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1.4.1 Non-negative Integer Valued Random Variables

We are often interested whether a specific event occurs or not. Is my algorithm suc-
cessful? Did the die roll give a six? It can be very useful to express this by an
indicator random variable. Such a variable can only take the values 0 and 1 depending
on whether the event in question occurred or not – it ‘indicates’ whether the event
happened. For example, we could use a random variable that is 0 if one run of the
algorithm at hand fails, and 1 if it succeeds. We will often define indicator random
variables in the following shorter notation instead of referring to the actual elementary
events:

X =

1 if event A occurrs
0 else

.

We observe that the expected value of an indicator variable X is equal to the proba-
bility that we get the value 1:

E [X] = 0 ·Pr(X = 0) + 1 ·Pr(Y = 1) = Pr(X = 1). (1.2)

A random variable X with values 0 and 1 and p = Pr(X = 1) is also called a Bernoulli
random variable with parameter p.

Example 1.27. We continue 2. from Example 1.24 where our random experiment
consists of ten independent coin flips. We define the indicator variable Xi

Xi =

1 if the ith coin flip comes up heads
0 else

.

for every i ∈ {1, . . . , 10}. We immediately observe that E [Xi] = Pr(Xi = 1) = 1/2.
Before, we considered the random variable X which is the number of heads during the
ten coin flips. This is just the sum of the indicator variables. By using linearity of
expectation, the computation of the expected value of X now becomes a much easier
task:

E [X] = E
[ 10∑
i=1

Xi

]
=

10∑
i=1

E [Xi] =
10∑

1=1

1
2 = 5.

For random variables that map to non-negative integers N≥0 = {0, 1, 2, 3, . . .}, there
is a useful generalization of (1.2):

Lemma 1.28. Let (Ω,Pr) be a discrete probability space and let X : Ω → N≥0 be a
discrete random variable. Assume that E [X] exists. Then it holds that

E [X] =
∞∑
i=1

Pr(X ≥ i).

Proof. The statement is true because

E [X] =
∞∑
i=0

i ·Pr(X = i) =
∞∑
i=1

i ·Pr(X = i)
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=
∞∑
i=1

i∑
j=1

Pr(X = i).

Now we use that the existence of E [X] means that all sums in the equation converge
and even converge absolutely. For absolutely convergent series, we can reorder the
terms arbitrarily. The term Pr(X = 1) appears one time, the term Pr(X = 2) twice,
the term Pr(X = 3) three times, and so on. We get the same terms in different order
for

∞∑
j=1

∞∑
i=j

Pr(X = i) =
∞∑
i=1

Pr(X ≥ i).

1.4.2 Conditional Expectation

We know from Example 1.24 that the expected value of the sum of two dice is 7.
Assume that we observe the outcome of the first die roll. Then the expected value of
the sum will change. We already know the concept of conditional probabilities and
now define conditional expectations.

Definition 1.29. Let (Ω,Pr) be a discrete probability space, let A ∈ 2Ω be an event
and let X : Ω → R be a discrete random variable. The conditional expected value of
X under A exists if ∑x∈R(X) |x| ·Pr(X = x | A) converges and is then defined as

E [X | A] =
∑

x∈R(X)
x ·Pr(X = x | A).

In particular, if Y : Ω→ R is another discrete random variable and E [X | Y = y] for
y ∈ R exists, then we get:

E [X | Y = y] =
∑

x∈R(X)
x ·Pr(X = x | Y = y).

Example 1.30. We continue 1. from Example 1.24. Let A be the event that the
first die roll is 2, let X be the random variable for the sum of the two dice. Then
E [X | A] = ∑8

x=3 x · 1
6 = 11

2 . We can also say that X1 is the random variable for the
first roll, X2 for the second roll, and then observe that

E [X | X1 = 2] = E [X1 +X2 | X1 = 2] =
8∑

x=3
x · 1

6 = 11
2 .

We can also use information about X to obtain information about the first roll:

E [X1 | X = 5] =
4∑

x=1
x ·Pr(X1 = x | X = 5)

=
4∑

x=1
x · Pr(X1 = x ∩X = 5)

Pr(X = 5)
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=
4∑

x=1
x · Pr((X1 = x) ∩ (X2 = 5− x))

Pr(X = 5)

=
4∑

x=1
x · 1/36

4/36 = 1
4 · 10 = 5

2

We do not want to miss the following rules when computing conditional expected
values. They are proven similarly to Theorem 1.25.

Lemma 1.31. Let (Ω,Pr) be a discrete probability space, let X, Y : Ω→ R be discrete
random variables and let A ∈ 2Ω be an event. If the expected values of X and Y exist,
then it also holds that:

1. The conditional expected value of cX under A exists for all c ∈ R and it is
E [cX | A] = cE [X | A].

2. The conditional expected value of X + Y under A exists and E [X + Y | A] =
E [X | A] + E [Y | A].

Also observe that if X and Y are independent, then

E [X | Y = y] =
∑

x∈R(X)
x ·Pr(X = x | Y = y) =

∑
x∈R(X)

x · Pr((X = x) ∩ (Y = y))
Pr((Y = y))

=
∑

x∈R(X)
x · Pr((X = x)) ·Pr((Y = y))

Pr((Y = y)) =
∑

x∈R(X)
x ·Pr(X = x) = E [X] .

Example 1.32. We continue 2. from Example 1.24. Let Y be the random variable that
is equal to the number of heads we see in the first six of ten independent coin flips, let Z
be the random variable that is equal to the number of heads we see in the last four of ten
independent coin flips and let X = Y +Z be the number of heads in all ten coin flips.
Then E [X | Y = 4] = E [Y + Z | Y = 4] = E [Y | Y = 4] + E [Z | Y = 4] = 4 + 2 = 6.
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