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1.4 Random Variables and Expected Values

A random variable is a mapping that assigns a value to every elementary event. We
have already used random variables implicitly: the value of a die, the sum of multiple
dice or the number of times that a coin flip shows heads.

Definition 1.20. Let (Ω,Pr) be a discrete probability space. A discrete random vari-
able is a mapping X : Ω→ R that assigns a real number to every elementary event.

We also already used random variables in the definition of events, for example that
the sum of the values of two dice is eight. The event that a random variable X
takes value a is usually abbreviated by X = a. The precise definition of this event is
{ω ∈ Ω | X(ω) = a}. We will also use this abbreviation, in particular we use

Pr(X = a) = Pr({ω ∈ Ω | X(ω) = a}).

Analogously, we use for R ⊂ R:

Pr(X ∈ R) = Pr({ω ∈ Ω | X(ω) ∈ R}).

Example 1.21. We have a look at three examples for random variables.

1. The sum of two dice, modeled by the probability space (Ω,Pr) with Ω = {1, . . . , 6}2

and Pr(ω) = 1/36 for all ω ∈ Ω, is formally defined by X : Ω → {1, . . . , 12}
with X(ω) = ω1 + ω2 for all ω = (ω1, ω2) ∈ Ω. We observe that Pr(X = 1) = 0,
Pr(X = 2) = 1/36 and Pr(X = 7) = 1/6.

2. Let (Ω,Pr) be a probability space for modeling ten independent coin flips, i.e.
Ω = {H,T}10, Pr(ω) = 1/1024 for all ω ∈ Ω. Let X : Ω→ {0, 1, 2, . . . , 1024} be
the number of times that the flip came up heads. We observe that Pr(X = 0) =
1/1024 and Pr(X = 1) = 10/1024. A little more consideration lets us observe
that Pr(X = 2) = 45/1024.

3. We model the following random experiment: A coin is tossed until the first time
that we see tails. We have Ω = {T,HT,HHT,HHHT, . . .} = {H i−1T | i ≥ 1}
as a countably infinite discrete probability space. The probability of the elemen-
tary event to get i−1 times head and then tails for the first time is Pr(H i−1T ) =
1/2i. Observe that

∞∑
i=1

1
2i = −1 +

∞∑
i=0

1
2i = 2− 1 = 1.

We define the random variable X : Ω → N by setting X(H i−1T ) = i for all
H i−1T ∈ Ω. By definition, it is clear that Pr(X = i) = 1/2i. Assume that Alice
and Bob bet whether the first tails will occur after an odd or even number of coin
tosses. If the number is odd, then Alice wins i points, and if it is even, she loses
i points; Bobs result is inverse. Thus Alice’s gain is described by the random
variable Y : Ω→ N with

Y (H i−1T ) =

i if i is odd
−i if i is even

,

and Bobs gain is described by −Y .
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We call random variables independent if knowing the value of one random variable
gives no information about the value of the other variable. Given Definition 1.7, it is
straightforward to obtain the following definition.

Definition 1.22. Let (Ω,Pr) be a discrete probability space, let X, Y : Ω → R be
discrete random variables. We say that X and Y are independent if

Pr((X = x) ∩ (Y = y)) = Pr(X = x) ·Pr(Y = y)

holds for all x, y ∈ R. A Family X1, . . . , X` : Ω → R of discrete random variables is
independent if

Pr(
⋂
i∈I

(Xi = xi) =
∏
i∈I

(Xi = xi)

holds for every I ⊆ {1, . . . , n} and all xi ∈ R, i ∈ I.

Since Ω is finite or countably infinite, the image of X is also finite or countably
infinite. We name the image R(X). When R(X) is finite, then the expected value is
the (weighted) average of the values in R(X). When R(X) is countably infinite, we
can think of the expected value in a similar way. However, in this case it is possible
that the expected value diverges.

Definition 1.23. Let (Ω,Pr) be a discrete probability space and let X : Ω → R be a
discrete random variable. We say that the expected value of X exists iff the series∑

ω∈Ω
|X(ω)| ·Pr({ω}) =

∑
x∈R(X)

|x| ·Pr(X = x)

converges. If the expected value exists, then it is defined as

E [X] =
∑
ω∈Ω

X(ω) ·Pr({ω}) =
∑

x∈R(X)
x ·Pr(X = x).

Example 1.24. We continue Example 1.21.

1. When X is the sum of two independent dice, then its expected value is

E [X] =
12∑
x=2

x ·Pr(X = x) = 2 · 1
36 + 3 · 2

36 + 4 · 3
36 + . . .+ 11 · 2

36 + 12 · 1
36 = 7.

2. For the random variable X that models the number of heads in ten independent
coin flips, computing the expected value is somewhat tedious. Intuitively, we
expect to see heads half of the time. Indeed, it turns out that

E [X] = 0 · 1
1024 + 1 · 10

1024 + 2 · 45
1024 + . . .+ 10 · 1

1024 = 5.

3. What is the expected value of Alice’s gain? Does the expected value exist? We
can write Y (H i−1T ) as (−1)i−1 · 1

2i . To decide if the expected value exists, we
have to decide whether

∞∑
i=1
|(−1)i−1i| · 1

2i =
∞∑
i=1

i

2i
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converges. We might know that this series converges or we can apply a conver-
gence test to the series ∑∞i=1 ai with ai = i

2i to prove it (for example, to apply
the ratio test, observe that i+1

2i+1/( i
2i ) = 1/2 + 1/(2i) and thus limi→∞ |ai+1/ai| =

1/2 < 1), and obtain that the expected value exists. When we actually compute
the expected value, it might be surprising that it is not zero. We can compute
some intermediate terms to get an intuition that the alternating series

E [Y ] =
∞∑
i=1

(−1)i−1i · 1
2i

converges to a value above zero:

a1 = 1/2, a2 = 2/4, a3 = 3/8, a4 = 4/16, a5 = 5/17, a6 = 6/18
⇒ a1 = 1/2, a1 − a2 = 0, a1 − a2 + a3 = 3/8, a1 − a2 + a3 − a4 = 1/8,

a1 − a2 + a3 − a4 + a5 = 9/32, a1 − a2 + a3 − a4 + a5 − a6 = 3/16.

In fact, the sum of the series is 2/9! Thus, Alice wins 2/9 points on expectation,
and Bob loses 2/9 points.

Computations with the expected value often become a lot easier when we use the fact
that the expected value is linear. We show this and more important rules for the
expected value below. Intuitively, we know what the sum or product of a random
variable is, or how we multiply constants or add constants. Formally, we define three
types of composed random variables. Let X, Y : Ω→ R be two random variables in a
discrete probability space (Ω,Pr).

• For all cR, the random variable (cX) : Ω→ R is defined by (cX)(ω) = c ·X(ω)
for all ω ∈ Ω.
• The random variable X + Y : Ω→ R is defined by (X + Y )(ω) = X(ω) + Y (ω)

for all ω ∈ Ω.
• The random variable X · Y : Ω→ R is defined by (X · Y )(ω) = X(ω) · Y (ω) for

all ω ∈ Ω.

In all three cases, we usually omit the brackets for a shorter notation when possible.

Theorem 1.25. Let (Ω,Pr) be a discrete probability space, let X, Y : Ω → R be
discrete random variables. If the expected values of X and Y exist, then it also holds
that:

1. The expected value of cX exists for all c ∈ R and E [cX] = cE [X].
2. The expected value of X + Y exists and E [X + Y ] = E [X] + E [Y ].
3. If X and Y are independent, then the expected value of X·Y exists and E [X · Y ] =

E [X] · E [Y ].

Proof. Statements a) and b) are proven similarly, we prove a) as an example. First
we observe that by the definition of cX, we have∑

ω∈Ω
|(cX)(ω)| ·Pr({ω}) =

∑
ω∈Ω
|c ·X(ω)| ·Pr({ω})
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≤
∑
ω∈Ω

(|c| · |X(ω)|) ·Pr({ω})

=|c| ·
∑
ω∈Ω
|X(ω)| ·Pr({ω}).

The expected value of X exists, so ∑ω∈Ω |X(ω)| · Pr({ω}) converges. Since c is a
constant, this means that ∑ω∈Ω |(cX)(ω)| ·Pr({ω}) converges as well, so the expected
value of cX exists. We can compute it in a similar fashion and see that∑

ω∈Ω
(cX)(ω) ·Pr({ω}) = c ·

∑
ω∈Ω

X(ω) ·Pr({ω}) = cE [X] .

For statement c), we apply the definition of X · Y and the fact that X and Y are
independent to obtain that∑

ω∈Ω
|(X · Y )(ω)| ·Pr({ω}) =

∑
ω∈Ω
|X(ω) · Y (ω)| ·Pr({ω})

=
∑

x∈R(X)

∑
y∈R(Y )

|xy| ·Pr((X = x) ∩ (Y = y))

≤
∑

x∈R(X)

∑
y∈R(Y )

|x| · |y| ·Pr((X = x)) ·Pr((Y = y))

=
∑

x∈R(X)
|x| ·Pr((X = x))

∑
y∈R(Y )

|y| ·Pr((Y = y)).

We know that the expected value of Y exists, thus ∑y∈R(Y ) |y| ·Pr((Y = y)) converges
to a constant g. Thus,∑

ω∈Ω
|(X · Y )(ω)| ·Pr({ω}) ≤

∑
x∈R(X)

|x|Pr((X = x)) · g

=g
∑

x∈R(X)
|x|Pr((X = x)).

The expected value ofX exists, so∑x∈R(X) |x|Pr((X = x)) converges. Thus,∑ω∈Ω |(X·
Y )(ω)| ·Pr({ω}) converges and the expected value of X ·Y exists. We can compute it
in a similar fashion and obtain that E [X · Y ] = E [X] ·E [Y ]. Notice that we crucially
needed the fact that X and Y are independent.

Statement b) from Theorem 1.25 says that the expected value is additive, the rule
by itself is often referred to as linearity of expectation. Statement a) says that the
expected value is also homogeneous , so the expected value is indeed a linear function.
Notice that rule b) holds for all random variables over the same probability space, even
for dependent random variables! Statement c) is very useful when random variables
are independent. Observe that for dependent random variables X and Y , it is possible
that E [X] and E [Y ] exist, but E [X · Y ] does not exist.

Example 1.26. Let us construct an example where E [X] exists, but E [X ·X] does
not exist. We need a probability space with a countably infinite set Ω and choose
Ω = N≥1. Our random experiment will be to draw a random number from N≥1. Over
the infinite set of all positive integers, we cannot choose uniformly at random. If we
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choose i with probability 1/(2i), then we know that this defines a probability measure
(this space naturally arises in our coin flip examples). An alternative is to pick i
with a probability proportional to 1/i4. In the following, we will use some facts from
mathematical analysis without worrying about how to obtain them. The series

∞∑
i=1

1
i4

converges to π4/90, so in order to get a probability measure, we choose number i with
probability 90/(π4i4), because then we have Pr(Ω) = ∑∞

i=1
90
π4i4

= 1. Now consider the
random variable X(i) = i2. The expected value of X(i) exists because

Pr(Ω) =
∞∑
i=1

90i2
π4i4

= 90
π4

∞∑
i=1

1
i2

converges (to 15/π2). However, the expected random variable X · X does not exist
because the series

Pr(Ω) =
∞∑
i=1

90i4
π4i4

= Pr(Ω) =
∞∑
i=1

90
π4

obviously diverges.
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