
36 2. Evaluating Outcomes of a Random Process

2.2 Binomial and Geometric Distribution

When we have n copies Y1, . . . , Yn of the same Bernoulli random variable with pa-
rameter p and add them, then we get a binomially distributed random variable X =
Y1 +Y2 + . . .+Yn with parameters n and p. For example, X could describe the number
of successful runs of an algorithm or the number of times that we see heads in a series
of n coin flips. The random variable X in Example 2.9 is binomially distributed with
parameters 10 and 1/2. Analogously to that example, we can use linearity of expec-
tation to confirm our suspicion that the expected value of a binomially distributed
variable with parameters n and p should be np.

Lemma 2.15. Let X = Y1, . . . , Yn be a binomially distributed random variable with
parameters n and p. Then E [X] = np.

Proof. We know that Yi is a Bernoulli random variable with parameter p for all i ∈
{1, . . . , n}. We already observed that that implies that E [Yi] = Pr(Yi = 1) = p. By
linearity of expectation, we get that

E [X] = E
[
n∑
i=1

Yi

]
=

n∑
i=1

E [Yi] = np.

The expected value of a binomially distributed random variable is easy to memo-
rize. The probabilities for obtaining a specific number describe the distribution more
precisely, but are a little more complex to compute.

Lemma 2.16. Let X = Y1, . . . , Yn be a binomially distributed random variable with
parameters n and p. Then

Pr(X = j) =
(
n

j

)
· pj(1− p)n−j.

Proof. Observe that there are m =
(
n
j

)
ways how j ones can occur in the sum of the

n random variables. Each possibility has probability pj(1 − p)n−j. Formally, we can
define an event Ai for each of the m possibilities and observe that these events are
disjoint and their union is the event X = j. Each event has probability pj(1− p)n−j,
so we have

Pr(X = j) = ∪mi=1Pr(Ai) =
m∑
i=1

Pr(Ai) = m · pj(1− p)n−j =
(
n

j

)
· pj(1− p)n−j.

Another related type of random variables are geometrically distributed random vari-
ables. A geometrically distributed random variable models how long it takes until a
Bernoulli experiment returns 1 for the first time. Let Y1, Y2, Y3, . . . be independent

2.2. Binomial and Geometric Distribution 37

identical copies of the same Bernoulli random variable with parameter p. Then the
corresponding geometrically distributed random variable X : Ω → N with parameter
p has value i iff Yj = 0 for j < i and Yi = 1. With such a random variable we can for
example model how long we have to wait until independent repetitions of the same
randomized algorithms lead to the first success.

The probability that X = i is exactly (1 − p)i−1p because the event Yi happens if
i − 1 tries return 0 and the ith try returns 1. We know from Lemma 2.15 that the
binomially distributed random variable with parameters n and p has expected value
np, thus the number of tries that return 1 within the first 1/p tries is 1 (assuming that
1/p is an integer). This gives us the intuition that the corresponding geometrically
distributed variable with parameter p should have expected value 1/p. We see that
that is indeed the case.

Lemma 2.17. Let X be a geometrically distributed random variable with parameter
p > 0. Then E [X] = 1/p.

Proof. We recall that Lemma 2.10 says that E [X] = ∑∞
j=1 Pr(X ≥ j). What is the

probability that at least j tries are necessary to get the first 1? This happens if and
only if the first j − 1 tries fail, so Pr(X ≥ j) = (1 − p)j−1. Now we can use that∑∞
k=0 r

k = 1
1−r for any r 6= 1 (this is a geometric series) to obtain that

E [X] =
∞∑
j=1

Pr(Y ≥ j) =
∞∑
j=1

(1− p)j−1 =
∞∑
j=0

(1− p)j = 1
1− 1 + p

= 1/p.

Up to this point, we talked a lot about the fact that we expect to need 1/p tries until
the first 1 occurs, that we expect one 1 among the first 1/p tries and that we can make
the probability that no 0 occurs smaller and smaller by using even more independent
tries. Of course, this does not mean that a 1 in the next try becomes more likely only
because we have already seen a lot of 0s. On the contrary, an important property of
the geometric distribution is that it is memoryless.

Lemma 2.18. Let X be a geometrically distributed random variable with parameter
p. It holds for all n ∈ N and k ∈ N0 that

Pr(X = n+ k | X > k) = Pr(x = n).

Proof. By definition, we have that

Pr(X = n+ k | X > k) =
Pr
(
(X = n+ k) ∩ (X > k)

)
Pr(X > k) = Pr(X = n+ k)

Pr(X > k)

= (1− p)n+k−1 · p
(1− p)k = (1− p)n−1 · p = Pr(X = n).

For the third equality, we observe that the probability that we need more than k tries
to get the first 1 is the probability that we get 0 in k consecutive tries.

38 2. Evaluating Outcomes of a Random Process

2.3 Applications

Our application section features the powerful linearity of expectation in different con-
texts, mixed with the knowledge we aquired about integer valued random variables.
We start with randomized QuickSort, showing how randomization can protect an al-
gorithm from worst case input instances. Then we do an excursion to randomized
approximation algorithms, where we consider algorithms for the maximum cut prob-
lem and the vertex cover problem.

2.3.1 Randomized QuickSort

In this section, we analyze a randomized version of the popular sorting algorithm
QuickSort. Recall that QuickSort is a recursive Divide&Conquer algorithm. As
long as there are at least two elements, it chooses a pivot (element) x, partitions the
elements except x in those smaller than x and larger than x and recursively sorts the
two subsets. The results are then concatenated appropriately. The following pseudo
code captures the essence of QuickSort. We assume that the input is a set of distinct
numbers. Notice that we do not specify how the set is stored at the beginning or
during the algorithm, we want to focus on the main algorithmic steps. We model the
output as an ordered vector. The desired output is the (unique) vector where the
input elements are sorted increasingly.

QuickSort(S = {x1, . . . , xn})
1. if (n = 0) then return ()
2. if (n = 1) then return (x1)
3. Choose a pivot element x ∈ S
4. Compute S1 = {xi | xi < x} and S2 = {xi | xi > x}
5. A1 = QuickSort(S1); A2 = QuickSort(S2)
6. Concatenate A1, (x) and A2 to obtain the vector A
7. return A

The running time of QuickSort depends crucially on the specification of step 3, the
choice of the pivot element. We recall that the worst case running time of QuickSort
is Θ(n2) if the algorithm chooses x1 as the pivot element in every step. The bad case
that can then occur (in every call with n ≥ 2) is that one of the sets S1 and S2 has
n− 1 elements and the other is empty because x1 always happened to be the smallest
/ largest element in S. This happens if the array is sorted in the beginning.

Ideally, the pivot element is the median of the elements in S because that splits S into
two sets of equal size (or nearly equal size, depending on whether n is odd or even).
Computing the median in time O(n) is possible (an algorithm to do so was published
in [BFP+73]). We will also see an easier randomized algorithm to compute the median
later in this lecture. However, for the purpose of a lean QuickSort implementation it is
even easier to randomize the choice of the pivot element in a straightforward manner.

2.3. Applications 39

We analyze the algorithm RQuickSort that always chooses the pivot element uniformly
at random from S in Step 3.

Theorem 2.19. The expected number of comparisons of RQuickSort is 2n lnn+Θ(n)
for any input S with n distinct elements.

Proof. Let (y1, . . . , yn) be the sorted vector containing the elements x1, . . . , xn, i.e.
the output of RQuickSort. For any pair i, j ∈ {1, . . . , n} with i < j we define the
(indicator) random variable Xij by

Xij =

1 if yi and yj are compared during the execution of RQuicksort
0 else.

Observe that two numbers yi and yj are never compared twice during the execution of
RQuicksort: Comparisons are only made between a pivot element and other numbers.
Thus, when yi and yj are compared cor the first time, one of them is the pivot element.
Thus, it is no longer present in the recursive calls and no further comparisons between
yi and yj can occur. Thus, if we model the total number of comparisons by the random
variable X, we have

E [X] = E

n−1∑
i=1

n∑
j=i+1

Xij

 =
n−1∑
i=1

n∑
j=i+1

E [Xij] =
n−1∑
i=1

n∑
j=i+1

Pr(Xij = 1)

where we use linearity of expectation. To compute Pr(Xij = 1), we observe that yi
and yj are compared iff and only if either yi or yj is the first element from the set
{yi, . . . , yj} that is chosen as a pivot element. To see that this is true, let x be the
first element from {yi, . . . , yj} that is chosen as the pivot element.

• If x 6= yi and x 6= yj, then yi and yj are compared with x and not with each
other. Since x ∈ {yi, . . . , yj}, we have yi < x < yj. Thus, the two elements are
then separated because yi ∈ S1 and yj ∈ S2. Thus, they are never compared.
• If x = yi or x = yj, then yi and yj are compared. In the recursive calls, x is no

longer present and no further comparisons occur.

Let P be the random variable that has the chosen pivot element as its value. The
algorithm chooses an element uniformly at random from the current set S, so Pr(P =
x) = 1

|S| for all x ∈ S. As long as no element from {yi, . . . , yj} is chosen as a pivot
element, a call of RQuickSort either has all or no elements from {yi, . . . , yj} in S. We
observe that

Pr((P = yi) ∪ (P = yj) | P = x with x ∈ {yi, . . . , yj})

=Pr(((P = yi) ∪ (P = yj)) ∩ (P = x with x ∈ {yi, . . . , yj}))
Pr(P = x with x ∈ {yi, . . . , yj})

= Pr((P = yi) ∪ (P = yj))
Pr(P = x with x ∈ {yi, . . . , yj})

= 2/|S|
(j − i+ 1)/|S| = 2

j − i+ 1 .

40 2. Evaluating Outcomes of a Random Process

This is intuitive: The first element from {yi, . . . , yj} that is chosen is chosen uniformly
at random from a super set of {yi, . . . , yj}, so if it is from {yi, . . . , yj}, then it is a
uniformly chosen element from {yi, . . . , yj}. Since yi and yj are two elements, choosing
one of them has a probability of 2/(j − i+ 1). We observe that

E [X] =
n−1∑
i=1

n∑
j=i+1

Pr(Xij = 1) =
n−1∑
i=1

n∑
j=i+1

2
j − i+ 1 =

n−1∑
i=1

n−i+1∑
k=2

2
k
.

For a specific j ∈ {2, . . . , n}, the term 1/j occurs in the second sum iff and only if
j ≤ n − i + 1. This is true for all i ∈ {1, . . . , n − j + 1}, thus the term 1/j occurs
exactly n− j + 1 times. We thus get that

n−1∑
i=1

n−i+1∑
k=2

2
k

=
n∑
j=2

2
j

(n− j + 1) = (n+ 1)
 n∑
j=2

2
j

− 2(n− 1)

= (2n+ 2)(Hn − 1)− 2(n− 1),

where Hn = ∑n
i=1(1/i) is the n-th harmonic number. Since Hn = lnn + Θ(1), we get

that
E [X] = (2n+ 2)(lnn+ Θ(1))− 2(n− 1) = 2n lnn+ Θ(n).

	I Randomized Algorithms
	Evaluating Outcomes of a Random Process
	Binomial and Geometric Distribution
	Applications
	Randomized QuickSort

