6. Cosntruction of AVD

Finite Part of AVD

- Let Γ be a simple closed curve such that all intersections between bisectring curve lie inside the inner domain of Γ
- Consider a site ∞ , define $J(p, \infty) = J(\infty, p)$ to be Γ for all sites $p \in S$, and $D(\infty, p)$ to be the outer domain of Γ for all sites $p \in S$.

Incremental Construction

- Let s_1, s_2, \ldots, s_n be a random squence of S
- Let R_i be $\{\infty, s_1, s_2, \ldots, s_i\}$
- Iteratively construct $V(R_2), V(R_3), \ldots, V(R_n)$

General Position Assumption

• No $J(p,q),\;J(p,r)$ and J(p,t) intersect the same point for any four distinct sites, $p,q,r,t\in S$

 \rightarrow Degree of a Voronoi vertex is 3

Remark

- For $1 \le i \le n$ and for all sites $p \in R_i$, $VR(p, R_i)$ is simply connected, i.e., path connected and no hole
- If J(p,q) and J(p,r) intersect at a point x, J(q,r) must pass through x

Basic Operations

- \bullet Given J(p,q) and a point v, determine $v \in D(p,q), \ v \in J(p,q),$ or $v \in D(q,p)$
- \bullet Given a point v in common to three bisecting curves, determine the clockwise order of the curves around v
- Given points $u \in J(p,q)$ and $w \in J(p,r)$ and orientation of these curves , determine the first point of $J(p,r) \mid_{(w,\infty]}$ crossed by $J(p,q) \mid_{(v,\infty]}$
- Given J(p,q) with an orientation and points v, w, x on J(p,q), determine if v come before w on $J(p,q) \mid_{(x,\infty]}$

Notation: Give a connected subset A of R^2 , intA, bdA, and clA mean the interior, the boundary, and the closure of A, respectively.

Conflict Graph G(R), where R is R_i for $2 \le i \le n$

- bipartitle graph (U, V, E)
- U: Voronoi edges of V(R)
- V: Sites in $S \setminus R$
- $\bullet \ E: \{(e,s) \mid e \in V(R), s \in S \setminus R, e \cap \operatorname{VR}(s, R \cup \{s\}) \neq \emptyset\}$

- a conflict relation between e and s.

Remark:

a Voronoi edge is defined by 4 sites under the general position assumption

Lemma 1

Let $R \subseteq S$ and $t \in S \setminus R$. Let e be the Voronoi edge between $\operatorname{VR}(p, R)$ and $\operatorname{VR}(q, R)$. $e \cap \operatorname{VR}(t, R \cup \{t\}) = e \cap \operatorname{R}(t, \{p, q, r\})$. (Local Test is enough) *Proof:*

$\subseteq \texttt{:} \text{ Immediately from } \mathrm{VR}(t, R \cup \{t\}) \subseteq \mathrm{VR}(t, \{p, q, t\})$

 $\supseteq : \text{Let } x \in e \cap \text{VR}(t, \{p, q, t\})$

- Since $x \in e, x \in VR(p, R) \cup VR(q, R)$ and $x \notin VR(r, R) \supseteq VR(r, R \cup \{t\})$ for any $r \in R \setminus \{p, q\}$.
- Since $x \in VR(t, \{p, q, t\}), x \notin VR(p, \{p, q, t\}) \cup VR(q, \{p, q, t\}) \supseteq VR(p, R \cup \{t\}) \cup VR(q, R \cup \{t\})$
- $x \notin \operatorname{VR}(r, R \cup \{t\})$ for any site $r \in R \to x \in \operatorname{VR}(t, R \cup \{t\})$

Insertiong $s \in S \setminus R$ to compute $V(R \cup \{s\})$ and $G(R \cup \{s\})$ from V(R) and G(R). Handle a conflict between s and a Voronoi edge e of VR(R)

Lemma 2

cl $e\cap$ cl $\mathrm{VR}(s,R\cup\{s\})\neq \emptyset$ implies $e\cap\mathrm{VR}(s,R\cup\{s\})=\emptyset$ proof

- Let x belong to cl $e \cap$ cl $VR(s, R \cup \{s\})$
- x is an endpoint of e:
 - -x is the intersection among three curves in R
 - For any $r \in R, \; J(s,r)$ cannot pass through x due to the general position assumption
 - $-x \in D(s,r) \rightarrow$ the neighborhood of $x \in D(s,r)$
 - $\exists y \in e \text{ belongs to VR}(s, R \cup \{s\})$
- $x \in e \cap \mathrm{bd} \, \mathrm{VR}(s, R \cup \{s\})$
 - $-x \in J(p,q) \cap J(s,r)$
 - a point $y \in e$ in the neighborhood of x such that $y \in VR(s, R \cup \{s\})$

Theorem 2

V(S) can be computed in O(nlogn) expected time

- $\sum_{3 \le i \le n} O(\sum_{(e,s_i) \in G(R_{i-1})} \deg_{G(R_{i-1})}(e))$
- Let e be a Voronoi edge of $V(R_i)$ and let s be a site in $S \setminus R_i$ which conflicts e.
- The conflict relation (e, s) will be counted only once since the counting only occured when e is removed
 - Let s_j be the earliest site in the sequence which conflicts with e. Then (e, s) will be counted in $\deg_{G(R_{j-1})}(e)$
- Time proportional to the number of conflict relations between Voronoi edges in $\bigcup_{2 \le i \le n} V(R_i)$ and sites in S
- The expected size of conflict history is $-C_n + \sum_{2 \le i \le n} (n-j+1)p_j$
 - $-C_n$ is the expected size of $\bigcup_{2 \le i \le n} V(R_i)$
 - $\, p_j$ is the expected number of Voronoi edges defined by the same two sites in $V(R_j)$
- Since $C_n = O(n)$ and $p_j = O(1/j)$, the expected run time is $O(n \log n)$