
Chapter 1
Introduction to Probability Theory

In this chapter, we see basic definitions and concepts for the analysis of random pro-
cesses. After introducing new techniques, we use them to analyze randomized algo-
rithms. We will see that randomization allows elegant solutions for many algorithmic
problems, even when we restrict ourselves to relatively basic tools. We follow the lec-
ture notes by Prof. Dr. Heiko Röglin [5] (in German), which in turn are based on [3]
and [7].

1.1 Discrete Probability Spaces

This section corresponds to Chapter 1 in [7]. We define what we mean by probabil-
ities and see basic notations and rules. Intuitively, we can think of probabilities as
frequencies when observing a process for a long time. For example, the probability
that we roll a six with a die is 1/6 – we expect that one sixth of all rolls will be six
if we observe the die infinitely long. Notice that we express probabilities by numbers
between zero and one.

To define probabilities, we first need a formal notion of events: Everything that can
happen in the process that we observe. The most basic type of event is the elementary
event. When we roll a die, one of six elementary events happens. Based on these,
we can define more complicated events like „rolling an even number”. These can be
described by sets of elementary events.

Definition 1.1. Let Ω be a finite or countable set that we call sample space. The
elements of Ω are elementary events. An event is a subset A ⊆ Ω. The complementary
event of A is A = Ω\A.

Recall that the set of all subsets of Ω is 2Ω, the power set. Thus, every event A is an
element of 2Ω. If A,B ∈ 2Ω are two events, then A ∪ B is the event that at least one
of A and B occurs, and A∩B is the event that both events occur. Recall that A and
B are disjoint if A ∩B = ∅.
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A probability measure assigns a value to every event – its probability. When events
are disjoint, then their probability has to add up to the probability of the joint event.

Definition 1.2. A probability measure or probability on Ω is a mapping Pr : 2Ω →
[0, 1] that satisfies Pr(Ω) = 1 and is σ-additive. The latter means that

Pr

 ∞⋃
i=1

Ai

 =
∞∑
i=1

Pr(Ai)

holds for every countably infinite sequence A1, A2, . . . of pairwise disjoint events. We
say that (Ω,Pr) is a discrete probability space.

We observe that Pr(∅) is always zero because Pr(Ω) = Pr(Ω∪∅) = 1 +Pr(∅). In the
same manner, we can prove that

Pr(A) =
∑
a∈A

Pr({a}) (1.1)

is true. Thus, the probability of an event A is the sum of the probabilities of the
elementary events that A consists of. In fact, probability measures can equivalently be
defined by setting Pr({a}) for all A ∈ Ω, extending it to events by 1.1 and demanding
that Pr(Ω) = 1.

Example 1.3. We look at some examples for sample spaces and probability measures.

• When we model one roll of a die, we set Ω = {1, 2, 3, 4, 5, 6} and Pr(i) = 1/6 for
all i ∈ Ω. The event to roll an even number is A = {2, 4, 6}, and its probability
is Pr(A) = Pr(2) + Pr(4) + Pr(6) = 1/2.
• When we model a fair coin toss, we set Ω = {H,T} for the elementary events that
we get heads or tail, and let Pr(H) = Pr(T ) = 1/2. We can also model multiple
fair coin tosses. For two turns, we set Ω = {(H,H), (H,T ), (T,H), (T, T )}
for the four possible outcomes. Intuitively, they all have the same probability,
i.e. we set Pr((H,H)) = Pr((H,T )) = Pr((T,H)) = Pr((T, T )) = 1/4. We
observe that the event A to get heads in the first turn is still 1/2: It is A =
{(H,H), (H,T )} and thus Pr(A) = Pr((H,H))+Pr((H,T )) = 1/4+1/4 = 1/2.
• Now we want to model two fair coin tosses, but we cannot distinguish the coins
and throw them at the same time. Thus, we model Ω = {{H,H}, {H,T}, {T, T}}
for the three elementary events that both coins come up heads, one shows heads
and one tail, or both show tails. We still want to model fair coin tosses, so we
now need different probabilities for the elementary events: We set Pr({H,H}) =
Pr({T, T}) = 1/4 and Pr({H,T}) = 1/2.

In two of the examples in 1.3, we assigned the same probability to every elementary
event. In this case, the elementary events occur uniformly at random. When we say
that we choose an element uniformly at random from t choices/events, we mean that
each of the t events has probability 1/t.
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Application: Polynomial Tester (Part I: The Power of Random Decisions)
Our first randomized algorithm tests whether two polynomials f : R → R and g :
R → R are equal. The degree of the polynomials will be important, so let d be the
maximum degree of f and g.
Our algorithm cannot see the formulas that describe f and g. Instead, it can send an
x ∈ R to a black box and receives f(x) and g(x). The simplest randomized algorithm
we can think of is to send an x chosen uniformly at random from R and to check if
f(x) = g(x) is true. If yes, we output that f and g are equal, if no, then we output
that f and g are not equal. In the latter case, our algorithm has no error because we
found proof that f and g are not equal. But what is the probability that f and g are
not equal, but we still output yes?
We need a bit more knowledge about polynomials. Since f and g are polynomials, we
know that f − g is a polynomial, too. Furthermore, the degree of f − g is bounded by
d as well. The fact that we now crucially need is that a polynomial of degree at most
d (that is not the zero polynomial) has at most d roots. Thus, f(x) − g(x) = 0 can
only be true for d different values of x. That means that f(x) = g(x) can only be true
for d different values of x as well!
What is the probability that we pick one of these d values when choosing an x uniformly
at random? In the way that we formulated our algorithm, we need a continuous
probability space to model and answer this question. We would rather analyze a
discrete probability space. So we change our algorithm: We choose x uniformly at
random from a set of t possible values. Formally, we set Ω := {1, . . . , t} and Pr(x) =
1/t. We do worst case analysis, so we assume that Ω contains as many roots as
possible. To have a chance to give the right answer, we thus need t ≥ d+ 1.
Now the probability that we choose a root and falsely output that f and g are equal
is d/t. If we set t = 100d, then the failure probability of our algorithm is 1/100. This
is true even though our algorithm only checked a single x! A deterministic algorithm
could decide the question without any error by for checking d + 1 values whether
f(x) = g(x) is true. Our randomized version saves d of these checks at the cost of a
small error.
Recall that a negative answer of our algorithm has no error, only a positive answer
might be incorrect. We call algorithms of this time randomized algorithms with one-
sided error.

Union bound and product spaces We often want to analyze the probability that
one of some events occurs. This is also helpful when we want to analyze that none of
a set of events occurs. For two events, we get the following lemma.

Lemma 1.4. Let (Ω,Pr) be a discrete probability space and let A,B ∈ 2Ω be events.
It holds that

Pr(A ∪B) = Pr(A) + Pr(B)−Pr(A ∩B).

Proof. We can apply σ-additivity twice to get that

Pr(A ∪B) = Pr(A) + Pr(B \ A) = Pr(A) + Pr(B)−Pr(A ∩B).
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We should memorize two things. First, the probability for A ∪ B can be larger than
Pr(A) + Pr(B). The two terms are only equal if A and B are disjoint. Second,
Pr(A ∪ B) can not be smaller than Pr(A) + Pr(B). It is always Pr(A ∪ B) ≤
Pr(A) + Pr(B). This simple fact can be extremely useful. It can be generalized by
induction.

Fact 1.5 (Union Bound). For a finite or countably infinite sequence A1, A2, . . . of
events, it holds that

Pr

 ∞⋃
i=1

Ai

 ≤ ∞∑
i=1

Pr(Ai).

Let B1, B2, . . . , B` be bad events that we all want to not occur. The probability that
at least one of them occurs is bounded by

Pr

 ⋃̀
i=1

Bi

 ≤ ∑̀
i=1

Pr(Bi).

by the Union Bound. Thus, the probability that no bad event occurs, which is the
complementary event, has a probability of at most

1−
∑̀
i=1

Pr(Bi).

Similarly, assume that we have a set of good events G1, G2, . . . , G` that we all want
to occur. For any Bi, the (bad) complementary event Gi has probability 1−Pr(Gi).
The probability that none of them occurs is at most

Pr

 ⋃̀
i=1

Gi

 ≤ ∑̀
i=1

(1−Pr(Gi)).

Thus, the probability that the event ‘at least one of Gi occurs’ does not occur is at
most 1−∑`

i=1(1−Pr(Gi)).

Application: Polynomial Tester (Part II: More than one bad event) Again,
we want to test if two polynomials f and g are equal. This time, we only have access
to a black box with error. Our algorithm can send a value x ∈ R to the black box and
ask whether f(x) = g(x) is true. With probability 0.9, the black box gives a correct
answer, and with probability 0.1, it replies incorrectly. Our algorithm does not change:
It still chooses one of t possible values for x, sends x to the black box and then repeats
the answer of the black box.
We model this situation with two probability spaces. The probability space (Ω1,Pr1)
models the random behavior of our algorithm. It is defined by Ω1 := {1, . . . , t} and
Pr1(x) = 1/t for all x ∈ Ω1. The random behavior of the black box is described by
(Ω2,Pr2), Ω2 = {R,W} and Pr2(R) = 0.9, Pr2(W ) = 0.1.
To analyze the whole process, we need to combine (Ω1,Pr1) and (Ω2,Pr2). We assume
that the error of the black box is independent of the random behavior of our algorithm.
We model this by using the product space (Ω,Pr).
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Fact 1.6. Let (Ω1,Pr1) and (Ω2,Pr2) be discrete probability spaces. Define the prod-
uct space (Ω,Pr) by Ω = Ω1 × Ω2 and Pr(x, y) = Pr(x) · Pr(y) for all (x, y) ∈ Ω.
Then (Ω,Pr) is a discrete probability space. Furthermore,

Pr1(x) = Pr({x} × Ω2) and Pr2 = Pr(Ω1 × {y})

is true for all x, y ∈ Ω.

The random behavior of our algorithm and the black box is jointly described by the
product space of (Ω1,Pr1) and (Ω2,Pr2). Notice that the outcome of our algorithm
now has two-sided error. When f and g are equal, f(x) = g(x) is always true, inde-
pendent of the x that we choose. However, the event W ∈ Ω2 that black box replies
incorrectly might occur. Thus, the error probability of the algorithm in this case is
Pr(Ω1 × {W}) = Pr({W}) = 0.1.

If f and g are not equal, then the probability that we choose one of the k ≤ d roots
r1, . . . , rk as x from {1, . . . , t} is bounded by d/t. Let A = {r1, . . . , rk} × Ω2 be the
event that this happens. Furthermore, let B = Ω1 × {W} be the event that the black
box answers incorrectly. The events A and B are bad events, we want both of them
to not occur. As we argued above, we can use the Union Bound to obtain

Pr(A ∪B) ≤ Pr(A) + Pr(B) = Pr1({r1, . . . , rk}) + Pr2({W}) = k

100d + 0.1 ≤ 0.11.

where we again set t = 100d.

In this example, we could have computed the failure probability exactly. However, we
have learned a simple yet powerful tool that is often helpful when bounding the error
probability of more complex randomized algorithms.

1.2 Independent Events & Conditional Probability

In the last section, we intuitively used the term independent events. We now formally
define what we mean by independence.

Definition 1.7. Let (Ω,Pr) be a disrete probability space. We say that two events
A ∈ 2Ω and B ∈ 2Ω are independent if Pr(A∩B) = Pr(A) ·Pr(B) holds. A sequence
A1, . . . , Ak of events is independent if

Pr

⋂
i∈I
Ai

 =
∏
i∈I

Pr(Ai)

holds for every I ⊂ {1, . . . , k}. The sequence A1, . . . , Ak is pairwise independent if Ai
and Aj are independent for every i, j ∈ {1, . . . , k} with i 6= j.

Intuitively, the independence of two events A and B means that we gain no information
about B when we get to know whether A occurred, and we gain no information about
A when we find out that B occurred.
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Example 1.8. Consider the probability space (Ω,Pr) with Ω = {(i, j) | i, j ∈ {1, . . . , 6}}
and Pr(i, j) = 1/36 which models two independent rolls of a die.

• Intuitively, the outcome of the first roll of a fair die has no consequence for
the outcome of the second roll. Assume that we know that event A = {(2, j) |
j ∈ {1, . . . , 6}} ∪ {(4, j) | j ∈ {1, . . . , 6}} ∪ {(6, j) | j ∈ {1, . . . , 6}} occurred,
which is that the first roll gives an even number. The probability of this event
is Pr(A) = 1/2 because |A| = 18 and all elementary events have the same
probability. Let B be the event that the second roll gives a 3, which has probability
1/6. We observe that A ∩ B = {(2, 3), (4, 3), (6, 3)} has probability 1/12. This
confirms our intuitive idea that A and B are independent because

Pr(A ∩B) = 1/12 = (1/2) · (1/6) = Pr(A) ·Pr(B).

• Consider the event C that the sum of the two rolls is 8. This event is not
independent of the event D that the first roll is a 1, since the occurrence of D
means that C has probability zero. Consider the event E that the first roll is a
5. Again, E and C are not independent, because rolling a 5 and thus not rolling
a 1 increases the probability that the sum is 8. We verify this intuition. We have
E ∩ C = {(5, 3)} with probability 1/36. Event E has probability 1/6. Finally,
the tuples (i, 8 − i) for i ∈ {2, . . . , 6} are the possible outcomes with sum 8, so
Pr(C) = 5/36. We see that

Pr(E ∩ C) = 1
36 > Pr(E) ·Pr(C) = 5

6 · 36

• Now assume that F is the event that the sum is 7, and G is the event that we
rolled a 6. From the last example, we might get the intuition that these events are
not independent. However, at a second glance we see that Pr(F ) = 1/6, Pr(G) =
1/6 and Pr(F ∪G) = 1/36. Events F and G are indeed independent. We should
always verify our intuition about independence by computing the probabilities, in
particular in more complex scenarios.
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