6. Cosntruction of AVD

Finite Part of AVD

- Let Γ be a simple closed curve such that all intersections between bisectring curve lie inside the inner domain of Γ
- Consider a site ∞, define $J(p, \infty)=J(\infty, p)$ to be Γ for all sites $p \in S$, and $D(\infty, p)$ to be the outer domain of Γ for all sites $p \in S$.

Incremental Construction

- Let $s_{1}, s_{2}, \ldots, s_{n}$ be a random squence of S
- Let R_{i} be $\left\{\infty, s_{1}, s_{2}, \ldots, s_{i}\right\}$
- Iteratively construct $V\left(R_{2}\right), V\left(R_{3}\right), \ldots, V\left(R_{n}\right)$

General Position Assumption

- No $J(p, q), J(p, r)$ and $J(p, t)$ intersect the same point for any four distinct sites, $p, q, r, t \in S$
\rightarrow Degree of a Voronoi vertex is 3
Remark
- For $1 \leq i \leq n$ and for all sites $p \in R_{i}, \operatorname{VR}\left(p, R_{i}\right)$ is simply connected, i.e., path connected and no hole
- If $J(p, q)$ and $J(p, r)$ intersect at a point $x, J(q, r)$ must pass through

Basic Operations

- Given $J(p, q)$ and a point v, determine $v \in D(p, q), v \in J(p, q)$, or $v \in D(q, p)$
- Given a point v in common to three bisecting curves, determine the clockwise order of the curves around v
- Given points $u \in J(p, q)$ and $w \in J(p, r)$ and orientation of these curves , determine the first point of $\left.J(p, r)\right|_{(w, \infty]}$ crossed by $\left.J(p, q)\right|_{(v, \infty]}$
- Given $J(p, q)$ with an orientation and points v, w, x on $J(p, q)$, determine if v come before w on $\left.J(p, q)\right|_{(x, \infty]}$

Notation: Give a connected subset A of $R^{2}, \operatorname{int} A, \operatorname{bd} A$, and $\operatorname{cl} A$ mean the interior, the boundary, and the closure of A, respectively.

Conflict Graph $G(R)$, where R is R_{i} for $2 \leq i \leq n$

- bipartitle graph (U, V, E)
- U : Voronoi edges of $V(R)$
- V : Sites in $S \backslash R$
- $E:\{(e, s) \mid e \in V(R), s \in S \backslash R, e \cap \operatorname{VR}(s, R \cup\{s\}) \neq \emptyset\}$
- a conflict relation beteween e and s.

Remark:
a Voronoi edge is defined by 4 sites under the general position assumption

Lemma 1

Let $R \subseteq S$ and $t \in S \backslash R$. Let e be the Voronoi edge between $\operatorname{VR}(p, R)$ and $\operatorname{VR}(q, R) . e \cap \operatorname{VR}(t, R \cup\{t\})=e \cap \mathrm{R}(t,\{p, q, r\})$. (Local Test is enough) Proof:
$\subseteq:$ Immediately from $\operatorname{VR}(t, R \cup\{t\}) \subseteq \operatorname{VR}(t,\{p, q, t\})$
\supseteq : Let $x \in e \cap \operatorname{VR}(t,\{p, q, t\})$

- Since $x \in e, x \in \operatorname{VR}(p, R) \cup \operatorname{VR}(q, R)$ and $x \notin \operatorname{VR}(r, R) \supseteq \operatorname{VR}(r, R \cup$ $\{t\}$) for any $r \in R \backslash\{p, q\}$.
- Since $x \in \operatorname{VR}(t,\{p, q, t\}), x \notin \operatorname{VR}(p,\{p, q, t\}) \cup \operatorname{VR}(q,\{p, q, t\}) \supseteq$ $\operatorname{VR}(p, R \cup\{t\}) \cup \operatorname{VR}(q, R \cup\{t\})$
- $x \notin \mathrm{VR}(r, R \cup\{t\})$ for any site $r \in R \rightarrow x \in \operatorname{VR}(t, R \cup\{t\})$

Insertiong $s \in S \backslash R$ to compute $V(R \cup\{s\})$ and $G(R \cup\{s\})$ from $V(R)$ and $G(R)$. Handle a conflict between s and a Voronoi edge e of $\operatorname{VR}(R)$

Lemma 2

$\operatorname{cl} e \cap \operatorname{cl} \operatorname{VR}(s, R \cup\{s\}) \neq \emptyset$ implies $e \cap \operatorname{VR}(s, R \cup\{s\})=\emptyset$
proof

- Let x belong to cl $e \cap \operatorname{cl} \operatorname{VR}(s, R \cup\{s\})$
- x is an endpoint of e :
$-x$ is the intersection among three curves in R
- For any $r \in R, J(s, r)$ cannot pass through x due to the general position assumption
$-x \in D(s, r) \rightarrow$ the neighborhood of $x \in D(s, r)$
$-\exists y \in e$ belongs to $\operatorname{VR}(s, R \cup\{s\})$
- $x \in e \cap \operatorname{bd} \operatorname{VR}(s, R \cup\{s\})$
$-x \in J(p, q) \cap J(s, r)$
- a point $y \in e$ in the neighborhood of x such that $y \in \operatorname{VR}(s, R \cup\{s\})$

Theorem 2

$V(S)$ can be computed in $O(n \log n)$ expected time

- $\Sigma_{3 \leq i \leq n} O\left(\Sigma_{\left(e, s_{i}\right) \in G\left(R_{i-1}\right)} \operatorname{deg}_{G\left(R_{i-1}\right)}(e)\right)$
- Let e be a Voronoi edge of $V\left(R_{i}\right)$ and let s be a site in $S \backslash R_{i}$ which conflicts e.
- The conflict relation (e, s) will be counted only once since the counting only occured when e is removed
- Let s_{j} be the earliest site in the sequence which conflicts with e. Then (e, s) will be counted in $\operatorname{deg}_{G\left(R_{j-1}\right)}(e)$
- Time proportional to the number of conflict relations between Voronoi edges in $\mathrm{U}_{2 \leq i \leq n} V\left(R_{i}\right)$ and sites in S
- The expected size of conflict history is $-C_{n}+\Sigma_{2 \leq i \leq n}(n-j+1) p_{j}$
$-C_{n}$ is the expected size of $\mathrm{U}_{2 \leq i \leq n} V\left(R_{i}\right)$
- p_{j} is the expected number of Voronoi edges defined by the same two sites in $V\left(R_{j}\right)$
- Since $C_{n}=O(n)$ and $p_{j}=O(1 / j)$, the expected run time is $O(n \log n)$

