2.3. Applications 41

We could use the same proof to show the following fundamentally different statement.

Fact 2.20. Let SQuickSort be the version of QuickSort where the pivot element
is always chosen as x1. If the permutation of the elements is assumed to be chosen
uniformly at random from the set of all possible permutations, then the expected number
of comparisons that SQuickSort performs is 2Inn + O(n).

The randomness is shifted from the algorithm to the input: If we assume that the
distribution with which different input permutations occur is uniform, then we can
show the same guarantee for a deterministic QuickSort variant. This is the type of
statement that we will see in the second part of the lecture. However, assuming that the
input is a uniformly chosen permutation is a very strong assumption. It is preferable
to randomize the algorithm to guarantee the expected performance. Probabilistic
analysis is about showing running time bounds for algorithms under much weaker
assumptions on the input data.

2.3.2 Randomized Approximation Algorithms

Recall that an a-approximation algorithm for a minimization problem is an algorithm
that outputs solutions with a value that is at most a times the value of an optimal
solution. Let J be the set of all possible input instances to an optimization problem,
let ALG be an algorithm that computes a feasible solution SALY(I) for any I € J. For
any I € J, let S*(I) be an optimal solution for /. For a minimization problem, suppose
that ¢(S) is the cost of a solution S. Then ALG is an a-approximation algorithm iff

(st
€3 ¢(S*(I))

For a maximization problem, let v(.S) be the value of a solution S. In this case, ALG
is an a-approximation algorithm iff
v(S*(1))
B sy~

In both cases, we know that o > 1 since ALG cannot compute solutions that are better
than an optimal solution. For randomized algorithms, c¢(SALC(I)) or v(SALC(I)),
respectively, is a random variable. We might either want to achieve that it is close
to the optimum value with high probability, or that its expected value is close to the
optimum value. We choose the second alternative and will later discuss how to obtain
statements of the first type. Thus, we say that a randomized algorithm ALG is an
(expected) a-approximation algorithm for a minimization problem iff

- B|c(S114(G)))|
1€3 c(S*(@))

and it is an (expected) a-approximation algorithm in the case of a maximization
problem iff

L u(8(Q)
13 E[v(5444(G))]

42 2. Evaluating Outcomes of a Random Process

The MaxCut problem. We consider the weighted mazimum cut problem, abbre-
viated as the MazCut problem. We are given an undirected graph G = (V| E) with
V=Avy,...,u,}, ECV xV, and a weight function w : E — R™ that maps each edge
to a positive weight. We are supposed to output a subset S C V' that mazimizes the
total weight of the edges that are cut. In other words, we are supposed to maximize

e€d(S)

For the min cut problem, we explicitly excluded the cases S = V and S =). These
solutions both cut no edge, so the sum then is zero. Since we are now interested in
maximization, we do not need to exclude these solutions which are the worst possible
solutions anyway.

The MaxCut problem is NP-hard, it was among the 21 problems that Karp showed to
be NP-hard in 1972 [Kar72]. We discuss a randomized approximation algorithm for
the MaxCut problem with expected approximation guarantee 2. The algorithm can
be derandomized, i.e. one can give a deterministic 2-approximation algorithm. The
deterministic variant was published by Sahni and Gonzales [SG76] in 1976. In the
subsequent years, approximation algorithms were found with a guarantee of 2 — o(1),
but no algorithm that improved the guarantee to a constant below 2. Thus, for a
long time, the approximation factor achieved by the simple randomized algorithm was
essentially the best approximation guarantee.

The constant was finally improved in 1994, in a seminal paper by Goemans and
Williamson [GW94, GW95], who give a randomized 1.38-approximation by using a
technique called semidefinite programming which goes beyond the scope of this lec-
ture.

The randomized algorithm we consider is very simple: Start with S = (). For each
vertex v, add v to S with probability 1/2. The running time of this algorithm is
O(|V]). For any edge e = {v;,v;} € E, i < j, we define X, = X;; to be the indicator
random variable for the event that e is in 6(5). This happens if and only if either
v; € S,u; ¢ Sorv ¢ Sv; € S. The decisions for v; and v; are independent, so
Pr(v, e SNu; ¢)= (1/2) - (1/2) = 1/4, and also Pr(v; € SNwv; ¢ S) = 1/4. Both
events are disjoint, so Pr(e € 6(5)) = (1/4)+(1/4) = 1/2. By linearity of expectation,
we obtain

E

S w

e€d(S)

_E [z Xewe] Y wEX = Y- (1/2),

ecE eckE eck

We can never cut more than all edges, so > .crw. is an upper bound on the value
of the best possible solution. Thus, the algorithm has an expected approximation
guarantee of 2.

The VertexCover problem. Now we consider the (unweighted) vertex cover prob-
lem (VertexCover). We are given an undirected and unweighted graph G = (V, E).
We want to output a set C' C V such that every edge in the graph is covered by C: For

2.3. Applications 43

every e € E with e = {u, v}, we require that u € C' or v € C' (or both). The goal is to
minimize the the number of nodes |C|. The vertex cover problem is a minimization
problem.

VertexCover is NP-hard, it also belonged to the problems proven to be NP-hard
in [Kar72]. Different 2-approximation algorithms for the problem are known, includ-
ing deterministic algorithms. It is unknown whether an a-approximation algorithm is
possible for a constant a < 2 (there are hints that this might be impossible).

From our experience with the MaxCut problem, we might try the algorithm that
adds every vertex to C' with probability 1/2. We observe two problems with this
approach: First, the output might not actually be a vertex cover, some edges might
not get covered. Second, the algorithm could pick a lot more vertices than an optimal
solution. Consider a star graph S, i.e. a graph with vertex set {v} UV” for some set V'
and edge set {{v,v'} | v/ € V'}. If we decide for each vertex whether it is in C' or not
uniformly at random, then the expected number of vertices in C' is |V’|/2. However,
an optimal vertex cover for this graph is C* = {v} with |C*| = 1. Thus, the expected
approximation ratio of this algorithm (that also does not produce feasible solutions)
would be Q(|V]).

a star graph S optimal solution C* a solution with |C| = L;'H

The following simple algorithm works. Start with C' =). For all edges e € E,
e = {u, v}, check if e is already covered by C. If not, add u to S with probability 1/2,
otherwise, add v. After processing all edges, it is ensured that all edges are covered.
The running time of the algorithm is O(|V| + |E|). The algorithm is due to Pitt, who
developed a version for the more general case of weighted vertex cover and proved that
it is a 2-approximation [Pit85].

In the following, for any graph G, let CAL%(G) be the solution computed by the
simple vertex cover approximation algorithm, and let C*(G) be an optimal vertex
cover. We reconsider the above example, i.e. we let S be a star graph like defined
above. We already observed that C*(S) = {v}. We are interested in the random
variable Z = |CALC(S)|. The algorithm starts with CAXY(S) = (), so Z starts at
zero. The edges of S are considered in an arbitrary order. For edge e = {v, v}, two
events can happen: With probability 1/2, v’ is added to C4*¢(S), thus Z increases
by one, and only the edge {v,v'} is covered by the new vertex. With probability 1/2,
v is added. In this case, Z also increases by one, but all edges are now covered and
Z freezes. We observe that Z is a geometrically distributed random variable with
parameter 1/2! Thus, we immediately conclude that E[Z] = 2. Since the optimum
consists of one vertex, we have now proven that the expected approximation guarantee
is 2 if the input is a star graph. The following theorem extends the analysis to general
input graphs.

44 2. Evaluating Outcomes of a Random Process

Theorem 2.21. The randomized vertex cover algorithm is an (expected) 2-approximation
algorithm.

Proof. Let G = (V, E) be an arbitrary input graph. We use the abbreviations C* =
C*(G) and CALE = CALY(@G). Furthermore, we set k = C* and name the vertices in
the optimum vertex cover by assuming that C* = {v},..., v} }.

Step 1: In order to use our observations about star graphs, we want to partition GG
into stars. We observe the following: The set of edges covered by a vertex v is a star.
These stars are not disjoint, so they do not form a true partitioning of G. However,
they cover G completely. We formalize this idea. For any v} € C*, let Gf = (V*, E)
be defined as

Vi={viU{ueV]{uv} e E}
Ef = {{u, v/} [{u, v} € E}

As already indicated, the intersection of V;* and V" for i # j is not necessarily empty,
the same holds for E} and E} for i # j. However, we have that

k k
V=Viand E=JE;
i=1 i=1
because C* is a feasible vertex cover. The following is an example, observe that the
subgraphs overlap.

* *
* *
v Ua
* *
U3 Us
G and an optimal C* subgraphs G%, G%, G*
1 2 3

Step 2: Since the G} cover GG, we observe that
|CALG| S |C’ALG N ‘/1*‘ + |CALG N ‘/2*| + |CALG N ‘/3*| 4+ |C’ALG N Vk*’

We define the random variable Z; := |CA¢ N V*| as the ith term in this sum. Observe
that Z; can only be increased in iterations where the algorithm considers edges from
E;. For every edge e = {u,v;} in E}, the algorithm adds a vertex to C4¢ and thus
increases Z; by one if and only if v} has not yet been added to CAL¢. If it adds a
vertex, then this vertex is w with probability 1/2, and it is v} with probability 1/2.
We see adding v as a success and not adding it as a failure to observe that Z; is a
geometrically distributed random variable with parameter 1/2. Thus, E(Z;) = 2.

2.3. Applications 45

Step 3: By linearity of expectation, we obtain that

k
Z |CALG N ‘/Z*’

i=1

k
B|[C*€]| <E =S E[Z)] =2k
=1

Since the optimal vertex cover has k nodes, we have now proven that the algorithm
computes an expected 2-approximation. 0

Chapter

Concentration bounds

In this chapter, we see bounds that bound the probability that a random variable
deviates from its expected value, depending on the extent of the deviation. Bound-
ing this probability is not always possible, in fact, the expected value of a random
variable might not even exist and then the question becomes irrelevant. However, if
we know that the random variable has good properties, we can apply one of various
concentration bounds, also called tail bounds. We see three types of tail bounds in this
chapter. The first one only needs that the random variable is non-negative and that
its expected value exists. These are rather weak preconditions, and the bound is also
the weakest that we see in this chapter. Nevertheless, it is tremendously useful.

Theorem 3.1 (Markov’s inequality). Let (2, Pr) be a discrete probability space, let
X : Q — R2% be a random variable that attains non-negative values. Assume that
E [X] exists. Then

E[X]

a

Pr(X >a) <

holds for all a > 0. Thus, it also holds

Pr(X > b-E[X))

I
S|

for allb > 1.

Proof. Let Y be the indicator random variable with

v — 1 ifX >a
0 else.

Then, E[Y] = Pr(Y = 1) = Pr(X > a) is the quantity that we want to bound. We
observe that YV < % is always true. We know that X/a > 0 since X > 0 and a > 0.
Thus, if X < a, implying that Y = 0, then X/A > 0 = Y. Furthermore, if X > a
and thus Y =1, then X/a > 1 =Y, so X/a > Y holds as well. This extends to the

46

3. Concentration bounds 47

expected value, i.e. E[Y] < E[X/a] (recall Observation 2.6). Now we can conclude
by linearity that

Pr(X >a) = B[] gE{X} _EBlX]

a a

The second inequality follows by setting a = b - E[X]. Notice that we could do this
for values b € (0, 1] as well, but then the bound is not meaningful, so we restrict b to
values greater than one. O

	I Randomized Algorithms
	Evaluating Outcomes of a Random Process
	Applications
	Randomized Approximation Algorithms

	Concentration bounds

