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An arbitrary starting assignment can disagree in all n variables. Then the bound from
Lemma 4.3 is 2n+2 − 4 − 3n. This is worse than the immediate upper bound of 2n
for (deterministically) iterating through all possible assignments to determine whether
one of them is satisfying. We are interested in an algorithm with exponential running
time, but the running time should be dn for a d < 2.
Schöning’s algorithm has two twists. First, the starting assignment is not chosen
arbitrarily but uniformly at random from all possible starting assignments. Such an
assignment will agree with a fixed a∗ in n/2 variables on expectation. There is also
a chance that it agrees in more variables. Second, Schöning’s algorithm restarts the
local search after a certain amount of steps. This is similar to the implicitly defined
phases that we used in the Theorem 4.2, however, there is one important difference.
After every restart, the algorithm again starts with an assignment chosen uniformly
at random instead of the end assignment of the phase before. The following pseudo
code Improved-3-SAT(φ, s) realizes Schöning’s algorithm. It uses Rand-3-SAT as a
subroutine. The parameter s controls the number of restarts. As in all of this section,
n refers to the number of variables in φ in the pseudo code.

Improved-3-SAT(φ, s)

1. for i = 1 to s do
2. choose an assignment a uniformly at random
3. if Rand-3-SAT(φ, 3n, a) = “YES” then return “YES”;
4. return “NO”;

Let us first investigate whether starting with at least n/2 agreeing variables is a sig-
nificant improvement over a worst case start (i. e. an assignment that disagrees in all
variables). For i = n/2, the bound from Lemma 4.3 is 2n+2 − 2n/2+2 − 3(n/2) which
is still Ω(2n+2). However, Lemma 4.3 only analyzes the expected number of steps that
the random walk needs. In the previous sections, we often used statements on the
expectation of a random variable and then argued that the random variable is close to
this expected value because that was a good event for us. Here, we can also state that
the number of steps will be close to 2n+2 − 2n/2+2 − 3(n/2) with constant probability.
But we are now interested in the reverse question: Is there a good probability that
the number of steps deviates significantly from its expected value, in particular, that
it is significantly smaller?
We need a better understanding of the probability distribution, so we continue the
analysis of the random walk. We want to find a lower bound for the probability that
the walk reaches vertex n if it starts in vertex n− i. The probability space underlying
this random process is rather complex. In particular, the walks are of different lengths.
Assume we encode a walk starting in n − i by a sequence of L and R that represent
whether the algorithm made a step to the left or to the right. Then this sequence has
at most t letters since the number of iterations is t. However, there are also walks that
have fewer steps since the algorithm stops moving when it reaches n. The latter also
means that not all strings of length t are feasible walks. For example, for t > i the
string Ri(LR)(t−i)/2 does not represent a walk that can actually happen since the n is
reached after i steps and then the algorithm stops making changes. Furthermore, a
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string that starts with Ln−i+1 does not represent a walk because the algorithm would
go to the right after reaching 0 after n− i steps to the left.

Instead of analyzing this rather complex structure, we analyze a simplified random
walk. We extend the line graph sufficiently to the left and right such that t consequtive
steps in the same direction are possible from all vertices 0 to n. Furthermore, we
assume that the walk acts in 0 and n as for all other nodes, having a probability of
≥ 1/3 to go to right and a probability of ≤ 2/3 to go to the left. Now we define
the probability space Ωi for i ∈ {0, . . . , n} as {L,R}3i. This means that we consider
all walks consisting of exactly 3i steps. (The number 3i will turn out to be a good
choice later in our analysis). We define a success as the event that the walk ends in
vertex n. In particular, if the walk visits n but the walk does not end in n, then this
is counted as a failure. Observe that the probability for a success is a lower bound for
the probability that we reach n from n− i in the original random walk.

Let qi be the probability of a success. In order to achieve a success, the walk has to
end in vertex n after doing 3i steps. The walk reaches n by making k steps to the
left and i + k steps to the right, and in order to reach n in exactly 3i steps, k has
to be i. Thus, every walk represented by a string with i L’s and 2i R’s leads to a
success. There are
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Now we use Stirling’s formula. This formula is due to Abraham de Moivre and James
Stirling and states that m! is approximately the same as (m/e)m times a smaller term,
and that the smaller term is

√
2πm. For a proof of the following lemma, see for

example 2.27 in [Mit70] (statement (6) in 2.27 gives tighter bounds from which the
lemma follows).

Lemma 4.4 (Stirling’s formula). It holds
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64π . In particular, qi ≥ c√
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2n/2 for i ≤ n/2. With this, we can show
that Improved-3-SAT for an s ∈ O(1.42n) with constant probability (exercise). This
algorithm has a running time of O(n · 1.42n), an improvement over the 2n bound for
the brute force solution.

However, this result only used knowledge about reaching n from a vertex that is at
least n/2. We can do better by using the full information that we gained about the
qi. Let q by the probability that one iteration of choosing an arbitrary assignment
and doing 3n random walk steps successfully reaches vertex n, i.e. q is the success
probability of one iteration of Improved-3-SAT. For any i ∈ {0, . . . , n}, the probability
to start in vertex n−i is pi =

(
n
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)
/2n =
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)
/2n. Let Ai be the event that the iteration

starts in vertex n − i and reaches n. The event Ai has probability pi · qi. All events
Ai, i ∈ {0, . . . , n} are disjoint, so q = ∑n

i=0 Pr(Ai) = ∑n
i=0 pi · qi. To compute a lower

bound on this term, we use the binomial theorem.

Theorem 4.5 (Binomial theorem). For all x, y ∈ R and all m ∈ N0, it holds that
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We have now gathered enough information to prove the main theorem of this section.

Theorem 4.6. Let φ be a satisfiable 3-SAT formula. For s = d (ln 1/δ)·
√

64π·n√
3 · (4

3)ne, the
algorithm Improved-3-SAT(φ, s) finds a satisfying assignment for φ with probability
1− 1

n
and has a running time of Θ((ln 1/δ) · n3/2 · 1.334n).

Proof. Recall that c =
√

3/
√

64π. By (4.3), the success probability of one iteration of
Improved-3-SAT(φ, s) is at least q′ = c√

n
· (3/4)n. The probability that all s tries fail

is at most (1 − q′)s ≤ (1 − q′)(ln 1/δ)/q′ ≤ (1/n). The running time for one iteration is
Θ(n), so the total running time is θ(s · n).


