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Markov’s inequality becomes particularly easy to memorize if one looks at the interpre-
tation for finite random variables. For example, assume that we have n non-negative
numbers a1, . . . , an, and we consider the random variable X that chooses a number
uniformly at random. Then the expected value of X is just the arithmetic mean â of
the numbers:

E [X] =
n∑
i=1

1
n
ai = 1

n

n∑
i=1

ai = â.

It is easy to prove that not too many numbers can deviate very much from â. It is
also intuitive: In a group of people with average income â, not more than half of the
people can earn 2â. Otherwise, the average would be higher. Similarly, assume that
more than n/k of the ai satisfy that ai ≥ kâ. Since the ai are non-negative, the sum
of all numbers is not smaller than the sum of these more than n/k numbers. Thus:

n∑
i=1

ai >
n

k
kâ = n

1
n

n∑
i=1

ai =
n∑
i=1

ai.

Clearly, ∑n
i=1 ai >

∑n
i=1 ai is impossible, so our assumption was wrong. There can

at most be n/k numbers ai that satisfy ai ≥ kâ. This is exactly the statement of
Markov’s inequality for X:

|{ai | ai ≥ k · â}|
n

= Pr(X ≥ k · E [X]) ≤ 1
k

⇔ |{ai | ai ≥ k · â}| ≤ n

k
.

Observe that we used that the numbers are non-negative to argue that ∑n
i=1 ai >

n
k
kâ.

Indeed, if the numbers can be negative (like in the list of numbers 2, 2, 2, 2,−8), then
a large fraction of the numbers can be larger than the expected value (4/5 in the
example, or (n− 1)/n if we have n− 1 twos and −2(n− 1) as the nth number). They
can even be a lot larger than the expected value (just make the nth number −k for a
large k ∈ N).

Implications of Markov’s inequality. We directly obtain the following conse-
quences from Markov’s inequality. Think of X as the running time of an algorithm
or the approximation ratio of a randomized approximation algorithm. In both cases,
X ≥ 0 and E [X] exists. By Markov’s inequality,

Pr(X ≥ (1 + ε)E [X]) ≤ 1
1 + ε

holds for any constant ε > 0. We can use independent repetitions to decrease the
probability even further. If X is the running time of an algorithm, stop the algorithm
after (1 + ε)E [X] steps. If the algorithm was not finished, try again, doing at most t
repetitions. If X is the approximation ratio, simply repeat the algorithm t times and
output the best solution. Let Xi be the running time / approximation ratio in the ith
run, and set t = log1+ε n ∈ O(log2 n). Then

Pr( min
i=1,...,t

Xi ≥ (1 + ε)E [X]) ≤ 1
(1 + ε)t = 1

n
,

so the probability that we have at least one run with X ≤ (1 + ε)E [X] in Θ(log n)
tries is at least 1− 1

n
, and obtaining this statement only needed Markov’s I nequality.
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3.1 Variance and Chebyshev’s inequality

Before we prove Chebyshev’s inequality, we need to define the variance of a random
variable X. It is the expected value of the squared deviation of X from its expected
value and thus a very useful quantity for obtaining a tail bound.

Definition 3.2. Let (Ω,Pr) be a discrete probability space, let X : Ω→ R be a discrete
random variable. Assume that E [(X − E [X])2] exists. Then the variance Var[X] of
X exists and is defined as

Var[X] = E
[
(X − E [X])2

]
= E

[
X2
]
− (E [X])2.

Observe that E [X] is a constant. If it appears inside another expected value, we
can use linearity. We use this fact to prove that the two equivalent definitions of the
variance are indeed equal.

E
[
(X − E [X])2

]
= E

[
X2 − 2XE [X] + (E [X])2

]
= E

[
X2
]
− 2E [X · E [X]] + E

[
(E [X])2

]
= E

[
X2
]
− 2E [X] · E [X] + (E [X])2

= E
[
X2
]
− 2(E [X])2 + (E [X])2

= E
[
X2
]
− (E [X])2.

Since the variance is inherently a squared measure, it is common to also define the
standard deviation σ(X) as

√
Var[X].

Example 3.3. If X always attains the same value, e.g. X = 7, then E [X] = X and
thus E [(X − E [X])] = 0, the random variable has zero variance. We have also seen
an example for the other extreme case in Example 2.8 where we chose each number
i ∈ N with probability c/i4 for a constant c > 0 and let X be the chosen number. We
saw that E [X] exists, but E [X2] does not. Thus, Var[X] also does not exist.

The rules for computing expected values in Theorem 2.7 can be used to prove the
following rules for computing the variance of random variables.

Lemma 3.4. Let (Ω,Pr) be a discrete probability space and let X, Y : Ω → R be
discrete random variables. Assume that Var[X] and Var[X] exist, let a, b ∈ R be two
real values. Then the following statements hold.

1. Var[aX + b] exists and Var[aX + b] = a2 ·Var[X].
2. If X and Y are independent, then Var[X+Y ] exists and Var[X+Y ] = Var[X]+

Var[Y ].

Proof. Exercise.

The second rule can be extended for sums of n random variables by induction.
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Corollary 3.5. Let (Ω,Pr) be a discrete probability space and let X1, X2, . . . , Xn be
independent random variables, assume that Var[Xi] exists for all i ∈ {1, . . . , n}. Let
X := ∑n

i=1Xi. Then Var[X] exists and it holds that Var[X] = ∑n
i=1 Var[Xi].

We can use Corollary 3.5 to compute the variance of binomially distributed variables.

Example 3.6. Let X be a Bernoulli variable with parameter p. We know that E [X2]
exists since Ω is finite in this case. We observe that X2 = X is always true, and thus,
E [X2] = p. We use this and compute the variance of X:

Var[X] = E
[
X2
]
− (E [X]) = p− p2 = p(1− p).

By Corollary 3.5, we conclude that the variance of a binomially distributed variable
Y = Y1 + . . .+ Yn also exists and it is Var[Y ] = np(1− p).

Now we can state and prove Chebyshev’s inequality. The variance is the expected
value of X−E [X], so it is an expected value itself. Chebychev’s inequality arises from
applying Markov’s inequality to this expected value.

Theorem 3.7 (Chebyshev’s inequality). Let (Ω,Pr) be a discrete probability space,
let X : Ω → R be a discrete random variable. Assume that E [X] and Var[X] exist.
Let a > 0 be a constant. Then it holds that

Pr(|X − E [X] | ≥ a) ≤ Var[X]
a2 .

This also implies that

Pr(|X − E [X] | ≥ t · E [X]) ≤ Var[X]
t2 · (E [X])2

holds for all t > 1.

Proof. First, we observe that

Pr(|X − E [X] | ≥ a) = Pr((X − E [X])2 ≥ a2).

Now, we apply Markov’s inequality to the random variable (X −E [X])2. Notice that
the expected value of this variable is Var[X], so it exists by the precondition of the
theorem. Furthermore, observe that (X − E [X])2 only attains non-negative values.
Thus, we can apply Markov’s inequality and obtain

Pr((X − E [X])2 ≥ a2) ≤ E [(X − E [X])2]
a2 = Var[X]

a2 ,

the inequality we wanted to prove. For the second inequality, set a = t · E [X].
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3.2 Chernoff/Rubin bounds

Chernoff bounds are a powerful type of concentration bounds. They are named after
Herman Chernoff. However, Chernoff attributes them to Herman Rubin, for example
in an article by himself [Che04] and in an interview [Bat96], thus they should rather
be called Rubin bounds. Chernoff/Rubin bounds are obtained by applying Markov’s
inequality to the moment generating function of X. We skip the definition of moment
generating functions and the derivation of Chernoff/Rubin bounds and just cite two
versions. Both are proven in Section 4.2 of [MU05], see Theorem 4.4(2.+3.)/4.5(2.).
Notice that the strongest bounds in [MU05] are Theorem 4.4(1.) and Theorem 4.5(1.),
but we are satisfied with the slightly simplified variants.

Theorem 3.8. Let (Ω,Pr) be a discrete probability space and let X1, . . . , Xn be inde-
pendent Bernoulli random variables with parameters p1, . . . , pn. Let X = X1+. . .+Xn.
Observe that E [X] = p1 + . . . , pn.

1. For every 0 < δ ≤ 1, it holds that

Pr
(
X ≥ (1 + δ) · E [X]

)
≤ e−E[X]·δ2/3.

2. For every 0 < δ < 1, it holds that

Pr
(
X ≤ (1− δ) · E [X]

)
≤ e−E[X]·δ2/2.

The second version will be helpful for our second application lateron. It allows us to
use upper bounds instead of the expected value, and it has an easy to memorize form.

Theorem 3.9. Let (Ω,Pr) be a discrete probability space and let X1, . . . , Xn be inde-
pendent Bernoulli random variables with parameters p1, . . . , pn. Let X = X1+. . .+Xn.
Then it holds for every b ≥ 6 · E [X] = 6(p1 + . . .+ pn) that

Pr(X ≥ b) ≤ 2−b.

The following example compares the three types of concentration bounds that we have
now seen.

Example 3.10. We consider n independent tosses of a fair coin. We use the random
variable X to model the number of heads that we see. This variable is binomially
distributed with parameters n and 1/2, and its expected value is n/2. With Markov’s
inequality, we observe that

Pr(X ≥ 3
4n) ≤ E [X]

3
4n

= n/2
3
4n

= 2
3 .

To apply Chebyshev’s inequality, we observe that Var[X] exists and that it holds that
Var[X] = n · (1/2) · (1− (1/2)) = (n/4). Chebyshev’s inequality thus gives the stronger
bound

Pr(X ≥ 3
4n) ≤ Pr

(∣∣∣X − 1
2n
∣∣∣ ≥ 1

4n
)
≤ Var[X]

(1
4n)2 = n/4

n2/16 = 4
n
.
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This bound is stronger. It tells us that the probability for (3/4)n heads in n coin
tosses decreases polynomially in n. We observe that Theorem 3.8 can also be applied
to binomially distributed random variables since it is a sum of Bernoulli variables. We
apply the first inequality with δ = 1/2 since (1 + (1/2)) · (n/2) = (3/4)n. The result is
that

Pr(X ≥ 3
4n) ≤ e−(E[X]δ2)/3 = e−

1
2 ·n·

1
4 ·

1
3 = e−

n
24 .

That is the strongest of the three bounds, it says that the probability to see (3/4)n heads
in n coin flips decreases exponentially in n.

3.3 Applications

Now we discuss two different types of applications of concentration bounds. The first
application is from statistics, we want to estimate the parameter of a distribution.
That is a common task in statistics, we only look at the easy case of repeated Bernoulli
experiments. The second application is from the area of parallel computing. We discuss
oblivious routing strategies in a special type of graphs, namely hypercube graphs.

3.3.1 Estimating parameters

Assume that we are conducting a street survey to determine how many inhabitants of
Bonn are fans of the Cologne soccer club 1. FC Köln. How many people do we need to
ask to be sure that our estimation is close to the truth, assuming that the participants
of our survey are chosen uniformly at random from the population of Bonn?

Observe that we want to estimate the parameter p of a Bernoulli random variable:
When 100 · p % of the population of Bonn are a fan, then the probability that a
person chosen uniformly at random is a fan is p. Conducting our poll means that we
repeat the Bernoulli experiment independently, giving rise to a binomially distributed
variable X. We want to choose the number of repetitions n such that we can get a
good estimation of p with high probability. Assume that we see p̃ · n ones in n tries.
The expected number of ones would be p · n. The following definition formalizes the
type of statement that we want to obtain.

Definition 3.11. A γ-confidence interval for a parameter p is an interval [p̃−δ, p̃+δ]
such that

Pr(p ∈ [p̃− δ, p̃+ δ]) ≥ γ.

For example, we might want to estimate the fraction p of the population within a 5%
error, i.e. δ = 0.05, and our estimation shall be correct with probability 99%, i.e.
γ = 0.99. First, we rewrite the probability that p lies within [p̃− δ, p̃+ δ].

Pr(p ∈ [p̃− δ, p̃+ δ]) = 1−Pr(p /∈ [p̃− δ, p̃+ δ])
= 1−Pr((p < p̃− δ) ∪ (p > p̃+ δ))
= 1−Pr(p < p̃− δ)−Pr(p > p̃+ δ)
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= 1−Pr(p̃ > p+ δ)−Pr(p̃ < p− δ)
= 1−Pr(p̃n > np+ nδ))−Pr(p̃ < np− nδ).

Second, we observe that np is the expected value of X, furthermore, nδ = np · δ/p =
(δ/p)E [X]. We can thus rewrite the failure probability into a term that we can apply
Theorem 3.8 to, then we apply the theorem.

Pr(p ∈ [p̃− δ, p̃+ δ])
= 1−Pr(p̃n > np+ nδ))−Pr(p̃ < np− nδ)
= 1−Pr(X > E [X] + E [X] · (δ/p))−Pr(X < E [X]− E [X] · (δ/p))

= 1−Pr
(
X > E [X]

(
1 + δ

p

))
−Pr

(
X < E [X]

(
1− δ

p

))
> 1− e−E[X]·δ2/(3p2) − e−E[X]·δ2/(2p2).

In this form, the bound is not very useful because we do not know p. However, we
know that p ≤ 1, and replacing p by a larger value makes the above term smaller. We
thus do this and then bring our bound in a short form.

Pr(p ∈ [p̃− δ, p̃+ δ])
> 1− e−E[X]·δ2/(3p2) − e−E[X]·δ2/(2p2)

= 1− e−(np)·δ2/(3p2) − e−(np)·δ2/(2p2)

= 1− e−n·δ2/(3p) − e−n·δ2/(2p)

≥ 1− e−n·δ2/3 − e−n·δ2/2

≥ 1− 2e−n·δ2/3

≥ 1− 2 · 1
en·δ2/3 .

We want that 1− 2 · 1
en·δ2/3 ≥ γ. Rearranging this for n tells us that

n ≥ 3
δ2 · ln

( 2
1− γ

)
repetitions are sufficient to ensure that p lies in the interval [p̃−δ, p̃+δ] with probability
at least γ. For δ = 0.05 and γ = 0.01, we get that

3
δ2 · ln

( 2
1− γ

)
= 3

(0.05)2 · ln
( 2

1− 0.01
)
≤ 6358

repetitions are sufficient. Notice that this is a constant – it does not matter how
large the population is to obtain the γ-confidence interval. However, our evaluation
crucially depended on the assumption that we can choose the participants uniformly
at random.
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