Online Motion Planning MA-INF 1314 **Searching**

Elmar Langetepe University of Bonn

Rep.: Navigation

- Touch sensor, Target coordinates, Start s, Target t, Storage,
- Sojourner
- Actions:
 - Move toward the target
 - Move along the boundary
 - Sequence of Leave-Points l_i , Hit-Points h_i

Rep.: BUG1 Strategy: Lumelsky/Stepanov

Toward target, surround obstacle, best leave point, toward target!

Rep: Analysis BUG1 Strategy

- Theorem Strategy Bug1 is correct!
- ullet **Theorem** Successful Bug1-path $\Pi_{\mathtt{Bug1}}$ from start s to target t: $|\Pi_{\text{Bug1}}| \leq D + \frac{3}{2} \sum_{i} \text{UP}_{\text{i}}.$
- **Theorem** For any strategy S, for arbitrary large K>0, there exists examples for any D>0, such that for any arbitrarily small $\delta > 0$ we have: $|\Pi_S| \ge K \ge D + \sum \mathtt{UP_i} - \delta$.
- Korollar Bug1 is $\frac{3}{2}$ -competitive against any *online* strategy

Rep. LB:
$$|\Pi_S| \ge K \ge D + \sum UP_i - \delta$$

- Virtual horse-shoe, width 2W, thickness $\epsilon \ll \delta$, length L, dist. D
- Virtual gets concrete by touch
- Roughly surround any obstacle, by any strategy!

Rep.: BUG2 Strategy

Line G passing st, toward target, surround obstacle, shorter distance on G, toward target!

Rep.: Analysis BUG2 Strategy

- **Lemma** Let n_i denote the number of intersection of G with relevant obstacle P_i . Bug2 meets any point on P_i at most $\frac{n_i}{2}$ times.
- **Corollar** Bug2 is correct!
- **Theorem** Bug2-path Π_{Bug2} from s to t. We have: $|\Pi_{\text{Bug2}}| \leq D + \sum_{i} \frac{n_i \text{UP}_i}{2}$.

Rep.: Change I

Change I, use former Leave/Hit Points once for !

Theorem: Change I requires at most path length $|\Pi_{\mathsf{Changel}}| \leq D + 2 \sum_{i} \mathtt{UP_i}.$ This is a tight bound!

Exercise!

Different models

- Sensor with range: Circle aroung curr. point
- ▶ Short-cut for BUG2: VisBug
- Many others

Searching for a goal!

- Coordinates of the target unknown: Searching vs. Navigation
- Polygonal environment
- Full sight: Visibility polygon
- **Def.** Let P be a simple polygon and r a point with $s \in P$. The visibility polygon of r w.r.t. P, $\mathrm{Vis}_P(r)$, is the set of all points $q \in P$, such that the segment \overline{rq} is fully inside P.
- Alg. Geom.: Compute in O(n) time! Offline!

Corridors (without sight)

- 2-ray search: Find door along a wall!
- Compare to shortest path to the door, competitive?
- Reasonable strategy: Depth x_1 right, depth x_2 left and so on \blacksquare
- Start-situation: $2x_1 \ge C\epsilon$, for any C > 0 ex. ϵ
- Additive constant or goal is at least step 1 away!
- Local worst-case, not visited at d, once back!
- Find strategy, such that: $\sum_{i=1}^{k+1} 2x_i + x_k \leq Cx_k$

Corridors

- Worst-case, not visited at d, once back!
- ▶ Find strategy, such that: $\sum_{i=1}^{k+1} 2x_i + x_k \leq Cx_k$ ▶
- Minimize: $\frac{\sum_{i=1}^{k+1} 2x_i + x_k}{x_k} = 1 + 2 \frac{\sum_{i=1}^{k+1} x_i}{x_k}$
- $x_i = 2^{i-1}$, gives ratio C = 9
- Proof: Blackboard!

Theorem Opt. of exponential solution: Gal 1980

- Strategy: Sequence $X = f_1, f_2, \dots$
- $lackbox{Minimize functional } F_k(f_1,f_2,\ldots):=rac{\sum_{i=1}^{k+1}f_i}{f_k} ext{ for all } k$
- More precisely $\inf_Y \sup_k F_k(Y) = C$ und $\sup_k F_k(X) = C$
- In general: Functional F_k continuous/unimodal: Unimodal: $F_k(A \cdot X) = F_k(X)$ and $F_k(X + Y) \leq \max\{F_k(X), F_k(Y)\}$
- Some other helpful conditions!
- I.e.: $F_{k+1}(f_1,\ldots,f_{k+1}) \geq F_k(f_2,\ldots,f_{k+1})$
- **Theorem** Exponential function minimizes F_k :

$$\sup_{k} F_k(X) \ge \inf_{a} \sup_{k} F_k(A_a)$$

mit $A_a = a^0, a^1, a^2, \dots$ und a > 0.1

Example: Exponential function

- ullet $F_k(f_1,f_2,\ldots):=rac{\sum_{i=1}^{k+1}f_i}{f_k}$ for all k.
- Unimodal $F_k(A \cdot X) = F_k(X)$ and $F_k(X+Y) \leq \max\{F_k(X), F_k(Y)\}$?
- $\bullet \ \frac{\sum_{i=1}^{k+1} A \cdot f_i}{A \cdot f_i} = \frac{\sum_{i=1}^{k+1} f_i}{f_i}$
- $F_k(X+Y) \le \max\{F_k(X), F_k(Y)\}$?
- Follows from $\frac{a}{b} \ge \frac{c}{d} \Leftrightarrow \frac{a+c}{d+b} \le \frac{a}{b}$
- Simple equivalence !
- Optimize: $f_k(a) := \frac{\sum_{i=1}^{k+1} a^i}{a^k}$
- Minimized by a=2

Theorem Gal 1980

If finctionaly F_k has the following properties:

- \mathbf{i}) F_k is continuous,
- ii) F_k is unimodal: $F_k(A \cdot X) = F_k(X)$ and $F_k(X+Y) < \max\{F_k(X), F_k(Y)\},$
- iii) $\liminf_{a\mapsto\infty} F_k\left(\frac{1}{a^{k+i}},\frac{1}{a^{k+i-1}},\ldots,\frac{1}{a},1\right) =$ $\liminf_{\epsilon_{k+i},\epsilon_{k+i-1},\ldots,\epsilon_1\mapsto 0} F_k\left(\epsilon_{k+i},\epsilon_{k+i-1},\ldots,\epsilon_1,1\right),\,$
- iv) $\liminf_{a\to 0} F_k(1, a, a^2, \dots, a^{k+i}) =$ $\liminf_{\epsilon_{k+i},\epsilon_{k+i-1},\ldots\epsilon_1\mapsto 0} F_k\left(1,\epsilon_1,\epsilon_2,\ldots,\epsilon_{k+i}\right),$
- v) $F_{k+1}(f_1,\ldots,f_{k+i+1}) \geq F_k(f_2,\ldots,f_{k+i+1})$.

Then: $\sup_k F_k(X) \ge \inf_a \sup_k F_k(A_a)$ with $A_a = a^0, a^1, a^2, \ldots$ and a > 0.

Application m-ray search

- Arbitrary m, not competitive, Fig.!
- 2m-1 vs. 1!
- Fixed m, infinite rays!
- Ass.: Rays in fixed order and increasing depth
- Tupel (f_j, J_j) : depth, next visit!

Applicatiot m-ray search

- Ass.: (f_j, J_j) , $J_j = j + m$, $f_j \ge f_{j-1}$
- Visit rays in fixed order, increasing depth
- ullet $F_k(f_1,f_2,\ldots):=rac{f_k+2\sum_{i=1}^{k+m-1}f_i}{f_k}$ for all k
- (Gal) Exp.-function minimizes F_k : $\sup_k F_k(X) \ge \inf_a \sup_k F_k(A_a)$ with $A_a = a^0, a^1, a^2, \ldots$ and a > 1, optimal $a = \frac{m}{m-1}$
- Ratio: $C = 1 + 2m \left(\frac{m}{m-1}\right)^{m-1}$ opt.

m-ray search

- **Lemma** There is an optimal m-ray search strategy $(f_1, f_2, ...)$ that visits the rays in a fixed order and with increasing depth. •
- periodic and monotone: (f_j, J_j) , $J_j = j + m$, $f_j \ge f_{j-1}$
- Second part: Proof blackboard! Change strategy! Conditions!

- Other approach: Optimality for equations!

 Reasonable strategy, ratio: $\frac{\sum_{i=1}^{k+1} 2x_i + x_k}{x_k} = 1 + 2 \frac{\sum_{i=1}^{k} x_i}{x_k}$
- Ass.: C optimal, $\frac{\sum_{i=1}^{k+1} x_i}{x_k} \leq \frac{(C-1)^k}{2}$
- There is strategy $(x_1', x_2', x_3' \dots)$ s. th. $\frac{\sum_{i=1}^{k+1} x_i'}{x_i'} = \frac{(C-1)}{2}$ for all k
- Monotonically increasing in x_i' $(j \neq k)$, decreasing in x_k'
- First k with: $\frac{\sum_{i=1}^{k+1} x_i}{x_k} < \frac{(C-1)}{2}$, decrease x_k
- $\frac{\sum_{i=1}^k x_i}{x_{k-1}} < \frac{(C-1)}{2}$!, x_{k-1} decrease etc., monotonically decreasing sequence, bounde, converges! Non-constructive!

Other approach: Optimality for equations!

- Set: $\frac{\sum_{i=1}^{k+1} x_i'}{x_i'} = \frac{(C-1)}{2}$ for all k
- $\sum_{i=1}^{k+1} x_i' \sum_{i=1}^k x_i' = \frac{(C-1)}{2} (x_k' x_{k-1}')$
- Thus: $C'(x'_k x'_{k-1}) = x'_{k+1}$, Recurrence!
- Solve a recurrence! Analytically! Blackboard!
- Characteristical polynom: No solution C' < 4
- $x'_i = (i+1)2^i$ with C' = 4 is a solution! Blackboard! Optimal!

2-ray search, restricted distance

- Assume goal is no more than dist. $\leq D$ away
- Exactly D! Simple ratio 3!
- Find optimal startegy, minimize C!
- Vice-versa: C is given! Find the largest distance D (reach R) that still allows C competitive search.
- One side with $f_{\text{Ende}} = R$, the other side arbitrarily large!

2-ray search, maximal reach R

- ullet C given, optimal reach R!
- ullet **Theorem** The strategy with equality in any step maximizes the reach R !
- Strategy: $\frac{\sum_{i=1}^{k+1} x_i}{x_k} = \frac{(C-1)}{2}$, first step: $x_1 = \frac{(C-1)}{2}$
- Recurrence: $x_0 = 1$, $x_{-1} = 0$, $x_{k+1} = \frac{(C-1)}{2}(x_k x_{k-1})$
- Strategy is optimal! By means of the Comp. Geom. lecture!

2-ray search, maximal reach R

- $\bullet \ f(C) := {\sf maximal \ reach \ depending \ on \ } C {\sf I}$
- Bends are more steps!

2-ray search, given distance R

- ullet $f(C) := \max \{ maximal reach depending on <math>C \}$
- Rotate, R given, binary search!

