” to “a paper presentable in a seminar.” ⇑ NEW ⇑

Exercises

1. Show that every real symmetric positive semidefinite n × n matrix can
be written as XT X for a real n × n matrix X . 3

2. (Dimension for isometric #p-embeddings)
(a) Let V be an n-point set and let N =

(
n
2

)
. Analogous to the set L2

defined in the text, let L(fin)
1 ⊂ RN be the set of all pseudometrics6

on V induced by embeddings f : V → #k1 , k = 1, 2, . . . . Show that L(fin)
1

is the convex hull of line pseudometrics, i.e., pseudometrics induced by
mappings f : V → #11. 2

(b) Prove that any metric from L(fin)
1 can be isometrically embedded

into #N1 . That is, any n-point set in some #k1 can be realized in #N1 . 4

(Examples show that one cannot do much better and that dimension
Ω(n2) is necessary, in contrast to Euclidean embeddings, where dimension
n−1 always suffices.)
(c) Let L1 ⊂ RN be all pseudometrics induced by embeddings of V
into #1 (the space of infinite sequences with finite #1-norm). Show that
L1 = L(fin)

1 , and thus that any n-point subset of #1, can be realized in
#N1 . 3

(d) Extend the considerations in (a)–(c) to #p-metrics with arbitrary
p ∈ [1,∞). 3

See Ball [Bal90] for more on the dimension of isometric #p-embeddings.
3. With the notation as in Exercise 2, show that every line pseudometric
ν on an n-point set V is a nonnegative linear combination of at most
n−1 cut pseudometrics : ν =

∑n−1
i=1 αiτi, α1, . . . , αn−1 ≥ 0, where each

τi is a cut pseudometric, i.e., a line pseudometric induced by a mapping
ψi: V → {0, 1}. (Consequently, by Exercise 2(a), every finite metric iso-
metrically embeddable into #1 is a nonnegative linear combination of cut
pseudometrics.) 3

4. (An #p-analogue of Proposition 15.5.2) Let p ∈ [1,∞) be fixed. Using
Exercise 2, formulate and prove an appropriate #p-analogue of Proposi-
tion 15.5.2. 3

5. (Finite #2-metrics embed isometrically into #p)

6 A pseudometric ν satisfies all the axioms of a metric except that we may have
ν(x, y) = 0 even for two distinct points x and y.
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(a) Let p be fixed. Check that if for all ε > 0, a finite metric space
(V, ρ) can be (1+ε)-embedded into some #kp, k = k(ε), then (V, ρ) can be
isometrically embedded into #Np , where N =

(|V |
2

)
. Use Exercise 2. 2

(b) Prove that every n-point set in #2 can be isometrically embedded into
#Np . 2

6. (The second eigenvalue and edge expansion) Let G be an r-regular graph
with n vertices, and let A be a nonempty proper subset of V . Prove that
the number of edges connecting A to V \ A is at least e(A, V \ A) ≥
µ2(G) · |A|·|V \A|

n (use (15.3) with a suitable vector x), and deduce that
Φ(G) ≥ 1

2 µ2(G). 4

7. (Expansion and measure concentration) Let us consider the vertex set
of a graph G as a metric probability space, with the usual graph metric
and with the uniform probability measure P (each vertex has measure
1
n , n = |V (G)|). Suppose that Φ = Φ(G) > 0 and that the maximum
degree of G is ∆. Prove the following measure concentration inequality:
If A ⊆ V (G) satisfies P[A] ≥ 1

2 , then 1 − P[At] ≤ 1
2e−tΦ/∆, where At

denotes the t-neighborhood of A. 3

8. (The Goemans–Williamson approximation to MAXCUT) Let G = (V, E)
be a given graph and let n = |V |. The MAXCUT problem for G is to find
the maximum possible number of “crossing” edges for a partition V =
A∪̇B of the vertex set into two disjoint subsets, i.e., maxA⊆V e(A, V \A).
This is an NP-complete problem. The exercise outlines a geometric ran-
domized algorithm that finds an approximate solution using semidefinite
programming.
(a) Check that the MAXCUT problem is equivalent to computing

Mopt = max
{

1
2

∑

{u,v}∈E

(1 − xuxv): xv ∈ {−1, 1}, v ∈ V

}
.

2

(b) Let

Mrelax = max
{

1
2

∑

{u,v}∈E

(1 − 〈yu, yv〉): yv ∈ Rn, ‖yv‖ = 1, v ∈ V

}
.

Clearly, Mrelax ≥ Mopt. Verify that this relaxed version of the problem is
an instance of a semidefinite program, that is, the maximum of a linear
function over the intersection of a polytope with the cone of all symmetric
positive semidefinite real matrices. 2

(c) Let (yv: v ∈ V ) be some system of unit vectors in Rn for which Mrelax

is attained. Let r ∈ Rn be a random unit vector, and set xv = sgn〈yv, r〉,
v ∈ V . Let Mapprox = 1

2

∑
{u,v}∈E(1 − xuxv) for these xv. Show that

the expectation, with respect to the random choice of r, of Mapprox is
at least 0.878 · Mrelax (consider the expected contribution of each edge
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separately). So we obtain a polynomial-time randomized algorithm pro-
ducing a solution to MAXCUT whose expected value is at least about
88% of the optimal value. 4

Remark. This algorithm is due to Goemans and Williamson [GW95].
Later, H̊astad [H̊as97] proved that no polynomial-time algorithm can
produce better approximation in the worst case than about 94% un-
less P=NP (also see [KV05] for an interesting conjecture whose validity
would imply that approximation with ratio better than in the Goemans–
Williamson results is NP-complete).

15.6 A Tight Lower Bound by Fourier Transform
⇓ NEW ⇓

Here we present another class of n-point metric spaces requiring Ω(log n)
distortion for embedding into any Euclidean space, and more significantly, in
the proof we will illustrate yet another powerful method of establishing lower
bounds for distortion, based on harmonic analysis.

The basic scheme of the proof has much in common with the lower bounds
for the Hamming cube and for expanders presented earlier. We construct an
n-point metric space (V̄ , ρ̄) (for reasons mentioned later, all things in this
space will be denoted by letters with bars) and we define two sets of pairs
Ē ⊆

(
V̄
2

)
and F̄ =

(
V̄
2

)
. We bound from below the ratio

RĒ,F̄ (ρ̄) =
ave2(ρ̄, F̄ )
ave2(ρ̄, Ē)

of quadratic averages, thereby showing that a typical distance in Ē is consid-
erably smaller than a typical distance in F̄ , i.e., Ē consists of “short edges.”
Finally, for any metric σ̄ induced by an Euclidean embedding f̄ : V̄ → #2, we
want to bound RĒ,F̄ (σ̄) from above (the “short edges” cannot be so short
in the embedding), and this is where the new technique comes in: We will
prove an inequality relating σ̄2(Ē) and σ̄2(F̄ ) using harmonic analysis. In
the present proof we will use only very basic facts about Fourier coefficients,
but the idea of employing harmonic analysis puts at one’s disposal many
tools from this well-developed field, which have already been useful in several
problems concerning low-distortion embeddings. Let us note that, as we know
from Section 15.5, estimating the maximum of RĒ,F̄ (σ̄) is equivalent to to
estimating the second eigenvalue of a certain (Laplace) matrix, but here we
will not use the language of eigenvalues.

Preliminaries on Fourier transform on the Hamming cube. Let V
denote the vertex set of the m-dimensional Hamming cube Cm. We consider
the elements of V as m-component vectors of 0’s and 1’s. For u, v ∈ V , u + v
denotes the vector in V whose ith component is (ui +vi)mod 2. We note that
u + v is the same as u − v.
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For a function f : V → R we define another function f̂ : V → R, the
Fourier transform of f , by

f̂(u) = 2−m
∑

v∈V

(−1)u·vf(v),

where the inner product u · v is defined as (u1v1 + u2v2 + · · ·+ umvm)mod 2.
Readers acquainted with Fourier series or with Fourier transforms in other

settings will find the following fact familiar:

15.6.1 Fact (Parseval’s equality). For every function f : V → R we have

∑

v∈V

f(v)2 =
∑

u∈V

f̂(u)2.

In our setting, where we always deal with finite sums, Parseval’s equality
is quite simple to prove; see Exercise 1. Geometrically, the equality holds
because (f(v): v ∈ V ) are the coordinates of a vector in an orthonormal
basis, and (f̂(u): u ∈ V ) are the coordinates of the same vector in another
orthonormal basis. In textbooks on harmonic analysis one can find Parseval’s
equality in a general setting, encompassing our situation but also the classical
case of Fourier series of periodic real functions on R and many other useful
cases. Then the proofs are more demanding, since one has to deal with issues
of convergence of infinite sums or integrals.

Good codes. With the componentwise addition modulo 2 introduced above,
V is a vector space over the two-element field GF(2) (scalar multiplication is
trivial; the scalars are only 0 and 1, and we have 0v = 0 and 1v = v). The
construction of the badly embeddable space is based on a suitable subspace
C ⊆ V as in the next lemma.

15.6.2 Lemma. For every sufficiently large m divisible by 4 there exists a
subset C ⊆ V with the following properties:

(i) C is a vector subspace of V of dimension 1
4m.

(ii) Every two distinct u, v ∈ C differ in at least δm components, where
δ > 0 is a suitable small constant (δ = 0.01 will do, for example). In
other words, u and v have Hamming distance at least δm.

We leave a proof to Exercise 2. The lemma comes from the theory of error-
correcting codes. Mathematically speaking, the main goal of this theory is to
construct, for given integer parameters m and d, a subset C ⊆ V = {0, 1}m

(called a code in this context) that is as large as possible but, at the same time,
has minimum distance at least d, meaning that every two distinct u, v ∈ C
have Hamming distance at least d. (More precisely, this concerns codes over
the two-element alphabet {0, 1}, while coding theory also investigates codes
over larger alphabets.) In many of the known constructions, C is a vector
subspace of V , and then it is called a linear code. A code C ⊆ {0, 1}m whose
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minimum distance is at least a fixed fraction of m and such that log |C| is
also at least a fixed fraction of m is often called a good code. So Lemma 15.6.2
simply claims the existence of a good linear code (the constant 1

4 in part (i)
is rather arbitrary and, for our purposes, it could be replaced by any smaller
positive constant).

Given C as in Lemma 15.6.2, let us put

W = C⊥ = {u ∈ V : u · v = 0 for all v ∈ C}.

This definition resembles the usual orthogonal complement in real vector
spaces, except that C∩C⊥ may contain nonzero vectors (consider m = 2 and
C = C⊥ = {(0, 0), (1, 1)})! However, the familiar properties (C⊥)⊥ = C and
dim C + dim C⊥ = m hold; see Exercise 3. From now on, we will talk only
about W (and forget about C), and we will use the following properties:

15.6.3 Lemma.

(W1) W is a vector subspace of V of dimension 3
4m.

(W2) For every nonzero u ∈ V with less than δm ones there exists v ∈ W with
u · v = 1.

Proof. Part (W1) is clear from dim C = m
4 and dimC+dim C⊥ = m. As for

(W2), if u ∈ V satisfies u · v = 0 for all v ∈ W , then u ∈ W⊥ = (C⊥)⊥ = C.
Every nonzero vector in C has at least δm ones, and (W2) follows. !

The badly embeddable space. Let m be divisible by 4 and let W ⊂ V
satisfy (W1) and (W2). We are going to construct the metric space (V̄ , ρ̄).
First we define an equivalence relation ≈ on V by u ≈ v if u − v ∈ W . The
equivalence class containing u thus has thus the form u + W , and we will
denote it by ū.

The points of V̄ are the equivalence classes: V̄ = {ū: u ∈ V }. The number
of equivalence classes is n̄ = |V̄ | = |V |/|W | = 2m/4.

The metric ρ̄ on V̄ is defined as the shortest-path metric of a suitable
graph Ḡ = (V̄ , Ē), where {ū, v̄} ∈ Ē if there is at least one edge of the
Hamming cube Cm connecting a vertex of the equivalence classes ū to a
vertex of the equivalence class v̄. More formally, Ē = {{ū, v̄}: {u, v} ∈ E},
where E is the edge set of Cm.

It may be useful to think of ρ̄ as follows. Let us suppose that it takes unit
time to travel between the endpoints of an edge of the Hamming cube. Then
the Hamming distance of two vertices u, v ∈ V is the minimum time required
to travel from u to v along edges. Now we imagine that every two vertices
u, u′ in the same equivalence class are connected by a “hyperspace link” that
can be traveled instantaneously, in time 0. Then ρ̄(ū, v̄) is the shortest time
needed to travel from a vertex of ū to a vertex of v̄ using ordinary edges and
hyperspace links as convenient.

The following observation will be useful later, and it may help digest the
definition of ρ̄.



398 Chapter 15: Embedding Finite Metric Spaces into Normed Spaces

15.6.4 Observation. For every two equivalence classes ū, v̄ ∈ V̄ , one can
travel from any vertex of ū to any vertex of v̄ in time ρ̄(ū, v̄) by first using at
most one hyperspace link and then traveling only through ordinary edges.

Sketch of proof. It suffices to note that if ū, v̄ are equivalence classes and
there is at least one edge of the Hamming cube connecting them, then every
vertex of ū is connected to some vertex of v̄. Indeed, if {u, v} ∈ E is an edge,
i.e., u and v differ in exactly one coordinate, and if u′ ∈ ū = u + W , then u′

and v′ = v + u′ − u ∈ v + W differ in exactly the same coordinate, and thus
{u′, v′} ∈ E as well. !

We can state the main result of the section:

15.6.5 Theorem. Every embedding of the metric space (V̄ , ρ̄) into a Eu-
clidean space has distortion at least Ω(m) = Ω(log n̄).

Preparatory steps. We begin with realizing the already announced scheme
of the proof. We consider the two sets of pairs, Ē as above and F̄ =

(V̄
2

)
.

First we estimate RĒ,F̄ (ρ̄). Since for {ū, v̄} ∈ Ē we have ρ̄(ū, v̄) = 1, we get
ave2(ρ̄, Ē) = 1.

It is easy to see that a “typical” pair of vertices in V has Hamming distance
at least a constant fraction of m. The next lemma shows that although adding
the hyperspace links in the construction of V̄ shortens the distances, a typical
distance under ρ̄ is still a constant fraction of m.

15.6.6 Lemma. For at least half of pairs {ū, v̄} ∈ F̄ we have ρ̄(ū, v̄) ≥ αm,
where α is a suitable positive constant.

Proof. Let us fix an arbitrary ū ∈ V̄ ; it suffices to show that only o(n̄)
classes v̄ ∈ V̄ satisfy ρ̄(ū, v̄) ≤ k = 0αm1. Let U ⊆ V denote the union of
all these classes v̄. By Observation 15.6.4, every vertex of U can be reached
from some vertex of the class ū by traveling a path of length at most k
in the Hamming cube. In the Hamming cube, the number of vertices at
Hamming distance at most k from a fixed vertex is exactly

∑k
i=0

(
m
i

)
, and

thus |U | ≤ |W | ·
∑k

i=0

(m
i

)
. Therefore, the number of v̄ with ρ̄(ū, v̄) ≤ k is

no more than |U |/|W | ≤
∑k

i=0

(
m
i

)
. A standard estimate for the last sum is

(em/k)k, and a simple calculation shows that this is o(n̄) for α sufficiently
small. !

By the lemma we have ave2(ρ̄, F̄ ) = Ω(m), and thus RĒ,F̄ (ρ̄) = Ω(m).

Next, we turn to bounding RĒ,F̄ (σ̄) from above, for any (pseudo)metric
σ̄ induced by an Euclidean embedding f̄ : V̄ → #2. We need to prove that
ave2(F̄ , σ̄) = O(ave2(Ē, σ̄)), and as we saw in the previous sections, it is
sufficient to consider only one-dimensional embeddings f̄ : V̄ → R. Thus we
want to prove
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|F̄ |−1
∑

{ū,v̄}∈F̄

(
f̄(ū) − f̄(v̄)

)2 ≤ O(1) · |Ē|−1
∑

{ū,v̄}∈Ē

(
f̄(ū) − f̄(v̄)

)2
. (15.7)

To do so, we first “pull back” from V̄ to the original vertex set V of the
cube. Given f̄ : V̄ → R, we define f : V → R by f(v) = f̄(v̄) (so f is constant
on every equivalence class). Then, with F =

(
V
2

)
,

∑

{ū,v̄}∈F̄

(
f̄(ū) − f̄(v̄)

)2 = |W |−2 ·
∑

{u,v}∈F

(f(u) − f(v))2

(we note that if u and v are in the same equivalence class, they contribute
0 to the sum). Observing that for every {ū, v̄} ∈ Ē the equivalence classes ū
and v̄ are connected by exactly |W | edges of E (arguing as in the proof of
Observation 15.6.4), we get similarly

∑

{ū,v̄}∈Ē

(
f̄(ū) − f̄(v̄)

)2 = |W |−1 ·
∑

{u,v}∈E

(f(u) − f(v))2.

Using |F̄ | =
(n̄
2

)
= Θ(2m/2) and |Ē| = |E|/|W | = Θ(m2m/4), we can see that

for proving (15.7) we need
∑

{u,v}∈F

(f(u) − f(v))2 ≤ O(2m/m) ·
∑

{u,v}∈E

(f(u) − f(v))2 (15.8)

for every f : V → R satisfying f(u) = f(v) whenever u − v ∈ W . Moreover,
since increasing all values of f by the same number doesn’t change either
side of (15.8), we may assume that

∑
v∈V f(v) = 0, which will be useful (we

already met this trick in Section 15.5).

A Fourier-analytic piece. We will express both sides in (15.8) using the
Fourier coefficients of f , beginning with the right-hand side. The next two
lemmas are standard tools in harmonic analysis.

15.6.7 Lemma. For every function f : V → R we have

∑

{u,v}∈E

(f(u) − f(v))2 = 2 ·
∑

u∈V

‖u‖1 · f̂(u)2,

where ‖u‖1 denotes the number of 1’s in the zero-one vector u.

We postpone the proof and continue with the proof of (15.8). The next
lemma shows how the properties of W are reflected in the Fourier coefficients
of f .

15.6.8 Lemma. Let f : V → R be such that f(u) = f(v) whenever u − v ∈
W , where W satisfies (W1), (W2). Then f̂(u) = 0 for every u ∈ V with
0 < ‖u‖1 < δm. If we also assume

∑
v∈V f(v) = 0, then f̂(0) = 0 as well.
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We again postpone the proof.
By combining Lemma 15.6.8 and Lemma 15.6.7, we have

∑

{u,v}∈E

(f(u) − f(v))2 = 2 ·
∑

u∈V

‖u‖1 · f̂(u)2

= 2 ·
∑

u∈V,‖u‖1≥δm

‖u‖1f̂(u)2

≥ 2δm
∑

u∈V

f̂(u)2.

We now turn to the left-hand side of (15.8). By calculation we already did in
Section 15.5 (see (15.5)), we obtain

∑

{u,v}∈F

(f(u) − f(v))2 = |V | ·
∑

v∈V

f(v)2,

and by Parseval’s equality the right-hand side is |V | ·
∑

u∈V f̂(u)2. Altogether

∑

{u,v}∈F

(f(u) − f(v))2 = |V | ·
∑

u∈V

f̂(u)2 ≤ |V |
2δm

∑

{u,v}∈E

(f(u) − f(v))2,

which provides the desired inequality (15.8). It remains to prove the lemmas,
which is a relatively straightforward manipulation of identities.

Proof of Lemma 15.6.8. First we note that f̂(0) = 2−m
∑

v∈V f(v), so
f̂(0) = 0 is immediate.

Next, we consider u ∈ V with 0 (= ‖u‖1 < δm, and we fix v0 ∈ W with
u · v0 = 1, according to (W2). Since v +→ v + v0 defines a bijection V → V ,
we have

f̂(u) = 2−m
∑

v∈V

(−1)u·vf(v) = 2−m
∑

v∈V

(−1)u·(v+v0)f(v + v0).

Since v0 ∈ W , v + v0 is equivalent to v and so f(v + v0) = f(v). Further
u · (v + v0) = u · v + u · v0 = u · v + 1, and so we arrive at

f̂(u) = 2−m
∑

v∈V

(−1)u·v+1f(v) = −f̂(u).

So f̂(u) = 0 indeed. !

Proof of Lemma 15.6.7. Let ei ∈ V denote the ith vector of the standard
basis, with 1 at position i and 0’s elsewhere. We set gi(v) = f(v + ei) − f(v)
(this is something like a “derivative” of f according to the ith variable). Every
edge in E has the form {v, v + ei} for some v and some i, and so
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∑

{u,v}∈E

(f(u) − f(v))2 =
1
2

m∑

i=1

∑

v∈V

gi(v)2 =
1
2

m∑

i=1

∑

u∈V

ĝi(u)2,

the last equality being Parseval’s. We compute

ĝi(u) = 2−m
∑

v∈V

(−1)u·v(f(v + ei) − f(v))

= 2−m

( ∑

v′∈V

(−1)u·(v′−ei)f(v′)
)

− f̂(u)

= (−1)u·ei f̂(u) − f̂(u).

Hence ĝi(u)2 equals 4f̂(u)2 if ui = 1 and 0 otherwise, and

1
2

m∑

i=1

∑

u∈V

ĝi(u)2 = 2
∑

u∈V

‖u‖1 · f̂(u)2.

Lemma 15.6.7, as well as Theorem 15.6.5, are proved. !

Bibliography and remarks. Among many textbooks of harmonic
analysis we mention Körner [Kör89] or Dym and McKean [DM85], and
a standard reference for error-correcting codes is Van Lint [vL99].

The construction of the metric space (V̄ , ρ̄) from the Hamming
cube using the equivalence ≈ is an instance of a generally useful con-
struction of a quotient space from a given metric space using an equiv-
alence with finitely many classes; see, e.g., Gromov [Gro98] (we again
add zero-length links between every two equivalent points and con-
sider the resulting shortest-path metric). However, we note that for
an arbitrary equivalence an analogue of Observation 15.6.4 no longer
holds.

The material of this section is from Khot and Naor [KN05]. This
paper also cites several earlier applications of harmonic analysis for dis-
tortion bounds. An immediate predecessor of it is a fundamental work
of Khot and Vishnoi [KV05], which we will discuss in Section 15.9.

Khot and Naor solved several open problems in low-distortion em-
beddings. Perhaps most notably, they showed that the metric space
{0, 1}n with the edit distance needs Ω((log n)1/2−o(1)) distortion for
embedding into #1, where the edit distance of two n-bit strings v, w is
the smallest number of edit operations (insertions or deletions of bits)
required for converting v into w. Krauthgamer and Rabani [KR06]
improved the lower bound to Ω(log n), with a beautifully simple ar-
gument. Ostrovsky and Rabani [OR05] proved an upper bound of
2O(

√
log n log log n ). The need for such embeddings has strong algorith-

mic motivation, since a low-distortion embedding into #1 would allow
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for very fast approximate database queries (“Does the database con-
tain a string very similar to a given query string?”; this is a basic
problem in web searching, computational biology, etc.), or even a fast
approximation of the edit distance of two given strings, whose exact
computation is not easy.

In a way similar to the proof for expanders from the previous sec-
tion, the proof in this section can easily be modified to show that there
is no squared Euclidean metric that approximates the constructed
space with distortion o(log n), and in particular, that any embedding
into #1 requires distortion Ω(log n).

Exercises

1. (a) Let u1 (= u2 ∈ V . Prove that
∑

v∈V (−1)u1·v(−1)u2·v = 0. 2

(b) Prove Fact 15.6.1 by direct calculation, substituting for f̂(u) on the
right-hand side from the definition, expanding, and using (a). 2

(c) Go through the following “more scientific” presentation of the proof.
Let Fm denote the real vector space of all functions f : V → R, where
addition and scalar multiplication are defined in the natural way, by
(f + g)(v) = f(v) + g(v) and (αf)(v) = α · f(v). Check that 〈f, g〉 =∑

v∈V f(v)g(v) defines a real scalar product on Fm, and that (ev: v ∈ V )
form an orthonormal basis, where ev(v) = 1 and ev(u) = 0 for u (= v.
Verify that (ϕu: u ∈ V ) is another orthonormal basis, where ϕu(v) =
2−m/2(−1)u·v, and that for every f ∈ Fm, f =

∑
u∈V f̂(u) · ϕu is an

expression of f in this basis. 3

2. (a) Let C ⊆ V be a vector subspace. Check that if every nonzero v ∈ C
has at least d ones, then the Hamming distance of every two distinct
vectors in C is at least d. 1

(b) Prove Lemma 15.6.2 by induction as follows. Let m be given and let
d = 0δm1, where the constant δ > 0 is chosen as small as convenient
for the proof. Let us say that a k-tuple (v1, . . . , vk) of vectors of V is
good if v1, . . . , vk are linearly independent and every nonzero vector in
their linear span has at least d ones. Given any good k-tuple (v1, . . . , vk),
k < m

4 , estimate the number of v ∈ V such that (v1, . . . , vk, v) is not a
good (k+1)-tuple, and conclude that every good k-tuple can be extended
to a good (k+1)-tuple. How does this imply the lemma? 4

3. (a) Let A be a matrix with m columns and of rank r, over any field K.
Recall (or look up) a proof that the subspace of Km consisting of all
solutions to Ax = 0 has dimension m − r. 1

(b) For a set U ⊆ V = {0, 1}m we define U⊥ = {v ∈ V : u · v =
0 for all v ∈ U}, where u · v is the inner product as in the text. Show
that if U is a vector subspace of V , then dim U + dim U⊥ = m. 1

(c) Show that if U is a vector subspace of V , then (U⊥)⊥ = U . 2

⇑ NEW ⇑
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15.7 Upper Bounds for !∞-Embeddings

In this section we explain a technique for producing low-distortion embed-
dings of finite metric spaces. Although we are mainly interested in Euclidean
embeddings, here we begin with embeddings into the space #∞, which are
somewhat simpler. We derive almost tight upper bounds.

Let (V, ρ) be an arbitrary metric space. To specify an embedding

f : (V, ρ) → #d∞

means to define d functions f1, . . . , fd: V → R, the coordinates of the embed-
ded points. If we aim at a D-embedding, without loss of generality we may
require it to be nonexpanding, which means that |fi(u)− fi(v)| ≤ ρ(u, v) for
all u, v ∈ V and all i = 1, 2, . . . , d. The D-embedding condition then means
that for every pair {u, v} of points of V , there is a coordinate i = i(u, v) that
“takes care” of the pair: |fi(u) − fi(v)| ≥ 1

Dρ(u, v).
One of the key tricks in constructions of such embeddings is to take each

fi as the distance to some suitable subset Ai ⊆ V ; that is, fi(u) = ρ(u, Ai) =
mina∈Ai ρ(u, a). By the triangle inequality, we have |ρ(u, Ai) − ρ(v, Ai)| ≤
ρ(u, v) for any u, v ∈ V , and so such an embedding is automatically nonex-
panding. We “only” have to choose a suitable collection of the Ai that take
care of all pairs {u, v}.

We begin with a simple case: an old observation showing that every finite
metric space embeds isometrically into #∞.

15.7.1 Proposition (Fréchet’s embedding). Let (V, ρ) be an arbitrary
n-point metric space. Then there is an isometric embedding f : V → #n∞.

Proof. Here the coordinates in #n∞ are indexed by the points of V , and the
vth coordinate is given by fv(u) = ρ(u, v). In the notation above, we thus put
Av = {v}. As we have seen, the embedding is nonexpanding by the triangle
inequality. On the other hand, the coordinate v takes care of the pairs {u, v}
for all u ∈ V :

‖f(u) − f(v)‖∞ ≥ |fv(u) − fv(v)| = ρ(u, v).

!

The dimension of the image in this embedding can be reduced a little;
for example, we can choose some v0 ∈ V and remove the coordinate cor-
responding to v0, and the above proof still works. To reduce the dimension
significantly, though, we have to pay the price of distortion. For example, from
Corollary 15.3.4 we know that for distortions below 3, the dimension must
generally remain at least a fixed fraction of n. We prove an upper bound on
the dimension needed for embeddings with a given distortion, which nearly
matches the lower bounds in Corollary 15.3.4:
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15.7.2 Theorem. Let D = 2q−1 ≥ 3 be an odd integer and let (V, ρ) be an
n-point metric space. Then there is a D-embedding of V into #d∞ with

d = O(qn1/q ln n).

Proof. The basic scheme of the construction is as explained above: Each
coordinate is given by the distance to a suitable subset of V . This time the
subsets are chosen at random with suitable densities.

Let us consider two points u, v ∈ V . What are the sets A such that
|ρ(u, A) − ρ(v, A)| ≥ ∆, for a given real ∆ > 0? For some r ≥ 0, they must
intersect the closed r-ball around u and avoid the open (r+∆)-ball around v;
schematically,

u v

r r + ∆
empty

not empty

or conversely (with the roles of u and v interchanged).
In the favorable situation where the closed r-ball around u does not con-

tain many fewer points of V than the open (r+∆)-ball around v, a random A
with a suitable density has a reasonable chance to work. Generally we have
no control over the distribution of points around u and around v, but by
considering several suitable balls simultaneously, we can find a good pair of
balls. We also do not know the right density needed for the sample to work,
but since we have many coordinates, we can take samples of essentially all
possible densities.

Now we begin with the formal proof. We define an auxiliary param-
eter p = n−1/q, and for j = 1, 2, . . . , q, we introduce the probabilities
pj = min(1

2 , pj). Further, let m = 224n1/q ln n3. For i = 1, 2, . . . , m and
j = 1, 2, . . . , q, we choose a random subset Aij ⊆ V . The sets (and the cor-
responding coordinates in #mq

∞ ) now have double indices, and the index j
influences the “density” of Aij . Namely, each point v ∈ V has probability pj

of being included into Aij , and these events are mutually independent. The
choices of the Aij , too, are independent for distinct indices i and j. Here is a
schematic illustration of the sampling:

A∗1 A∗2 A∗3

. . .
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We divide the coordinates in #d∞ into q blocks by m coordinates. For
v ∈ V , we let

f(v)ij = ρ(v, Aij), i = 1, 2, . . . , m, j = 1, 2, . . . , q.

We claim that with a positive probability, this f : V → #mq
∞ is a D-embedding.

We have already noted that f is nonexpanding, and the following lemma
serves for showing that with a positive probability, every pair {u, v} is taken
care of.

15.7.3 Lemma. Let u, v be two distinct points of V . Then there exists an
index j ∈ {1, 2, . . . , q} such that if the set Aij is chosen randomly as above,
then the probability of the event

|ρ(u, Aij) − ρ(v, Aij)| ≥ 1
D ρ(u, v) (15.9)

is at least p
12 .

First, assuming this lemma, we finish the proof of the theorem. To show
that f is a D-embedding, it suffices to show that with a nonzero probability,
for every pair {u, v} there are i, j such that the event (15.9) in the lemma
occurs for the set Aij . Consider a fixed pair {u, v} and select the appropriate
index j as in the lemma. The probability that the event (15.9) does not occur
for any of the m indices i is at most (1− p

12 )m ≤ e−pm/12 ≤ n−2. Since there
are

(n
2

)
< n2 pairs {u, v}, the probability that we fail to choose a good set

for any of the pairs is smaller than 1. !

Proof of Lemma 15.7.3. Set ∆ = 1
D ρ(u, v). Let B0 = {u}, let B1 be

the (closed) ∆-ball around v, let B2 be the (closed) 2∆-ball around u,. . . ,
finishing with Bq, which is a q∆-ball around u (if q is even) or around v (if q
is odd). The parameters are chosen so that the radii of Bq−1 and Bq add up
to ρ(u, v); that is, the last two balls just touch (recall that D = 2q−1):

u v
∆

3∆

2∆

4∆

Let nt denote number of points of V in Bt.
We want to select an indices j and t such that

nt ≥ n(j−1)/q and nt+1 ≤ nj/q. (15.10)

To this end, we divide the interval [1, n] into q intervals I1, I2, . . . , Iq, where
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Ij =
[
n(j−1)/q, nj/q

]
.

If the sequence (n1, n2, . . . , nq) is not monotone increasing, i.e., if nt+1 < nt

for some t, then (15.10) holds for the j such that Ij contains nt. On the other
hand, if 1 = n0 ≤ n1 ≤ . . . ≤ nq ≤ n, then by the pigeonhole principle,
there exist t and j such that the interval Ij contains both nt and nt+1. Then
(15.10) holds for this j and t as well.

In this way, we have selected the index j whose existence is claimed in the
lemma, and the corresponding index t. We will show that with probability at
least p

12 , the set Aij , randomly selected with point probability pj , includes a
point of Bt (event E1) and is disjoint from the interior of Bt+1 (event E2);
such an Aij satisfies (15.9). Since Bt and the interior of Bt+1 are disjoint,
the events E1 and E2 are independent.

We calculate

Prob[E1] = 1 − Prob[Aij ∩ Bt = ∅] = 1 − (1 − pj)nt ≥ 1 − e−pjnt .

Using (15.10), we have pjnt ≥ pjn(j−1)/q = pjp−j+1 = min(1
2 , pj)p−j+1 ≥

min(1
2 , p). For p ≥ 1

2 , we get Prob[E1] ≥ 1 − e−1/2 > 1
3 ≥ p

3 , while for
p < 1

2 , we have Prob[E1] ≥ 1 − e−p, and a bit of calculus verifies that the
last expression is well above p

3 for all p ∈ [0, 1
2 ).

Further,

Prob[E2] ≥ (1 − pj)nt+1 ≥ (1 − pj)nj/q

≥ (1 − pj)1/pj ≥ 1
4

(since pj ≤ 1
2 ). Thus Prob[E1 ∩ E2] ≥ p

12 , which proves the lemma. !

Bibliography and remarks. The embedding method discussed
in this section was found by Bourgain [Bou85], who used it to prove
Theorem 15.8.1 explained in the subsequent section. Theorem 15.7.2
is from [Mat96b].

Exercises

1. (a) Find an isometric embedding of #d1 into #2
d

∞. 3

(b) Explain how an embedding as in (a) can be used to compute the
diameter of an n-point set in #d1 in time O(d2dn). 3

2. Show that if the unit ball K of some finite-dimensional normed space
is a convex polytope with 2m facets, then that normed space embeds
isometrically into #m∞. 2

(Using results on approximation of convex bodies by polytopes, this yields
useful approximate embeddings of arbitrary norms into #k∞.)

3. Deduce from Theorem 15.7.2 that every n-point metric space can be D-
embedded into #k2 with D = O(log2 n) and k = O(log2 n). 2
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15.8 Upper Bounds for Euclidean Embeddings

By a method similar to the one shown in the previous section, one can also
prove a tight upper bound on Euclidean embeddings; the method was actually
invented for this problem.

15.8.1 Theorem (Bourgain’s embedding into !2). Every n-point metric
space (V, ρ) can be embedded into a Euclidean space with distortion at most
O(log n).

The overall strategy of the embedding is similar to the embedding into #d∞
in the proof of Theorem 15.7.2. The coordinates in #d2 are given by distances
to suitable subsets. The situation is slightly more complicated than before:
For embedding into #d∞, it was enough to exhibit one coordinate “taking care”
of each pair, whereas for the Euclidean embedding, many of the coordinates
will contribute significantly to every pair. Here is the appropriate analogue
of Lemma 15.7.3.

15.8.2 Lemma. Let u, v ∈ V be two distinct points. Then there exist real
numbers ∆1,∆2, . . . ,∆q ≥ 0 with ∆1 + · · · + ∆q = 1

4 ρ(u, v), where q =
0log2 n1+1, and such that the following holds for each j = 1, 2, . . . , q: If
Aj ⊆ V is a randomly chosen subset of V , with each point of V included in
Aj independently with probability 2−j , then the probability Pj of the event

|ρ(u, Aj) − ρ(v, Aj)| ≥ ∆j

satisfies Pj ≥ 1
12 .

Proof. We fix u and v, and we set rq = 1
4 ρ(u, v). For j = 0, 1, . . . , q − 1 we

let r∗j be the smallest radius such that both |B(u, r∗j )| ≥ 2j and |B(v, r∗j )| ≥ 2j

where, as usual, B(x, r) = {y ∈ V : ρ(x, y) ≤ r}, and we set rj = min(r∗j , rq).
We are going to show that the claim of the lemma holds with ∆j = rj −rj−1.

We may assume that rj−1 < rq, for otherwise, we have ∆j = 0 and the
claim holds automatically. We note that rj−1 < rq implies that both of the
balls B(u, rj−1) and B(v, rj−1) have at least 2j−1 points.

So let us fix j ∈ {1, 2, . . . , q} with rj−1 < rq, and let Aj ⊆ V be a random
sample with point probability 2−j. By the definition of rj , |B◦(u, rj)| < 2j

or |B◦(v, rj)| < 2j , where B◦(x, r) = {y ∈ V : ρ(x, y) < r} denotes the open
ball (this holds for j = q, too, because |V | ≤ 2q). We choose the notation u, v
so that |B◦(u, rj)| < 2j . A random set Aj is good if it intersects B(v, rj−1)
and misses B◦(u, rj). The former set has cardinality at least 2j−1 (as was
noted above) and the latter at most 2j. The calculation of the probability
that Aj has these properties is identical to the calculation in the proof of
Lemma 15.7.3 with p = 1

2 . !

In the subsequent proof of Theorem 15.8.1 we will construct the embed-
ding in a slightly roundabout way, which sheds some light on what is really
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going on. Define a line pseudometric on V to be any pseudometric ν induced
by a mapping ϕ: V → R, that is, given by ν(u, v) = |ϕ(u) − ϕ(v)|. For
each A ⊆ V , let νA be the line pseudometric corresponding to the mapping
v +→ ρ(v, A). As we have noted, each νA is dominated by ρ, i.e., νA ≤ ρ
(the inequality between two (pseudo)metrics on the same point set means
inequality for each pair of points).

The following easy lemma shows that if a metric ρ on V can be approx-
imated by a convex combination of line pseudometrics, each of them domi-
nated by ρ, then a good embedding of (V, ρ) into #2 exists.

15.8.3 Lemma. Let (V, ρ) be a finite metric space, and let ν1, . . . , νN be
line pseudometrics on V with νi ≤ ρ for all i and such that

N∑

i=1

αiνi ≥ 1
D
ρ

for some nonnegative α1, . . . , αN summing up to 1. Then (V, ρ) can be D-
embedded into #N2 .

Proof. Let ϕi: V → R be a mapping inducing the line pseudometric νi. We
define the embedding f : V → #N2 by

f(v)i =
√
αi · ϕi(v).

Then, on the one hand,

‖f(u) − f(v)‖2 =
N∑

i=1

αiνi(u, v)2 ≤ ρ(u, v)2,

because all νi are dominated by ρ and
∑
αi = 1. On the other hand,

‖f(u) − f(v)‖ =
( N∑

i=1

αiνi(u, v)2
)1/2

=
( N∑

i=1

αi

)1/2( N∑

i=1

αiνi(u, v)2
)1/2

≥
N∑

i=1

αiνi(u, v)

by Cauchy–Schwarz, and the latter expression is at least 1
D ρ(u, v) by the

assumption. !

Proof of Theorem 15.8.1. As was remarked above, each of the line pseu-
dometrics νA corresponding to the mapping v +→ ρ(v, A) is dominated by ρ.
It remains to observe that Lemma 15.8.2 provides a convex combination of
these line pseudometrics that is bounded from below by 1

48q ·ρ. The coefficient
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of each νA in this convex combination is given by the probability of A appear-
ing as one of the sets Aj in Lemma 15.8.2. More precisely, write πj(A) for
the probability that a random subset of V , with points picked independently
with probability 2−j , equals A. Then the claim of Lemma 15.8.2 implies, for
every pair {u, v}, ∑

A⊆V

πj(A) · νA(u, v) ≥ 1
12 ∆j .

Summing over j = 1, 2, . . . , q, we have

∑

A⊆V

( q∑

j=1

πj(A)
)
· νA(u, v) ≥ 1

12 ·
q∑

j=1

∆j = 1
48 ρ(u, v).

Dividing by q and using
∑

A⊆V πj(A) = 1, we arrive at

∑

A⊆V

αAνA ≥ 1
48q

ρ,
∑

A⊆V

αA = 1,

with αA = 1
q

∑q
j=1 πj(A). Lemma 15.8.3 now gives embeddability into #2

with distortion at most 48q. Theorem 15.8.1 is proved. !

Remarks. Almost the same proof with a slight modification of Lemma 15.8.3
shows that for each p ∈ [1,∞), every n-point metric space can be embedded
into #p with distortion O(log n); see Exercise 1.

The proof as stated produces an embedding into space of dimension 2n,
since there are 2n subsets A ⊆ V , each of them yielding one coordinate.
To reduce the dimension, one can argue that not all the sets A are needed:
by suitable Chernoff-type estimates, it follows that it is sufficient to choose
O(log n) random sets with point probability 2−j, i.e., O(log2 n) sets altogether
(Exercise 2). Of course, for Euclidean embeddings, an even better dimension
O(log n) is obtained using the Johnson–Lindenstrauss flattening lemma, but
for other #p, no flattening lemma is available.

An algorithmic application: approximating the sparsest cut. We
know that every n-point metric space can be O(log n)-embedded into #d1 with
d = O(log2 n). By inspecting the proof, it is not difficult to give a randomized
algorithm that computes such an embedding in polynomial expected time.
We show a neat algorithmic application to a graph-theoretic problem.

Let G = (V, E) be a graph. A cut in G is a partition of V into two
nonempty subsets A and B = V \A. The density of the cut (A, B) is e(A,B)

|A|·|B| ,
where e(A, B) is the number of edges connecting A and B. Given G, we
would like to find a cut of the smallest possible density. This problem is NP-
hard, and here we discuss an efficient algorithm for finding an approximate
answer: a cut whose density is at most O(log n) times larger than the density
of the sparsest cut, where n = |V | (the best known approximation guarantee
for a polynomial-time algorithm is better, currently O(

√
log n )). Note that



410 Chapter 15: Embedding Finite Metric Spaces into Normed Spaces

this also allows us to approximate the edge expansion of G (discussed in
Section 15.5) within a multiplicative factor of O(log n).

First we reformulate the problem equivalently using cut pseudometrics. A
cut pseudometric on V is a pseudometric τ corresponding to some cut (A, B),
with τ(u, v) = τ(v, u) = 1 for u ∈ A and v ∈ B and τ(u, v) = 0 for u, v ∈ A or
u, v ∈ B. In other words, a cut pseudometric is a line pseudometric induced
by a mapping ψ: V → {0, 1} (excluding the trivial case where all of V gets
mapped to the same point). Letting F =

(V
2

)
, the density of the cut (A, B)

can be written as τ(E)/τ(F ), where τ is the corresponding cut pseudometric
and τ(E) =

∑
{u,v}∈E τ(u, v). Therefore, we would like to minimize the ratio

R1(τ) = τ(E)/τ(F ) over all cut pseudometrics τ .
In the first step of the algorithm we relax the problem, and we find a pseu-

dometric, not necessarily a cut one, minimizing the ratio R1(ρ) = ρ(E)/ρ(F ).
This can be done efficiently by linear programming. The minimized function
looks nonlinear, but we can get around this by a simple trick: We postulate
the additional condition ρ(F ) = 1 and minimize the linear function ρ(E). The
variables in the linear program are the

(n
2

)
numbers ρ(u, v) for {u, v} ∈ F ,

and the constraints are ρ(u, v) ≥ 0 (for all u, v), ρ(F ) = 1, and those express-
ing the triangle inequalities for all triples u, v, w ∈ V .

Having computed a ρ0 minimizing R1(ρ), we find a D-embedding f of
(V, ρ0) into some #d1 with D = O(log n). If σ0 is the pseudometric induced on
V by this f , we clearly have R1(σ0) ≤ D·R1(ρ0). Now since σ0 is an #1-pseudo-
metric, it can be expressed as a nonnegative linear combination of suitable
cut pseudometrics (Exercise 15.5.3): σ0 =

∑N
i=1 αiτi, α1, . . . , αN > 0, N ≤

d(n−1). It is not difficult to check that R1(σ0) ≥ min{R1(τi): i = 1, 2, . . . , N}
(Exercise 3). Therefore, at least one of the τi is a cut pseudometric satisfying
R1(τi) ≤ R1(σ0) ≤ D · R1(ρ0) ≤ D · R1(τ0), where τ0 is a cut pseudometric
with the smallest possible R1(τ0). Therefore, the cut corresponding to this τi
has density at most O(log n) times larger than the sparsest possible cut.

Bibliography and remarks. Theorem 15.8.1 is due to Bour-
gain [Bou85]. The algorithmic application to approximating the spars-
est cut uses the idea of an algorithm for a somewhat more compli-
cated problem (multicommodity flow) found by Linial et al. [LLR95]
and independently by Aumann and Rabani [AR98]. The improved
O(

√
log n ) approximation is due to Arora, Rao, and Vazirani [ARV04].

We will briefly discuss further results proved by variations of Bour-
gain’s embedding technique. Many of them have been obtained in the
study of approximation algorithms and imply strong algorithmic re-
sults.
Tree metrics. Let G be a class of graphs and consider a graph G ∈ G.
Each positive weight function w: E(G) → (0,∞) defines a metric on
V (G), namely the shortest-path metric, where the length of a path
is the sum of the weights of its edges. All subspaces of the resulting
metric spaces are referred to as G-metrics. A tree metric is a T -metric
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for T the class of all trees. Tree metrics generally behave much better
than arbitrary metrics, but for embedding problems they are far from
trivial.

Bourgain [Bou86] proved, using martingales, a surprising lower
bound for embedding tree metrics into #2: A tree metric on n points
requires distortion Ω(

√
log log n ) in the worst case. His example is the

complete binary tree with unit edge lengths, and for that example,
he also constructed an embedding with O(

√
log log n ) distortion. For

embedding the complete binary tree into #p, p > 1, the distortion is
Ω((log log n)min(1/2,1/p)), with the constant of proportionality depend-
ing on p and tending to 0 as p → 1. (For Banach-space specialists, we
also remark that all tree metrics can be embedded into a given Banach
space Z with bounded distortion if and only if Z is not superreflexive.)
In Matoušek [Mat99b] it was shown that the complete binary tree is
essentially the worst example; that is, every n-point tree metric can be
embedded into #p with distortion O((log log n)min(1/2,1/p)). An alter-
native, elementary proof was given for the matching lower bound (see
Exercise 5 for a weaker version). Another proof of the lower bound,
very short but applying only for embeddings into #2, was found by
Linial and Saks [LS03] (Exercise 6).

In the notes to Section 15.3 we mentioned that general n-point
metric spaces require worst-case distortion Ω(n1/$(d+1)/2%) for embed-
ding into #d2, d ≥ 2 fixed. Gupta [Gup00] proved that for n-point tree
metrics, O(n1/(d−1))-embeddings into #d2 are possible. The best known
lower bound is Ω(n1/d), from a straightforward volume argument. Ba-
bilon, Matoušek, Maxová, and Valtr [BMMV02] showed that every
n-vertex tree with unit-length edges can be O(

√
n )-embedded into #22.

Planar-graph metrics and metrics with excluded minor. A planar-
graph metric is a P-metric with P standing for the class of all pla-
nar graphs (the shorter but potentially confusing term planar met-
ric is used in the literature). Rao [Rao99] proved that every n-point
planar-graph metric can be embedded into #2 with distortion only
O(

√
log n ), as opposed to log n for general metrics. More generally,

the same method shows that whenever H is a fixed graph and Excl(H)
is the class of all graphs not containing H as a minor, then Excl(H)-
metrics can be O(

√
log n )-embedded into #2. For a matching lower

bound, valid already for the class Excl(K4) (series-parallel graphs),
and consequently for planar-graph metrics, see Exercise 15.4.2 or Ex-
ercise 15.9.1.

We outline Rao’s method of embedding. We begin with graphs
where all edges have unit weight (this is the setting in [Rao99], but
our presentation differs in some details), and then we indicate how
graphs with arbitrary edge weights can be treated. The main new
ingredient in Rao’s method, compared to Bourgain’s approach, is a
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result of Klein, Plotkin, and Rao [KPR93] about a decomposition of
graphs with an excluded minor into pieces of low diameter. Here is the
decomposition procedure.

Let G be a graph, let ρ be the corresponding graph metric (with all
edges having unit length), and let ∆ be an integer parameter. We fix a
vertex v0 ∈ V (G) arbitrarily, we choose an integer r ∈ {0, 1, . . . ,∆−1}
uniformly at random, and we let B1 = {v ∈ V (G): ρ(v, v0) ≡
r (mod∆)}. By deleting the vertices of B1 from G, the remaining
vertices are partitioned into connected components; this is the first
level of the decomposition. For each of these components of G \ B1,
we repeat the same procedure; ∆ remains unchanged and r is chosen
anew at random (but we can use the same r for all the components).
Let B2 be the set of vertices deleted from G in this second round,
taken together for all the components. The second level of the decom-
position consists of the connected components of G \ (B1 ∪ B2), and
decompositions of levels 3, 4, . . . can be produced similarly. The fol-
lowing schematic drawing illustrates the two-level decomposition; the
graph is marked as the gray area, and the vertices of B1 and B2 are
indicated by the solid and dashed arcs, respectively.

For planar graphs, it suffices to use a 3-level decomposition, and for
every fixed graph H , there is a suitable k = k(H) such that a k-level
decomposition is appropriate for all graphs G ∈ Excl(H).

Let B = B1 ∪ · · · ∪ Bk; this can be viewed as the boundary of the
components in the k-level decomposition. Here are the key properties
of the decomposition:

(i) For each vertex v ∈ V (G), we have ρ(v, B) ≥ c1∆ with proba-
bility at least c2, for suitable constants c1, c2 > 0. The probability is
with respect to the random choices of the parameters r at each level
of the decomposition. (This is not hard to see; for example, in the
first level of the decomposition, for every fixed v, ρ(v, v0) is some fixed
number and it has a good chance to be at least c1∆ away, modulo ∆,
from a random r.)
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(ii) Each component in the resulting decomposition has diameter
at most O(∆). (This is not so easy to prove, and it is where one needs
k = k(H) sufficiently large. For H = K3,3, which includes the case of
planar graphs, the proof is a relatively simple case analysis.)

Next, we describe the embedding of V (G) into #2 in several steps.
First we consider ∆ and the decomposition as above fixed, and we let
C1, . . . , Cm be the components of G \ B. For all the Ci, we choose
random signs σ(Ci) ∈ {−1, +1} uniformly and independently. For a
vertex x ∈ V (G), we define σ(x) = 0 if x ∈ B and σ(x) = σ(Ci)
if x ∈ V (Ci). Then we define the mapping ϕB,σ: V (G) → R by
ϕB,σ(v) = σ(x) · ρ(x, B) (the distance of x to the boundary signed by
the component’s sign). This ϕB,σ induces a line pseudometric νB,σ,
and it is easy to see that νB,σ is dominated by ρ.

Let C be a constant such that all the Ci have diameter at most
C∆, and let x, y ∈ V (G) be such that C∆ < ρ(x, y) ≤ 2C∆. Such
x and y certainly lie in distinct components, and σ(x) (= σ(y) with
probability 1

2 . With probability at least c2, we have ρ(x, B) ≥ c1∆,
and so with a fixed positive probability, νB,σ places x and y at distance
at least c1∆.

Now, we still keep ∆ fixed and consider νB,σ for all possible B and
σ. Letting αB,σ be the probability that a particular pair (B, σ) results
from the decomposition procedure, we have

∑

B,σ

αB,σνB,σ(x, y) = Ω(ρ(x, y))

whenever C∆ < ρ(x, y) ≤ 2C∆. As in the proof of Lemma 15.8.3,
this yields a 1-Lipschitz embedding f∆: V (G) → #N2 (for some N) that
shortens distances for pairs x, y as above by at most a constant factor.
(It is not really necessary to use all the possible pairs (B, σ) in the
embedding; it is easy to show that const · log n independent random
B and σ will do.)

To construct the final embedding f : V (G) → #2, we let f(v) be the
concatenation of the vectors f∆ for ∆ ∈ {2j: 1 ≤ 2j ≤ diam(G)}. No
distance is expanded by more than O(

√
log diam(G) ) = O(

√
log n ),

and the contraction is at most by a constant factor, and so we have
an embedding into #2 with distortion O(

√
log n ).

Why do we get a better bound than for Bourgain’s embedding?
In both cases we have about log n groups of coordinates in the em-
bedding. In Rao’s embedding we know that for every pair (x, y), one
of the groups contributes at least a fixed fraction of ρ(x, y) (and no
group contributes more than ρ(x, y)). Thus, the sum of squares of the
contributions is between ρ(x, y)2 and ρ(x, y)2 log n. In Bourgain’s em-
bedding (with a comparable scaling) no group contributes more than
ρ(x, y), and the sum of the contributions of all groups is at least a
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fixed fraction of ρ(x, y). But since we do not know how the contri-
butions are distributed among the groups, we can conclude only that
the sum of squares of the contributions is between ρ(x, y)2/ logn and
ρ(x, y)2 log n.

It remains to sketch the modifications of Rao’s embedding for a
graph G with arbitrary nonnegative weights on edges. For the un-
weighted case, we defined B1 as the vertices lying exactly at the given
distances from v0. In the weighted case, there need not be vertices
exactly at these distances, but we can add artificial vertices by subdi-
viding the appropriate edges; this is a minor technical issue. A more
serious problem is that the distances ρ(x, y) can be in a very wide
range, not just from 1 to n. We let ∆ run through all the relevant
powers of 2 (that is, such that C∆ < ρ(x, y) ≤ 2C∆ for some x (= y),
but for producing the decomposition for a particular ∆, we use a mod-
ified graph G∆ obtained from G by contracting all edges shorter than
∆
2n . In this way, we can have many more than log n values of ∆, but
only O(log n) of them are relevant for each pair (x, y), and the analysis
works as before.

Gupta, Newman, Rabinovich, and Sinclair [GNRS99] conjectured
that for any fixed graph H , Excl(H)-metrics might be O(1)-em-
beddable into #1 (the constant depending on H). They proved the con-
jecture for H = K4 and for H = K2,3 (outerplanar graphs). Chekuri,
Gupta, Newman, Rabinovich, and Sinclair [CGN+03] established the
conjecture for k-outerplanar graphs (for every fixed k), which are,
roughly speaking, graphs admitting a planar drawing with no k+1
disjoint properly nested cycles, a canonical example being the k×n
grid.
Volume-respecting embeddings. Feige [Fei00] introduced an interest-
ing strengthening of the notion of the distortion of an embedding,
concerning embeddings into Euclidean spaces. Let f : (V, ρ) → #2 be
an embedding that for simplicity we require to be 1-Lipschitz (nonex-
panding). The usual distortion of f is determined by looking at pairs
of points, while Feige’s notion takes into account all k-tuples for some
k ≥ 2. For example, if V has 3 points, every two with distance 1, then
the following two embeddings into #22 have about the same distortion:

But while the left embedding is good in Feige’s sense for k = 3, the
right one is completely unsatisfactory. For a k-point set P ⊂ #2, de-
fine Evol(P ) as the (k−1)-dimensional volume of the simplex spanned
by P (so Evol(P ) = 0 if P is affinely dependent). For a k-point
metric space (S, ρ), the volume Vol(S) is defined as supf Evol(f(S)),
where the supremum is over all 1-Lipschitz f : S → #2. An embedding
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f : (V, ρ) → #2 is (k, D) volume-respecting if for every k-point subset
S ⊆ V , we have D · Evol(f(S))1/(k−1) ≥ Vol(S)1/(k−1). For D small,
this means that the image of any k-tuple spans nearly as large a vol-
ume as it possibly can for a 1-Lipschitz map. (Note, for example, that
an isometric embedding of a path into #2 is not volume-respecting.)

Feige showed that Vol(S) can be approximated quite well by
an intrinsic parameter of the metric space (not referring to embed-
dings), namely, by the tree volume Tvol(S), which equals the prod-
ucts of the edge lengths in a minimum spanning tree on S (with
respect to the metric on S). Namely, Vol(S) ≤ 1

(k−1)! Tvol(S) ≤
2(k−2)/2 Vol(S). He proved that for any n-point metric space and
all k ≥ 2, the embedding as in the proof of Theorem 15.8.1 is
(k, O(log n +

√
k log n log k )) volume-respecting. Later Krauthgamer,

Lee, Mendel, and Naor [KLMN04] established the existence of embed-
dings that are (k, O(log n)) volume-respecting for all k = 1, 2, . . . , n,
which is optimal.

The notion of volume-respecting embeddings currently still looks
somewhat mysterious. In an attempt to convey some feeling about
it, we outline Feige’s application and indicate the use of the volume-
respecting condition in it. He considered the problem of approximat-
ing the bandwidth of a given n-vertex graph G. The bandwidth is
the minimum, over all bijective maps ϕ: V (G) → {1, 2, . . . , n}, of
max{|ϕ(u) − ϕ(v)|: {u, v} ∈ E(G)} (so it has the flavor of an approx-
imate embedding problem). Computing the bandwidth is NP-hard,
but Feige’s ingenious algorithm approximates it within a factor of
O((log n)const). The algorithm has two main steps: First, embed the
graph (as a metric space) into #m2 , with m being some suitable power
of log n, by a (k, D) volume-respecting embedding f , where k = log n
and D is as small as one can get. Second, let λ be a random line in
#m2 and let ψ(v) denote the orthogonal projection of f(v) on λ. This
ψ: V (G) → λ is almost surely injective, and so it provides a linear or-
dering of the vertices, that is, a bijective map ϕ: V (G) → {1, 2, . . . , n},
and this is used for estimating the bandwidth.

To indicate the analysis, we need the notion of local density of the
graph G: ld(G) = max{|B(v, r)|/r: v ∈ V (G), r = 1, 2, . . . , n}, where
B(v, r) are all vertices at distance at most r from v. It is not hard to
see that ld(G) is a lower bound for the bandwidth, and Feige’s analysis
shows that O(ld(G)(log n)const) is an upper bound.

One first verifies that with high probability, if {u, v} ∈ E(G), then
the images ψ(u) and ψ(v) on λ are close; concretely, |ψ(u) − ψ(v)| ≤
∆ = O(

√
(log n)/m ). For proving this, it suffices to know that f is

1-Lipschitz, and it is an immediate consequence of measure concentra-
tion on the sphere. If b is the bandwidth obtained from the ordering
given by ψ, then some interval of length ∆ on λ contains the images of
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b vertices. Call a k-tuple S ⊂ V (G) squeezed if ψ(S) lies in an interval
of length ∆. If b is large, then there are many squeezed S. On the
other hand, one proves that, not surprisingly, if ld(G) is small, then
Vol(S) is large for all but a few k-tuples S ⊂ V (G). Now, the volume-
respecting condition enters: If Vol(S) is large, then conv(f(S)) has
large (k−1)-dimensional volume. It turns out that the projection of a
convex set in #m2 with large (k−1)-dimensional volume on a random
line is unlikely to be short, and so S with large Vol(S) is unlikely to be
squeezed. Thus, by estimating the number of squeezed k-tuples in two
ways, one gets an inequality bounding b from above in terms of ld(G).

Vempala [Vem98] applied volume-respecting embeddings in an-
other algorithmic problem, this time concerning arrangement of graph
vertices in the plane. Moreover, he also gave alternative proof of some
of Feige’s lemmas. Rao in the already mentioned paper [Rao99] also
obtained improved volume-respecting embeddings for planar metrics. ⇓ NEW ⇓
Probabilistic approximation by dominating trees. As we have seen, in
Bourgain’s method, for a given metric ρ one constructs a convex com-
bination

∑
αiνi ≥ 1

D ρ, where νi are line pseudometrics dominated
by ρ. An interesting “dual” result is the possibility of approximating
every ρ by a convex combination

∑N
i=1 αiτi, where this time the in-

equalities go in the opposite direction: τi ≥ ρ and
∑
αiτi ≤ Dρ, with

D = O(log n). The τi are not line metrics (and in general they cannot
be), but they are tree metrics. (It is important to use many trees, since
it is impossible to approximate a general metric by a single tree metric
with any reasonable distortion—consider the shortest-path metric of
a cycle of length n.) Since tree metrics embed isometrically into #1,
the result yields an alternative proof of O(log n)–embeddability of all
n-point metric spaces into #1. This also implies that we must have
D = Ω(log n) in the above result.

The approximation of ρ by tree metrics as above is usually called a
probabilistic approximation by dominating trees, which refers to the fol-
lowing alternative view. The coefficients α1, . . . , αN and the tree met-
rics τ1, . . . , τN specify a probability distribution on tree metrics, where
τi is chosen with probability αi. Then the condition

∑
αiτi ≤ Dρ

translates as follows: If we pick a tree metric τ at random according
to this distribution, then E[τ(x, y)] ≤ Dρ(x, y) for every x, y (and
τ(x, y) ≥ ρ(x, y) always by the condition τi ≥ ρ). This is conveniently
used in approximation algorithms: If we want to solve some optimiza-
tion problem for a given metric ρ, we can compute the τi and αi and
solve the problem for the random tree metric τ , which is usually much
easier than solving it for a general metric. Often it can be shown that
the expected value of the optimal solution for τ is not very far from
the optimal value for the original metric ρ.
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The first result about probabilistic approximation by dominat-
ing trees, with D = 2O(

√
log n log log n ), is due to Alon, Karp, Peleg,

and West [AKPW95]. A fundamental progress was made by Bartal
[Bar96], who obtained D = O(log2 n) (improved to O(log n log log n)
in a later paper), and documented the significance of the result by
many impressive applications. This line of research was crowned by
Fakcharoenphol, Talwar, and Rao [FRT03], who obtained the optimal
bound D = O(log n), with a clean few-page proof.

The construction of Alon et al. [AKPW95] assumes that the in-
put metric is given as the shortest-path metric of a graph G (with
weighted edges), and the resulting tree metrics τi are induced by span-
ning trees of G. The subsequent constructions [Bar96], [FRT03] don’t
share this property, but Elkin, Emek, Spielman, and Teng [EEST05]
later achieved D = O((log n log log n)2) using spanning trees.

Bartal [Bar96] also introduced the useful notion of a k-hierarchically
well-separated tree metric, where k ≥ 1 is a real parameter. Here we
present a newer, and apparently more convenient, definition by Bar-
tal, Bollobás, and Mendel [BBM01]. A 1-hierarchically well-separated
tree metric is the same as an ultrametric, that is, a metric that can be
represented as the shortest-path metric on the leaves of a rooted tree
T (with weighted edges) such that all leaves have the same distance
from the root. For k > 1, we moreover require that h(v) ≤ h(u)/k
whenever v is a child of u in T , where h(v) denotes the distance of v
to the nearest leaves. In the result of [FRT03] cited above, one can get
the τi k-hierarchically well-separated for every prescribed k ≥ 1, with
the constant in the bound D = O(log n) depending on k (the same
holds for Bartal’s earlier results).

We sketch the construction of Fakcharoenphol et al. [FRT03]. We
may suppose that the given n-point metric space (V, ρ) has all dis-
tances between 1 and 2m. We describe a randomized algorithm for
generating a random tree metric τ with τ ≥ ρ always and E[τ(x, y)] ≤
O(log n·ρ(x, y)) for every x, y. The αi and τi specifying the probability
distribution are thus given implicitly (and actually, the procedure as
described may output infinitely many distinct τi, but easy modifica-
tions would lead to a finite collection). We first generate a sequence
(Pm,Pm−1, . . . ,P0), where each Pi is a partition of V , and Pi refines
Pi+1; that is, each set in Pi+1 is a disjoint union of some sets of Pi.
We begin with Pm = {V }, and proceed to Pm−1,Pm−2, . . . , finishing
with P0 that consists of n singleton sets. The diameter of each set in
Pi is at most 2i+1. Having constructed these Pi, we arrange them into
a rooted tree in a natural way. The vertices of the tree have the form
(S, i), S ∈ Pi, i = 0, 1, . . . , m. The root is (V, m), and the children of a
vertex (S, i+1), S ∈ Pi+1, are (T, i) with T ∈ Pi and T ⊆ S. The edge
connecting (S, i+1) to (T, i) has length 2i+1, and finally, the metric τ
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is the shortest-path metric induced by this tree on the set of its leaves
(the leaves correspond to points of V ). It is easily seen that τ ≥ ρ and
that τ is 2-hierarchically well-separated.

The construction of the Pi starts with arranging the points of V in
a random order (v1, v2, . . . , vn), and choosing a real number β ∈ [1, 2]
uniformly at random. Supposing that Pi+1 has already been con-
structed, we set βi = β2i−1, and for every S ∈ Pi+1 we generate a par-
tition of S into disjoint subsets S1, . . . , Sn (don’t get confused by the
n; most of the S" are going to be empty!). Namely, for # = 1, 2, . . . , n,
we set S" = {v ∈ S \ (S1 ∪ · · · ∪ S"−1): ρ(v, vi) ≤ βi}. That is, the
first vertex v1 in the random order, the “king,” comes to S and he
can take all vertices that are closer to him than βi. Then, after the
king has been satisfied, the “prime minister” v2 comes, and he is al-
lowed to grab from the leftovers all that is in his βi-neighborhood.
Then v3 comes, and so on until vn. The partition Pi consists of all
nonempty S" thus generated for all S ∈ Pi+1 and all #. The proof of
E[τ(x, y)] ≤ O(log n · ρ(x, y)) is a simple but ingenious probabilistic
analysis, for which we refer to [FRT03]. ⇑ NEW ⇑

Exercises

1. (Embedding into #p) Prove that under the assumptions of Lemma 15.8.3,
the metric space (V, ρ) can be D-embedded into #Np , 1 ≤ p ≤ ∞, with
distortion at most D. (You may want to start with the rather easy cases
p = 1 and p = ∞, and use Hölder’s inequality for an arbitrary p.) 3

2. (Dimension reduction for the embedding)
(a) Let E1, . . . , Em be independent events, each of them having proba-
bility at least 1

12 . Prove that the probability of no more than m
24 of the

Ei occurring is at most e−cm, for a sufficiently small positive constant c.
Use suitable Chernoff-type estimates or direct estimates of binomial co-
efficients. 3

(b) Modify the proof of Theorem 15.8.1 as follows: For each j =
1, 2, . . . , q, pick sets Aij independently at random, i = 1, 2, . . . , m,
where the points are included in Aij with probability 2−j and where
m = C log n for a sufficiently large constant C. Using (a) and Lem-
mas 15.8.2 and 15.8.3, prove that with a positive probability, the embed-
ding f : V → #qm

2 given by f(v)ij = ρ(v, Aij) has distortion O(log n). 3

3. Let a1, a2, . . . , an, b1, b2, . . . , bn, α1, α2, . . . , αn be positive real numbers.
Show that

α1a1 + α2a2 + · · · + αnan

α1b1 + α2b2 + · · · + αnbn
≥ min{a1

b1
,
a2

b2
, . . . ,

an

bn
}.

2

4. Let Pn be the metric space {0, 1, . . . , n} with the metric inherited from
R (or a path of length n with the graph metric). Prove the following
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Ramsey-type result: For every D > 1 and every ε > 0 there exists an
n = n(D, ε) such that whenever f : Pn → (Z, σ) is a D-embedding of Pn

into some metric space, then there are a < b < c, b = a+c
2 , such that f

restricted to the subspace {a, b, c} of Pn is a (1+ε)-embedding. That is,
if a sufficiently long path is D-embedded, then it contains a scaled copy
of a path of length 2 embedded with distortion close to 1. 4

Can you extend the proof so that it provides a scaled copy of a path of
length k?

5. (Lower bound for embedding trees into #2)
(a) Show that for every ε > 0 there exists δ > 0 with the following
property. Let x0, x1, x2, x′

2 ∈ #2 be points such that ‖x0 − x1‖, ‖x1 −
x2‖, ‖x1 − x′

2‖ ∈ [1, 1 + δ] and ‖x0 − x2‖, ‖x0 − x′
2‖ ∈ [2, 2 + δ] (so all the

distances are almost like the graph distances in the following tree, except
possibly for the one marked by a dotted line).

x1x0

x2

x′
2

Then ‖x2 − x′
2‖ ≤ ε; that is, the remaining distance must be very short.

3

(b) Let Tk,m denote the complete k-ary tree of height m; the following
picture shows T3,2:

root

Show that for every r and m there exists k such that whenever the leaves
of Tk,m are colored by r colors, there is a subtree of Tk,m isomorphic to
T2,m with all leaves having the same color. 2

(c) Use (a), (b), and Exercise 4 to prove that for any D > 1 there exist
m and k such that the tree Tk,m considered as a metric space with the
shortest-path metric cannot be D-embedded into #2. 4

6. (Another lower bound for embedding trees into #2)
(a) Let x0, x1, . . . , xn be arbitrary points in a Euclidean space (we think
of them as images of the vertices of a path of length n under some em-
bedding). Let Γ = {(a, a+2k, a+2k+1): a = 0, 1, 2, . . . , a+2k+1 ≤ n, k =
0, 1, 2 . . .}. Prove that

∑

(a,b,c)∈Γ

‖xa − 2xb + xc‖2

(c − a)2
≤

n−1∑

a=0

‖xa − xa+1‖2;

this shows that an average triple (xa, xb, xc) is “straight” (and provides
an alternative solution to Exercise 4 for Z = #2). 3
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(b) Prove that the complete binary tree T2,m requires Ω(
√

log m ) dis-
tortion for embedding into #2. Consider a nonexpanding embedding
f : V (T2,m) → #2 and sum the inequalities as in (a) over all images of
the root-to-leaf paths. 4

7. (Bourgain’s embedding of complete binary trees into #2) Let Bm = T2,m

be the complete binary tree of height m (notation as in Exercise 5).
We identify the vertices of Bm with words of length at most m over
the alphabet {0, 1}: The root of Bm is the empty word, and the sons
of a vertex w are the vertices w0 and w1. We define the embedding
f : V (Bm) → #|V (Bm)|−1

2 , where the coordinates in the range of f are
indexed by the vertices of Bm distinct from the root, i.e., by nonempty
words. For a word w ∈ V (Bm) of length a, let f(w)u =

√
a−b+1 if u is

a nonempty initial segment of w of length b, and f(w)u = 0 otherwise.
Prove that this embedding has distortion O(

√
log m ). 4

8. Prove that any finite tree metric can be isometrically embedded into #1.
3

9. (Low-dimensional embedding of trees)
(a) Let T be a tree (in the graph-theoretic sense) on n ≥ 3 vertices. Prove
that there exist subtrees T1 and T2 of T that share a single vertex and
no edge and together cover T , such that max(|V (T1)|, |V (T2)|) ≤ 1+2

3n.
3

(b) Using (a), prove that every tree metric space with n points can be
isometrically embedded into #d∞ with d = O(log n). 4

This result is from [LLR95].

15.9 Approximate Embeddings 2002–2005
⇓ NEW ⇓

The progress in the field considered in the present chapter has been amazing
since the first edition of the book. Mainly by the efforts of several young re-
searchers, many problem that were open and considered difficult in 2002 have
been solved in the next few years. The development is vividly documented
in the problem collection [Mat05], which started at a workshop in 2002 and
has been continuously updated with new problems and solutions.

Few of the new results are mentioned in updated remarks to the previous
sections or in the newly written Section 15.6. Here we outline some more, in
a format similar to the bibliographic parts of the other sections.

Starring: !1 metrics. Most of the main results from the period 2002–2005
have a unifying theme: a key role of #1. There are several sources of its promi-
nence. First, from a mathematical point of view, #1 can be thought of as a
“frontier of wilderness.” The Euclidean metrics have all kinds of nice proper-
ties, and #p with 1 < p < ∞ share some of them, such as uniform convexity.
On the other side, #∞ metrics are the same as all metrics, and so nobody ex-
pects anything nice from them. The space #1 is somewhere in between, with a
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(deceptively) simple definition of the norm, some good properties, but many
surprises and mysteries. For example, the following famous innocent-looking
problem is still open: Does the 3-dimensional space #31 have a finite order of
congruence? A metric space M is said to have order of congruence at most
m if every finite metric space that is not isometrically embeddable in M has
a subspace with at most m points that is not embeddable in M .

A second source of importance of #1 is algorithmic. As we saw at the end
of Section 15.8, low-distortion embeddings into #1 lead to efficient approxima-
tion algorithms for partitioning problems such as the sparsest cut. Moreover,
various efficient data structures are known for #1-metrics, for example, for
nearest neighbor queries (see, e.g., Indyk’s survey [Ind04]). So #1 is much
richer than #2 but still manageable in many respects.

No flattening in !1. Given the algorithmic importance of #1 and the
usefulness of the Jonhson–Lindenstrauss flattening lemma (Theorem 15.2.1),
it was natural to ask for an analogue of the flattening lemma in #1. In a
breakthrough paper, Brinkman and Charikar [BC03] showed that flattening
is almost impossible. Namely, for all D ≥ 1, there exist n-point subspaces of
#1 that cannot be D-embedded into #d1 unless d = Ω(nc/D2

), with a positive
absolute constant c. A different and simpler proof was found by Lee and Naor
[LN04]. Both proofs use the same example, the shortest-path metrics of the
diamond graphs defined in Exercise 15.4.2. We outline the latter proof, which
is a beautiful application of the geometry of #p spaces with p > 1 in a question
seemingly concerning only p = 1. First, one can check that all diamond graphs
embed into #1 (unlimited dimension) with constant distortion. Second, Lee
and Naor proved that for every p > 1 any embedding of a diamond graph into
#p (unlimited dimension) requires distortion at least Ω(

√
(p−1) log n ), with

the implicit constant independent of p. The proof is based on the following
classical inequality for #p-spaces: ‖x+ y‖2

p + (p−1)‖x− y‖2
p ≤ 2(‖x‖2

p + ‖y‖2
p)

for all x, y ∈ #p (this inequality can be traced back to Figiel [Fig76], although
it is not stated explicitly there). Given the inequality, the proof is not hard,
and it proceeds analogously to the proof for p = 2 in Exercise 15.4.2. Third, a
simple calculation shows that for p(d) := 1+ 1

log d , the identity map Rd → Rd

is an O(1)-embedding of #d1 into #dp(d), and consequently, a D-embedding of
any space X into #d1 yields an O(D)-embedding of X into #p(d). Hence for
the diamond graphs we obtain D = Ω(

√
1 + (p(d)−1) log n ), and calculation

leads to the claimed lower bound d ≥ nc/D2
.

This bound is known to be almost tight for D of order
√

log n log log n,
since by a result of Arora, Lee, and Naor [ALN05] discussed later, every n-
point subspace of #1 embeds into #2 with distortion O(

√
log n log log n), the

image can further be flattened to #O(log n)
2 with distortion 2, say, and the

latter space 2-embeds into #O(log n)
1 .
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In spite of the almost complete answer for #1, the situation concerning
flattening in #p for p (∈ {1, 2,∞} is unclear, and in particular, no nontrivial
lower bound is known for p ∈ (1, 2).

Metrics of negative type and !1. Let V be a finite set. A metric ρ
on V is called of negative type if there is a mapping f : V → #2 such that
ρ(u, v) = ‖f(u) − f(v)‖2 for all u, v ∈ V . That is, the distances in ρ can be
represented as squared Euclidean distances of points in a Euclidean space,
or in other words, V with the metric √

ρ embeds isometrically into #2. There
is a subtlety in this definition: Not every embedding f : V → #2 induces a
metric of negative type, since the distance function given by ‖f(u) − f(v)‖2

generally need not obey the triangle inequality! Indeed, if f(u), f(v), f(w)
are three distinct collinear points, for instance, then the triangle inequality is
violated. In the terminology introduced after Proposition 15.5.2, metrics of
negative type exactly correspond to points in the intersection of the metric
cone with the cone of squared Euclidean metrics.

As was mentioned in the notes to Section 15.5, every #1 metric is also a
metric of negative type. On the other hand, not every metric of negative type
embeds isometrically into #1, but it was conjectured by Goemans and inde-
pendently by Linial that metrics of negative type are not very far from being
#1; namely, that all metrics of negative type embed into #1 with distortion
bounded by a universal constant.

To appreciate the importance of this conjecture, let us return to the prob-
lem of finding a sparsest cut in a given graph G = (V, E). At the end of
Section 15.8 we have seen that the problem is equivalent to computing an #1
metric τ on V such that

∑
u,v∈V τ(u, v) = n2 and τ(E) =

∑
{u,v}∈E τ(u, v)

is minimum (we have changed the scaling compared to Section 15.8, in or-
der to have simpler expressions later on). The minimum is attained by a cut
pseudometric that corresponds to a sparsest cut. This latter problem, which
is an instance of linear optimization over the cone of all #1-metrics (usually
called the cut cone), is NP-hard, and we want to solve it approximately. The
algorithm outlined in Section 15.8 minimizes over all metrics, instead of just
all #1 metrics, and then it approximates the optimum metric by an #1 met-
ric. This is based on two key facts: First, linear optimization over the metric
cone can be done efficiently, and second, a general metric can be O(log n)-
embedded in #1. So a natural way to improve on the approximation factor is
to take some subclass of all metrics such that, first, linear optimization over
it is still “easy,” and second, every metric in this class can be embedded in
#1 with distortion o(log n), or even a constant.

Linear optimization over all metrics of negative type can be solved effi-
ciently by semidefinite programming, which was briefly discussed at the end
of Section 15.5. Indeed, as we have shown there, a function τ : V ×V → R
is a squared Euclidean (pseudo)metric on V = {1, 2, . . . , n} if and only if
there exists an n×n symmetric positive semidefinite matrix Q such that
τ(u, v) = quu + qvv − 2quv for all u, v. In order to pass from squared Eu-
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clidean metrics to metrics of negative type, it suffices to enforce the triangle
inequality τ(u, w) ≤ τ(u, v)+ τ(v, w) for all u, v, w ∈ V , which means impos-
ing linear inequalities for the entries of Q. Thus, the problem of minimizing
a given linear function, such as τ(E), over all metrics of negative type on V ,
possibly satisfying additional linear constraints such as

∑
u,v∈V τ(u, v) = n2,

is an instance of semidefinite programming, and it can be solved (reasonably)
efficiently. Hence, if we could embed every metric of negative type into #1 with
distortion at most D, and do so efficiently, then we could approximate the
sparsest cut problem with ratio at most D.

The bad news is that the Goemans–Linial conjecture is false: Khot and
Vishnoi [KV05] proved that there are n-point metrics of negative type requir-
ing distortion Ω((log log n)1/4−ε) for embedding into #1, for every fixed ε > 0.
Their proof of this (purely geometric) fact is based on algorithmic thinking
and, in particular, on probabilistically checkable proofs, the current most pow-
erful device for establishing hardness of approximation. Technically, it relies
on advanced results in harmonic analysis. We will not attempt to sketch the
proof, or even the construction of their badly embeddable example. The lower
bound was improved to Ω(log log n), with the same example, by Krauthgamer
and Rabani [KR06].

Improved approximation to sparsest cut. The good news is that one can
improve on the O(log n) approximation factor for the sparsest cut problem
by the above approach, although not all the way to a constant. However, the
historical development went differently: First came a breakthrough by Arora,
Rao, and Vazirani [ARV04], who discovered an O(

√
log n )-approximation al-

gorithm for the sparsest cut, as well as for several other graph-partitioning
problems, and only later and with considerable additional effort it was under-
stood that the geometric part of their argument also leads to low-distortion
embeddings.

Here is a “hyperplane-partitioning” algorithm for the sparsest cut. Given
a graph G = (V, E), by semidefinite programming we find a metric τ of neg-
ative type minimizing τ(E) subject to

∑
u,v∈V τ(u, v) = n2, as was outlined

above. We fix v0 ∈ V such that the ball B(v0, 4) in the τ -metric contains
the largest number of points of V ; since the sum of all distances is n2, it is
easily calculated that |B(v0, 4)| ≥ 3

4n. Next, we let xv, v ∈ V , be points in #n2
representing τ , i.e. with ‖xu − xv‖2 = τ(u, v). This geometric representation
of τ is used to find two large and well-separated subsets L, R ⊂ V . Namely,
we choose a random hyperplane h through xv0 , and we let S be the slab
consisting of points with distance at most ε/

√
n from h, where ε > 0 is a

suitable small constant. We let HL and HR denote the two open half-spaces
whose union is the complement of the slab S, and we define disjoint subsets
L, R ⊆ V by L = {v ∈ V : xv ∈ HL} and R = {v ∈ V : xv ∈ HR}. These
are not yet the final L and R; we have to prune them as follows: As long as
there is a pair (u, v) ∈ L×R with τ(u, v) ≤ C/

√
log n, for a suitable constant

C, we remove u from L and v from R. The resulting L and R clearly have
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τ -distance at least C/
√

log n, and they are used as a “core” of the desired
sparse cut. Namely, we sort the vertices of V as (v1, v2, . . . , vn) according to
their τ -distance to L, and we output the sparsest among the n−1 “candidate”
cuts ({v1, . . . , vi}, {vi+1, . . . , vn}), i = 1, 2, . . . , n−1. Actually, one more ad-
justment of the algorithm is needed: At the beginning, if there is an u ∈ V
with |B(u, 1

4 )| ≥ n
2 , then we skip the choice of the random hyperplane and

use the ball B(u, 1
4 ) as the set L that defines the candidate cuts.

The described algorithm comes essentially from [ARV04], but the authors
proved only an approximation bound of O((log n)2/3) for it, and they used a
more complicated algorithm to get O(

√
log n ). Lee [Lee05] showed that the

simpler algorithm above has approximation ratio O(
√

log n ) as well.
The most time-consuming part of the algorithm is the semidefinite pro-

gramming step. Arora, Hazan, and Kahale [AHK04] found a way of replacing
it by an iterative method of Freund and Schapire for solving zero-sum games,
and they achieved a near-quadratic running time.

Improved embedding of metrics of negative type. The heart of the
ingenious and somewhat complicated analysis of algorithm described above is
in showing that with probability bounded below by a constant, the resulting
sets L and R are large; |L|, |R| = Ω(n). In particular, it follows that for any n-
point V with a metric τ of negative type normalized so that

∑
u,v∈V τ(u, v) =

n2, and with no very large and tight cluster (a ball of radius 1
4 containing at

least half of the set), there are subsets L, R ⊂ V of size Ω(n) with τ(L, R) =
Ω((log n)−1/2).

To understand the statement better, let us consider the m-dimensional
Hamming cube (with n = 2m) as an example; since the average distance in
it is of order m, we have to scale it by roughly 1

m to meet the condition∑
u,v∈V τ(u, v) = n2. So in the original Hamming cube we look for linear-size

subsets separated by a gap of order
√

m. On the one hand, we can take all
vertices with at most m

2 ones for L and all vertices with at least m
2 +

√
m ones

for R. On the other hand, showing that the gap cannot be of order larger
than

√
m is a nice exercise using measure concentration (Theorem 14.2.3

slightly generalized to the case of P[A] bounded below by an arbitrary positive
constant, rather than by 1

2 ). So the result of Arora et al. can be thought of as
showing that, in a sense, no metric space of negative type can have measure
concentration stronger than the Hamming cube.

The result was further refined, analyzed, and applied in subsequent pa-
pers. Lee [Lee05] simplified the proof and provided a stronger version (roughly
speaking, the sets R and L generated by the algorithm are shown to be “more
random” than in [ARV04], which is crucial for low-distortion embeddings; see
below). Naor, Rabani, and Sinclair [NRS04] derived a graph-theoretic conse-
quence, and observed that the proof of [ARV04] uses only little of the prop-
erties of metrics of negative type: They proved analogous results for metrics
uniformly embeddable into #2 and for metrics quasisymmetrically embeddable
into #2. (The latter, less well-known notion, due to Beurling and Ahlfors,
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is defined as follows: An embedding f : (X, ρ) → (Y, σ) is quasisymmetric
with modulus η, where η: [0,∞] → [0,∞) is a strictly increasing function, if
σ(f(x), f(y))/σ(f(x), f(z)) ≤ η(ρ(x, y)/ρ(x, z)) for every x, y, z ∈ X .)

Chawla, Gupta, and Räcke [CGR05] used the geometric results of [ARV04]
for proving that every metric of negative type on n points embeds into #2
with distortion O((log n)3/4), and Arora, Lee, and Naor [ALN05] obtained an
improved and nearly tight bound of O(

√
log n · log log n). This , of course, also

provides embeddings of negative type metrics into #1, and thus an alternative
algorithm for the sparsest cut problem, whose approximation guarantee is
little worse than that of Arora, Rao, and Vazirani [ARV04], but which is more
general: It can also handle a weighted version of the problem (with general
capacities and demands, for those familiar with multicommodity flows).

Since #1 metrics are a subclass of metrics of negative type, Arora, Lee,
and Naor [ALN05] also almost solved another famous open problem: What
is the largest distortion needed for embedding an n-point #1 metric into #2?
By their result we now know that the m-dimensional Hamming cube, which
needs distortion Ω(

√
m ), is nearly the worst example.

Refined embedding methods. The proof of Arora et al. [ALN05] com-
bines the main geometric result of [ARV04] mentioned above with a general-
purpose embedding technique, called measured descent. This technique, de-
veloped by Krauthgamer, Lee, Mendel, and Naor [KLMN04], is a common
generalization and significant refinement of the embedding methods of Bour-
gain and of Rao, and it has been applied for solving several other problems.
We outline some of the key ingredients.

We want to embed an n-point metric space (V, ρ) into #2 (variations for
other target spaces are obviously possible but here we stick to the Euclidean
case). We may assume, after re-scaling ρ, that the distances in (V, ρ) are
between 1 and 2m. The first idea for constructing a low-distortion embedding,
present explicitly in Rao’s embedding (see the notes to Section 15.8), and less
explicitly in Bourgain’s embedding, is to divide the task conceptually into two
steps:

(i) For each scale ∆ = 20, 21, . . . , 2m, construct a mapping ϕ∆: V → #2 that
“takes care” of all pairs (u, v) ∈ V ×V with ∆ ≤ ρ(u, v) < 2∆.

(ii) Combine the ϕ∆ over all ∆ into a single D-embedding f : V → #2.

First we need to clarify what do we mean by “taking care” in (i). Following
Lee [Lee05], we say that a mapping ϕ: V → #2 is an embedding with deficiency
D0 at scale ∆ if ϕ is 1-Lipschitz (nonexpanding) and we have ‖ϕ(u)−ϕ(v)‖2 ≥
ρ(u, v)/D0 for all u, v ∈ V with ∆ ≤ ρ(u, v) < 2∆.

We have already seen an example in the description of Rao’s embedding:
If the reader has the energy to look it up, she can see that the mapping
f∆ constructed there was an embedding with deficiency O(1) at scale C∆.
A useful abstraction of the approach used there is the notion of padded de-
composition. A padded decomposition should be imagined as a randomized
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algorithm that receives a finite metric space (V, ρ) as input and outputs a
random partition P of V . The definition is as follows: A D0-padded decom-
position at scale ∆ for (V, ρ) is a probability distribution on partitions of V ,
such that

• In each partition P occurring in this distribution, all classes have diam-
eter smaller than ∆.

• For every v ∈ V , the ball B(v,∆/D0) is fully contained in a single class
of P with probability bounded below by a positive constant.

Thus, we have partitions into pieces of diameter at most ∆, but each point
has a good chance to be at least ∆/D0 away from the boundary of its piece.
By repeating the argument in the description of Rao’s embedding almost
verbatim, we get that a D0-padded decomposition at scale ∆ yields an em-
bedding V → #2 with deficiency O(D0) at scale ∆.

In the embedding of a metric space (V, τ) of negative type into #2 by
[ALN05], the way of producing an embedding for a given scale ∆ is not based
on a padded decomposition. In the first auxiliary step, (V, τ) is mapped to
(V, τ ′) by a nonexpanding map, where τ ′ is also of negative type but has
diameter O(∆), and moreover, τ ′(u, v) ≥ 1

2τ(u, v) for all u, v with τ(u, v) ≤
2∆. Next, the randomized algorithm of Arora, Rao, and Vazirani is applied to
(V, τ ′), it produces the large and well-separated subsets L and R, and these
are used for defining one coordinate in the embedding for scale ∆. The hope
is that a fixed pair (u, v) with ∆ ≤ τ(u, v) ≤ 2∆ has a good chance of having
u ∈ L and v ∈ R, and then (u, v) is taken care of. In reality, things are more
complicated, since not every pair (u, v) has a sufficiently large probability of
u ∈ L, v ∈ R, and a reweighting strategy is used: The algorithm is called
repeatedly, and the pairs (u, v) that were unfortunate so far are assigned more
weight, so that their chances at being separated increase. This reweighting
strategy, well known in other areas, was first used in this problem by Chawla
et al. [CGR05].

We now come to the second issue: Assuming that we can produce embed-
dings with small deficiency for every scale, how do we glue them together to
make a low-distortion embedding? In both Bourgain’s and Rao’s method, the
coordinates of all the scale embeddings are simply put side-by-side. This is
sufficient in the cases dealt with by Bourgain and by Rao, but it is not enough
for more ambitious applications. The main contribution of Krauthgamer et
al. [KLMN04] is in a more sophisticated way of putting the scale embed-
dings together. A neat way of encapsulating the results with a user-friendly
interface is due to Lee [Lee05], who proved the following gluing lemma: Let
(V, ρ) be an n-point metric space, and suppose that for every scale ∆ there
is an embedding ϕ∆: V → #2 with deficiency at most D0 at scale ∆. Then
(V, ρ) embeds in #2 with distortion O(

√
D0 log n ). A more refined version

by Arora et al. [ALN05] can take advantage of better scale embeddings of
smaller subspaces: Let (V, ρ) be an n-point metric space, and suppose that
for every scale ∆ and every m-point subspace S ⊆ V , 2 ≤ m ≤ n, there exists
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an embedding ϕS,∆: S → #2 with deficiency at most C(log m)1/2+α, where
C and α ∈ [0, 1

2 ) are constants. Then (V, ρ) embeds in #2 with distortion

O((log n)1/2+α log log n).
In the proof of the gluing lemma and similar results, the scale embeddings

are combined using suitable “partitions of unity” (a well-known tool for con-
structing maps in analysis), which assign more importance to regions of the
considered space with larger local dimension. The local dimension at scale ∆
at a point v ∈ V is defined as log2(|B(v, 2∆)|/|B(v,∆)|). For a version of the
gluing lemma that refers to the local dimension explicitly see [ALN05].

A result of Krauthgamer et al. [KLMN04] proved using measured descent
states that an n-point metric space with doubling constant λ (that is, for
every r > 0, every ball of radius 2r can be covered by at most λ balls of ra-
dius r) can be embedded in #2 with distortion O(

√
logλ log n ), strengthening

previous results by Gupta et al. [GKL03]. In this case, the assumption allows
one to produce suitable padded decompositions (this was done in [GKL03]),
and the proof is finished by a direct application of the gluing lemma cited
above.

Embeddings of doubling metric spaces were investigated by Assouad in
[Ass83b], which is one of the pioneering works on low-distortion embeddings.
He asked whether every finite metric space with doubling constant λ can be
embedded in Rd with distortion at most D, with d and D depending only
on λ. This was answered negatively by Semmes (we refer, e.g., to [GKL03]
for references not given here), who noted that a solution is a direct con-
sequence of a theorem of Pansu. Subsequently other counterexamples were
found, such as the Laakso graphs defined in Exercise 1 below, which show
that the O(

√
log n ) of [KLMN04] is asymptotically tight for constant λ.

Yet another theorem from Krauthgamer et al. [KLMN04] guarantees an
O(1)-embedding of every n-point planar-graph metric in #O(log n)

∞ .

On the impossibility of local characterizations of !1. Arora, Lovász,
Newman, Rabani, Rabinovich, and Vempala [ALN+06] studied the following
question: Let (V, ρ) be an n-point metric space such that every k-point sub-
space can be Dloc-embedded in #1. What can be said about the minimum
distortion D required for embedding all of (V, ρ) in #1? This is a question
about a “local characterization” of metrics that are approximately #1. For
every fixed ε > 0 and for all n they constructed n-point (V, ρ) such that
every subspace on n1−ε points embeds in #1 with distortion O(ε−2), while
(V, ρ) itself requires the (worst possible) distortion Ω(log n). The example is
the shortest-path metric of a random 3-regular graph with all edges in cycles
of length below c log n deleted, for a suitable constant c > 0. Such a graph is
known to be a good expander, and hence the Ω(log n) lower bound follows,
while the proof of embeddability of n1−ε-point subspaces is a gem using some
polyhedral combinatorics. For the case of Dloc = 1, i.e., k-point subspaces
embedding isometrically, Arora et al. construct an example where all k-point
subspaces embed isometrically even to #2, but embedding the whole of the
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space in #1, or even in a metric space of negative type, requires distortion
Ω((log n)

1
2 log(1+ 1

k−1 )). This shows that approximate embeddability in #1 can-
not be characterized by conditions imposed on subspaces with constantly
many points. Arora et al. also deal with classes more general than #1. One of
their main open questions was answered by Mendel and Naor [MN06].

Ramsey-type results. Let Rp(n, α) denote the largest m such that for
every n-point metric space Y there exists an m-point subspace of #p that
α-embeds in Y . Let RUM(n, α) be defined similarly with “subspace of #p”
replaced with “ultrametric space” (see the notes to Section 15.8 for the def-
inition). It is not hard to show that every ultrametric embeds isometrically
in #2, and so R2(n, α) ≥ RUM(n, α).

Bourgain, Figiel, and Milman [BFM86] were the first to ask the Ramsey-
type question, how large almost-Euclidean subspaces must be present in any
n-point metric space? In other words, what is the order of magnitude of
R2(n, α)? (This was motivated as a metric analog of Dvoretzky’s theorem
about almost Euclidean subspaces of normed spaces; see Chapter 14.) They
showed that R2(n, 1 + ε) is of order log n for every fixed ε ∈ (0, ε0), where
where ε0 is a sufficiently small constant (see Exercise 15.4.3). This seemed
to have settled the question, in a not too interesting way, until Bartal, Bol-
lobás, and Mendel [BBM01] discovered that if considerably larger distortions
are allowed, then quite large almost-Euclidean, and even almost-ultrametric,
subspaces always exist. Their results were greatly improved and extended by
Bartal, Linial, Mendel, and Naor [BLMN03], who found out that, unexpect-
edly, distortion 2 represents a sharp threshold in the Ramsey behavior. On
the one hand, for distortions below 2 both R2 and RUM are logarithmic: For
every α ∈ (1, 2), we have

c(α) log n ≤ RUM(n, α) ≤ R2(n, α) ≤ 2 logn + C(α)

for all n, with suitable positive c(α) and C(α). On the one hand, for distor-
tions α > 2, both R2 and RUM behave as a power of n:

R2(n, α) ≥ RUM(n, α) ≥ nc1(α)

for all n, with a suitable c1(α) > 0. Moreover, the order of magnitude of the
best possible c1(α) for sufficiently large α has been determined quite well:
1 − C2 · logα

α ≤ c1(α) ≤ 1 − c2
α with positive constants C2 and c2. Similar

bounds are also known for Rp with 1 ≤ p < ∞; the case 1 ≤ p ≤ 2 is
from Bartal et al. [BLMN03], while the final touch for p > 2 was made by
Charikar and Karagiozova [CK05]. Besides the results, the methods of Bartal
et al. [BLMN03] are also of interest, since the embedding of an ultrametric
space is constructed in a way quite different from the “usual” Bourgain’s
technique and related approaches.

Exercises

1. (Laakso graphs) Let G0, G1, . . . be the following sequence of graphs:
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G0 G1 G2 G3

(a) Similar to Exercise 15.4.2, prove that any Euclidean embedding of
the shortest-path metric of Gk incurs distortion Ω(

√
k ). 3

(b) Prove that there is a constant λ such that for every r > 0, every ball
of radius 2r in Gk can be covered by at most λ balls of radius r. 4

In this form, the result is from Lang and Plaut [LP01]; Laakso’s formu-
lation and proof were somewhat different.

⇑ NEW ⇑


