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Abstract. An n-node tree has to be explored bymobile agents (robots), start-
ing in its root. Every edge of the tree must be traversed bgatlone robot, and
exploration must be completed as fast as possible. Even thiedree is known in
advance, scheduling optimal collective exploration tusosto be NP-hard. We
investigate the problem of distributed collective exptmma of unknown trees.
Not surprisingly, communication between robots influentestime of explo-
ration. Our main communication scenario is the followingbots can commu-
nicate by writing at the currently visited node previoustgaired information,
and reading information available at this node. We constancexploration al-
gorithm whose running time for any tree is orf(k/ log k) larger than optimal
exploration time with full knowledge of the tree. (We saytttize algorithm has
overheadD(k/ log k)). On the other hand we show that, in order to get overhead
sublinear in the number of robots, some communication iessary. Indeed,
we prove that if robots cannot communicate at all, then edéstributed explo-
ration algorithm works in time2(k) larger than optimal exploration time with
full knowledge, for some trees.

1 Introduction

A collection of robots (mobile agents), initially locateti@ne node of an undirected
connected graph, have to explore this graph and return tetéréng point. The graph
is explored if every edge is traversed by at least one robggnErobot traverses any
edge in unit time, and the time of collective explorationhie thaximum time used by
any robot from the group. It turns out that scheduling optiomdlective exploration is

NP-hard, even in the simplest case, when the explored gsaphriee and when it is
known in advance. However, most often, exploration prolsl@me studied in the case
of unknown graphs (cf. [1,6,12,14-17,21]). This is alsoadperoach adopted in the
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present paper. We restrict attentiontteesand, unlike in the above quoted papers,
we consider exploration bsnanyrobots. The goal is to collectively explore the tree in
the shortest possible time. Since the explored tree is noivkrin advance, a collec-
tive exploration algorithm can have different performamtalifferent trees. In order
to measure the quality of such an algorithm, we compare it®opeance to the per-
formance of the optimal exploration algorithm which knowe tree in advance (recall
that designing such an optimal exploration is NP-hard). Rective exploration algo-
rithm A for £ robots (working in unknown trees) is said to haweerhead), if @) is the
supremum of ratiosA(k, T, r)/opt(k,T,r), where A(k, T, r) is the exploration time
of treeT by algorithm.4, when robots start at node andopt(k, T, r) is the optimal
exploration time ofl" by k robots starting at, assuming thal’ andr are known. The
supremum is taken over all treésand starting nodes. Hence overhead is a measure
of performance similar to competitive ratio for on-line atfghms. We seek collective
exploration algorithms with low overhead. If the exploreget was known in advance,
any exploration algorithm could be viewed as centralizetesit could assume knowl-
edge of global history by any robot at any step. However, ircase, when the topology
of the tree is unknown, distributed control of robots impltbat their knowledge at any
step of the exploration depends on communication betweem tBelow we specify
communication scenarios.

1.1 The model

We considelk robots initially located at the rooet of an unknown tred’. Robots have
distinct identifiers. Apart from that, they are identicahdh robot knows its own identi-
fier and follows the same exploration algorithm which hasidestifier as a parameter.
The network is anonymous, i.e., nodes are not labeled, and ppeach node have
only local labels which are distinct integers between 1 &eddegree of the node. The
robots move as follows. At every exploration step, everyotadither traverses an edge
incident to its current position, or remains in the curreasition. A robot traversing an
edge knows local port numbers at both ends of the edge.

Our main communication scenario, callexploration with write-read communica-
tion, is the following. In every step of the algorithm every ropetforms the following
three actions: it moves to an adjacent node, writes someniaton in it, and then
reads all information available at this node, includingdiégree. Alternatively, a robot
can remain in the current node, in which case it skips thengriaction. (This model
is motivated by the capability of mobile software agentsxohange information by
leaving messages in the network). Actions are assumed tgrimdonous: ifA is the
set of robots that enterin a given step, then first all robots fror enterv, then all
robots fromA write and then all robots currently locatedwafthose fromA and those
that have not moved fromin the current step) read.

We also consider two extreme communication scenarios. én calledexploration
without communicatiorall robots are oblivious of each other. l.e., at each stegrye
robot knows only the route it traversed until this point (aliis the sequence of exit and
entry port numbers), and degrees of all nodes it visitedhénather, calle@xploration
with complete communicatipall robots can instantly communicate at each step.

In all scenarios, a robot, currently located at a node, do¢&mow the other end-
points of yet unexplored incident edges. If the robot dezittetraverse such a new
edge, the choice of the actual edge belongs to the adveasane are interested in the
worst-case performance.



1.2 Ourresults

As a preliminary result, we show that the problem of findingimmal collective explo-
ration, if the tree and the starting node are known in advasdéP-hard. Our main re-
sult concerns collective distributed exploration of unkmdrees byt robots, under the
write-read communication scenario. We construct an expilan algorithm with over-
headO(k/ log k). Indeed, our algorithm explores anynode tree of diametgb in time
O(D +n/logk). We first describe our algorithm for the stronger scenarip)@ration
with complete communication, and then we show how to sinaulais algorithm in the
write-read model, without changing time complexity. Weogisove that any algorithm
must have overhead at le&st 1/k under the complete communication scenario. (This
lower bound obviously carries over to the write-read comioaition scenario.) On the
other hand we show that, in order to get overhead sublinedrtedmumber of robots,
some communication is necessary. Indeed, we prove thagruhe scenario without
communication, every distributed collective exploratalgorithm must have overhead
(k). Since this is the overhead of an algorithm using only oneout robots, our
lower bound shows that exploration without communicatiorsinot allow any effec-
tive splitting of the task among robots. Comparing the uppaind on time for the
scenario with write-read communication with the lower bddior the scenario without
communication, shows that this difference of communicatiapability influences the
order of magnitudef time of collective exploration. Even limited communiicat per-
mitted by our write-read model allows robots to effectivebllaborate in executing the
exploration task.

1.3 Related work.

Exploration and navigation problems for robots in an unkn@mvironment have been
thoroughly investigated in recent literature (cf. the @y{23]). There are two types of
models for these problems. In one of them a particular geoorstting is assumed,
e.g., unknown terrain with convex obstacles [11], or roorthyiolygonal [13] or rectan-
gular [7] obstacles. Another approach is to model the emwirent as a graph, assuming
that the robot may only move along its edges. The graph gettim be further speci-
fied in two different ways. In [1, 8, 9, 14] the robot exploré®agly connected directed
graphs and it can move only in the direction from head to fediroedge, not vice-versa.
In [6,12,15-17,21] the explored graph is undirected anddhet can traverse edges
in both directions. In some papers, additional restriction the moves of the robot are
imposed. It is assumed that the robot has either a restriatdd[6, 12], forcing it to
periodically return to the base for refueling, or that it éhered, i.e., attached to the
base by a rope or cable of restricted length [17]. It is prawndd 7] that exploration can
be done in timé (e) under both scenarios, wherés the number of edges in the graph.
Exploration of anonymous graphs presents a different tyfjpehallenges. In this
case it is impossible to explore arbitrary graphs if no magkof nodes is allowed.
Hence the scenario adopted in [8, 9] was to alle@bbleswhich the robot can drop
on nodes to recognize already visited ones, and then rerheve and drop in other
places. The authors concentrated attention on the minimumber of pebbles allow-
ing efficient exploration and mapping of arbitrary directeshode graphs. (In the case
of undirected graphs, one pebble suffices for efficient exgpion.) In [9] the authors
compared exploration power of one robot to that of two coafieg robots with a con-
stant number of pebbles. In [8] it was shown that one pebbénaugh if the robot



knows an upper bound on the size of the graph,@(idg log n) pebbles are necessary
and sufficient otherwise.

In all the above papers, except [9], exploration was peréathy a single robot.
Exploration by many robots was investigated mostly in thetext of graphs known
in advance. In [18], approximation algorithms were giventfe collective exploration
problem in arbitrary graphs. In [4, 5] the authors constdapproximation algorithms
for the collective exploration problem in weighted tregswhs also observed in [4]
that scheduling optimal collective exploration in weighteees is NP-hard even for
two robots. However, the argument from [4] does not work lifvedights of edges are
equal to 1, which we assume. It should also be noted thatgevimil4, 5] exploration
was centralized, the main focus of this paper is a distridbafgroach to collective tree
exploration.

Another interesting study of collective exploration in makvn environments can
be found, e.g., in [24, 20], in the context ofsearch problenn geometric trees and
simple polygons. It should be noted that in the search proldaee is interested in
the detection of a single item, thtarget as opposed to the exploration of the whole
unknown environment, discussed in our paper. Moreovertnepetitive ratio used in
the context of geometric search is defined as the ratio bettreesearch time and the
shortest distance from the starting point to the targetsThuthis model, an increase of
the number of robots performing the search can only decrtbassompetitive ratio. On
the other hand, in our case, where the task is to explore théav@mvironment, it is more
appropriate to study the ratio between the time of distadwtollective exploration and
the optimal time of fully centralized collective explomti. In particular, as we show
later, an introduction of a larger number of robots may ldaadyur model, toworse
competitive performance.

Finally, collective exploration is also related to tlfieeze-tagproblem [2, 3] in
which a set of “asleep” robots must be awaken, starting witly one “awake” robot.
The objective is to produce an awakening schedule of minirtiora. Although the
task is collective in the sense that every robot particpadethe process as soon as it
is awaken, the freeze-tag problem has more to do with thedioamst problem than with
the collective exploration problem. In particular, in tiatér problem, the graph is un-
known to the robots whose goal is specifically to discoves thiknown environment.
In contrast, the graph is given in the freeze-tag problerd,tae objective is to design,
in a centralized manner, a fast awakening schedule for thetsan the given graph.

2 NP-hardness of optimal collective exploration of trees

In this section, we prove a preliminary result that the peoblof scheduling optimal
collective exploration, if the tree and the starting node lamown in advance (i.e., the
problem of finding an exploration scheme working in tim (k, T, r)), is NP-hard.
More precisely, we consider the following optimization plkem.

MIN-TIME k-ROBOTS EXPLORATION OF TREES (k-MIN-RE).

I nst ance: freetreel = (V,E), |V| =n, |E| = m, anoder € V, integerk > 0.
Sol uti on: toursCy,...,C}, WhereUf:] Cy= E and each tour contains node
Goal : minimizemax{|C;|:i=1,...,k}.

In order to prove NP-hardness bfMIN-RE, we show a transformation from the
following strongly NP-complete decision problem (see J19]



3-PARTITION

I nst ance: SetA of 3k elements, positive integer boutigl positive integer size
s(a) foreacha € A, such thatB/4 < s(a) < B/2and}_ , s(a) = kB.

Questi on: CanA be partitioned intd: disjoint sets4,, . . ., Ay, s.t., foreveryl <

3 3

i <k, Y ,ea, s(a) = B? (WhereA; must contain exactly three elements frot)

Theorem 1. Problemk-MIN-RE is NP-hard.

3 Exploration with complete communication

In this section we describe and analyze an exploration dfgorfor £ robots, with over-
headO(k/ log k), under a communication model stronger than write-read comoa-
tion, namely exploration with complete communication. ¥y step of exploration all
robots exchange messages containing all information esdjto date. (Communication
can be thought of as performed in a completely connectedegsenetwork). Thus, at
each step, each robot knows the part of the graph collegtasgblored, degrees of all
visited nodes, and current positions of all robots. Thisrsgrmodel is introduced as an
auxiliary tool, in order to explain the main idea of the aligfom and of the analysis. In
the next section we show how this algorithm can be simulatedii write-read model,
without changing time complexity.

We will use the following terminology. We denote By, the subtree of the explored
treeT’, rooted at node. T, is explored if every edge off}, has been traversed by some
robot. Otherwise, it is callednexploredT’, is finished if it is explored and either there
are no robots in it, or all robots in it are i Otherwise, it is calledinfinished T, is
inhabited if there is at least one robot in it.

Algorithm Collective Exploration

Fix a stepi of the algorithm and a nodein which some robots are currently located.
There are three possible (exclusive) cases.

Case 1.Subtre€r, is finished

Act i on: if v # r, all robots fromv go to the parent of, else all robots from stop.
Case 2.There exists a child of v such thafl,, is unfinished

Letus,...,u; be children ofy for which the corresponding trees are unfinished, ordered
in increasing order of corresponding local port numbers.dtet ; be the number of
robots currently located iff,,. Partition all robots fromy into setsA,....A; of sizes
y1....4;, respectively, so that integers + y; differ by at most 1. The partition is done
in such a way that indicdsfor which integerse, + y; are larger by one than for some
others, form an initial segmeft, ..., z] in 1, ..., j. (We will show in the proof of Lemma
1 that such a partition can be constructed). Moreover, 4etwre formed one-by-one,
by inserting robots fromv in order of increasing identifiers. (Thus, the partitionoint
setsA;,...,4; can be done distributedly by robots from using knowledge that they
currently have).

Act i on: all robots from set4; go tou,, fori =1,...,j.

Case 3.For all childrenu of v, treesT,, are finished, but at least ofig is inhabited.

Act i on: all robots fromw remain inw.

The following lemmas will be used in the analysis of this aithon.

Lemma 1. Letw be any node of tre# and leti be a fixed step of Algorithm Collective
Exploration. Then numbers of robots in unfinished subti@&gdor all children« of v,
differ by at most 1.



Proof. We prove the following assertion by induction on sieqf the algorithm: “Let
u1,...,u; be children ofv for which the corresponding trees are unfinished after tep
ordered as in Case 2 of the algorithm. Then the numbers otsobsubtreed’,, differ
by at most 1, and the larger numbers correspond to an ingghent ini, ..., 5".

Fori = 1, the assertion is obvious. Suppose that the assertion hfteisstepi,
and consider a node which has at least two children which are roots of unfinished
subtrees after step+ 1. Letu,,...u; be these children, ordered as in Case 2 of the
algorithm. If there are no robots in after stepi then the assertion trivially holds for
v after stepi + 1, by the inductive assumption. Otherwise, the partitionuregg in
Case 2 of the algorithm is produced as follows. Suppose ttetetarey robots in
v andz; robots inT,,, I = 1,....j, after stepi. Lety = y' mod j. Suppose that
Ty = =Ty > Tmy1 = -+ = xj, Wherez,, = z,,,41 + 1. Put|y/j] robots in
each set4;. Then put one robot in each sdt,, 1, Ao, ..., 4, A1, ..., Am, in this
order, until all robots fromy are allocated. Now the numbers of robots in all trégs
[ =1,...,jdifferby at most 1, and larger ones correspond to the irsggiment{l, ..., z|
inl,...,j,wherez =m +y'if y’ <j—m,andz = y' — j + m, otherwise.

Lemma 2. Let T, be a subtree of tre&', and leti be the first step in which a robot
entersv in the execution of Algorithm Collective ExplorationZlf hasm edges then
T, is finished by step+ 2m.

Proof. The proofis by induction on the height®f. If v is a leaf, the lemma is obvious.
Otherwise, fix any robaR which enters) in stepi. Letus,...,u; be those children of
which R visits, in the order of visits. Suppose tH&t, hasm; edges. By the inductive
hypothesis, the lemmais true for 4l),. Hence, by step+ >"/_, (2 +2my) < i +2m,
all subtreesT,,, will be finished, andR will be back atv. If u,..., u; are the only

children ofv thenT, is already finished. If not, theh+ 2{11(2 +2my) < i+ 2m.

In this case, all other children of v must be finished by step+ Z'{:] (2 + 2my),
otherwisez would visit one of them in the next step. Hen€g is finished by step
i+ > (24 2m) + 1 <i+2m.

Lemma 3. Algorithm Collective Exploration works in tim@(D + n/logk) for all
n-node trees of diametdp.

Proof. Consider Algorithm Collective Exploration, working on &1 of diameterD,
rooted atr. Define a pathS = (ag, a1, ...) in T as follows.ag = r. Suppose thai;
is already defined. Among all children af consider those nodesfor which T, was
finished last (there can be several such children). Define to be such a child with
smallest port label. The lengt| of S is at mostD. Intuitively, the pathS leads to one
of the leaves explored very late.

For any positive integerand for anyj = 0,...,logk, denote byp;(j) the largest
index of a nodev on pathS such that there are at leat robots inT, after stepi.
We will say thatp;(j) correspondgo the node with this index. Define nodeg(!), for
|S| > I > 1, as follows. Letw;(l) denote thdth node onS which has at least two
childrenu, andu., such thafl,, andT,, are inhabited after stepLetd;(l), fori > 1,
denote the number of such children of nadg!).

Define iy to be the last step of the algorithm satisfying the followandition:
forall i < ig, p;(0) is smaller than the length of. We first consider only steps of the
algorithm until step,. We define two types of such steps. A step i, of the algorithm
is of type



A. if Y, di(l) > Llogk;
B. if |{j : pit1(j) # pi(4)} > T(logk +1).

We now show that all steps of the algorithm are of one of thevalypes. The proof
of this fact is split into the following three claims.

Claim 1. Fix a step < i, of the algorithm, and consider a nodg(l), for some > 1.
Then|{j : p;(j) corresponds to node;(1)}| < d;(l) + 1.

Let v denote the successor of (1) on pathS (v exists by definition of). Let jo
be the smallest element in the ggt: p;(j) corresponds to node; (1) }. The number
of robots inT,, after step), isz < 27°. By the definition ofd;(1) and by Lemma 1, the
number of robots iy, ;) is less thar{z + 1) - d;(I). We have

(z+1) - d;(1) < - di(l) + di(l)

)
< gz .24 4 4. 9di())
= 2d1(1)+]
< 270+di(l)+1

Claim 2. Fix a stepi < i of the algorithm. Ifp;(j) does not correspond to amny(l),
forl > 1, thenp;y1(j) # pi(j)-

Considep; () satisfying the assumption of Claim 2. Letlenote the corresponding
node on patty, and letv’ denote the successorobn S. The number of robots if, is
equal to the number of robots inplus the number of robots i, in view of the fact
thatp;(j) does not correspond to amy (1) and of the definition ofv;(1). In stepi + 1,
all robots fromw move tov’, and all robots located i, remain inT .. (Indeed, since
i < 1ig, T,y has not yet been explored, hence it has not been finished llssubtees
rooted at siblings of’ are finished and not inhabited, by the assumptionjf{g) does
not correspond to any;(1).) Hencep; 1 (j) corresponds te’. This proves Claim 2.

Claim 3. All stepsi < iq of the algorithm are either of type A or of type B.

Fix a stepi < iy of the algorithm and suppose that it is not of type A. Hence
> di(l) < §logk. Sinced;(1) > 2, for alll > 1, the number of indicesfor which
d;(1) are defined, is less thanlog k. It follows thaty", (d; (1) +1) < 3 log k+1 log k =
3 log k. By Claim 1, the number of integeys such thaip; (j) does not correspond to
anyw;(l), forl > 1, is larger tharog k + 1 — 2log k > L (log k + 1). By Claim 2, the
number of integers, such thap;.1(j) # pi(j). is also larger thas (log k + 1). Hence
stepi is of type B. This proves Claim 3.

We now estimate the number of steps of type A. Consider atkrealI’, rooted at
nodesu outside ofS. Let z,, denote the number of edges Bf. We have}_  (z, +
1) < n. Lett, denote the number of steps during whiEhis inhabited. By Lemma 2,
> o tu < 2n. In every step of type A, at leasd ,(d; (1) — 1) treesT,, are inhabited
(subtreed’, are rooted at nodasoutside ofS, hence summands atig(l) — 1). Since
di(l) > 2, we haved",(d;(1) — 1) > (3, di(1))/2 > }logk. Hence the number of
steps of type A is at mos}% = ljg”k.

Next, we estimate the number of steps of type B. We have

log k
S i) # e =1 UG D) 0 (G) # pi(i)}] =

i<io i<io j=0




log k log k
| U U {G,5) : piva (G) # i)} = Z {i:piv1(d) #pi(G)}H < (logk +1)-|S],
§=0 i<ip j=0
the last inequality following from the fact that before stgll moves of robots on
S are down the patl§, and hence, for a given the size of the sef(i, j) : pi+1(j) #
pi(7)} is bounded by the length &f. For every step of type B, we have{j : pi+1(j) #

pi(j)}] > (logk + 1), hence the number of steps of type B is at gefos )

zllog k+1)
41S|. Hence, by Claim 3, we havg < 7% + 4[S].

We finally show that the algorithm completes exploration tgps, + 1 + |S|. Let
i1 = ip + 1. Let X be the set of robots that are in the last ndd# S after stepi;. In
stepi; + 1, all robots fromX go to the parent of, becausé is a leaf. By definition of
S, when a set of robots containing moves from a node’ on S to its parent, then
T, is finished and not inhabited, and consequently, by the nget&in ofv’, T, is also
finished. It follows that in the next step, all robots frermove to the parent af. Hence
the number of steps aftér, needed to terminate the algorithm|#. This implies that
the algorithm terminates by stép+ |S| = iy + 1 + |S|. Hence the running time of the
algorithm is at mosgy + 5|S| + 1 € O(D +n/logk).

Theorem 2. Algorithm Collective Exploration has overheéqk/ log k).

Proof. Consider anyn-node tre€T’ rooted at node. If the diameter ofl" is at most
2logk then the theorem follows from Lemma 3, becaupe(k, T, 7) > 2(n — 1)/k.

If the diameter ofT is larger than™%& thenopt(k,T,r) € 2(™%%), because at
least one robot has to visit the leaf farthest frenBy Lemma 2, Algorithm Collective

Exploration uses time 2n, hence the overhead¥(k/ log k) in this case as well.

We conclude this section by stating a lower bound on the @aattof any collective
exploration under the complete communication scenarieard}, this lower bound also
holds under the write-read communication scenario. Thefisocomitted.

Theorem 3. Any collective exploration algorithm férrobots has overhead 2—1/k.

4 Exploration with write-read communication

In this section we show how Algorithm Collective Exploratioan be simulated in our
write-read model, without changing time complexity. Fixyarodewv of the tree. Let
i denote the step number, and jetlenote the port number atcorresponding to the
parent ofv; in the case = r, we defingp = x. We define the following sets:

— P; is the set of ports at corresponding to children which are roots of unfinished
subtrees,

— P! C P; is the set of ports at corresponding to children in whose subtrees there
is one robot more than in subtrees of all other children. igpecial case when all
subtrees of children are inhabited byobots, we defin®} = P;, if ¢ > 0, and
PL=10,if ¢ =0.

— R; is the set of identifiers of robots that arevirafter step — 1.

Let K; = {p,P;, P!, R;}, if nodewv has been visited by step— 1 of Algorithm
Collective Exploration. Otherwisk; is undefined. We refer t&f; as the knowledge at
nodev after stepi — 1 of Algorithm Collective Exploration. The action performég
every robot located at after stepi — 1 depends only ofC; and on the identifier of the



robot. Hence Algorithm Collective Exploration defines tlodldwing action function
H. For any step and any roboR? located ab after stepi — 1, the value ofH (K;, R)
is one of the following:

— the port numbet by which R leavesv in stepi,
— 0, if R remains av in stepi,
— %, if R stops.

We construct a simulation of Algorithm Collective Expldmat in the write-read
communication model. The new algorithm is called Algoritkivnite-Read. It operates
in roundslogically corresponding to steps of Algorithm Collectiveitoration. Each
round: > 0 consists of three step3i, 3i + 1, 3i + 2, and round 0 consists of two steps,
1 and 2. Each step is in turn divided into three stages: ine&Stagbots move, in Stage 2
they write information in their location, and in Stage 3 tliegd information previously
written in their location.

Recall that, in the write-read model, any roli®tentering node) can write some
information in this node. In the Algorithm Write-Read, a otlR entering node; in
stepi using porta, writes the tripleti, R, @) at nodev. Denote byZ; the set consisting
of the degree ob and of all triplets written at node until stepi — 1 of Algorithm
Write-Read.

We now define the knowledge; atv after roundi — 1 of Algorithm Write-Read.

If no triplets are written at node thenk; is not defined. Otherwise, we defig =
{p, 75,;,75,{,71,;}, where?P;, 75{, R; are defined with respect to Algorithm Write-Read
(after roundi — 1) in the same way &B;, P!, R; were defined with respect to Algorithm
Collective Exploration (after step— 1). We will show that, at the beginning of each
round: of Algorithm Write-Read, any robot located aknowsk ;. Moreover, we will
show that, for any and anyi, K; = K;, and thatk; is defined for exactly the same
nodes axC;. R

Knowledgek’; is obtained from inpufs; by the following recursive procedure.
Procedure Knowledge Construction
Assume that knowledgk, is undefined at nodes other tharand that it equals to
{*, Py, P!, Ry} at the rootr, whereP is the set of all ports of, P| = 0, andR, is
the set of all robots. Suppose that we can compiijtom inputZs;, at all nodes). We
show how to comput&m from 73,3, at nodev.

(1) If there are no triplets written at nodefor steps smaller thagi (i.e., K; is unde-
fined) but there is some triplé8i, R, o) € Zs;13 then we putp = a (there is exactly

one suchy in this case)P; 1 is the set of all ports at other tham, P!, = 0, R
is the set of all robot#, such that a triplet3i, R, a) € Z3;13 is written inv.

(2) Otherwise, we first puk;;; = K;, and then modifyk,,,, s.t.: p remains un-
changedp;., is the set of all ports fron®;, except those ports, for which there is
atriplet(3i + 1, R, a) € Z3;+3 atv (we discard those ports by which a robot entered
confirming that the corresponding subtree is finishé?{)Pl containsz initial ports
from P,,1, wherez is the integer defined in stef Algorithm Collective Exploration,
Ris1 := RiUX \Y, whereX is the set of robots for which (3i, R, o) € Z3;,3, and

Y is the set of robotg’ for which H(K;, R') = « # 0 (we add robots that entered

in step3i and delete those that leftin this step).



Algorithm Write-Read

Round 0 - This is a special round used to distinguish the maot
--STEP1: - -
stage 1:do nothing.
stage 2:every robotR writes (1, R, *) at noder.
stage 3:every robotR reads7Z; at noder.
- - STEP 2: - - (do nothing).

Roundi > 0 - Execution of each round is based on two assumptions
The assumptions after rourid- 1 are: assumptiont; - K; is correctly computed by
Procedure Knowledge Construction, usifig; and assumptiom; - K; = K;, at any
node, andK; is defined for exactly the same nodeskas

The three steps of each rounHave the following purpose. St&pis used to make
the actual move of a robot to its new location, according ®smulated Algorithm
Collective Exploration. Stefi + 1 is used to temporarily move robots from a node
whose subtree is finished, to its paremtin order to update information held at,
concerning children with finished subtrees. S3¢p- 2 is used to move back robots that
temporarily moved in Stepi + 1.
-- STEP3i: - -
stage 1:If Ris at node- at the end of round— 1, andH (K;, R) = « for noder, then
R stops. IfR is at nodev at the end of round — 1, andH (K;, R) = « ¢ {0, x}, for
nodew, thenR leavesy through porta.
stage 2:Every robotR that entered through porta in Stage 1 of Ste3i, writes
(3i, R, @) in nodew.
stage 3:Every robotR located ab readsZs; 1 (this is information held at after Stage
2 of Step3i.)
--STEP3i + 1: - -
stage 1:If P; = () then every roboR located ab at the end of Stepi leaves through
portp.
stage 2:Every robotR that entered through portn in Stage 1 of Stei + 1, writes
(3i + 1, R, ) at nodev.
stage 3:Every robotR located at readsZs;o.
--STEP3i + 2: - -
stage 1:Every robotR that entered through portx in Step3i + 1, leavesy through
porta.
stage 2:Every robotR that entered through portx in Stage 1 of Ste@i + 2, writes
(3i + 2, R, @) in nodev.
stage 3:Every robotR located at readsZs; 3.
Remark. The return moves of robots in stage 1 of stép- 2 could be avoided. They are
introduced to simplify analysis of knowledge update, andhdbinfluence exploration
complexity.
Lemma 4. Assumptions!; & B, from Algorithm Write-Read are satisfied for alt> 0.

Theorem 4. Algorithm Write-Read works in tim@ (D + 10%14) for all n-node trees of
diameterD.

Proof. By Lemma 3, it is enough to show that, for every tféeooted atr, the number
of rounds used by Algorithm Write-Read is not larger than ioenber of steps used
by Algorithm Collective Exploration. Let, denote the latter number. By Lemma 4,
assumptionsd;, and B;, are satisfied. By assumptids;,, all robots are at the root



r after roundip — 1, because they are all at the root after stgp- 1 of Algorithm
Collective Exploration. In Stepiy of Algorithm Write-Read, every robaR performs
actionH(lCi0 , R), by assumptiord;,. This action is equaH (K;,, R), by assumption
B,,. By the definition ofi, this action is stop. Hence all robots stop after rounof
Algorithm Write-Read.

Corollary 1. Algorithm Write-Read has overhe&t(k/ log k).

5 Exploration without communication

In this section we show that, in the absence of communicattween robots, the over-
head of any exploration algorithm (%), i.e., of the same order of magnitude as if
only one out oft robots were used to explore the tree. This shows that witb@utmu-
nication between robots, no effective advantage can batatkeollective exploration.

Theorem 5. Every collective exploration algorithm fdr robots, under the scenario
without communication, has overheé{k).

Proof. Let 4 be any exploration algorithm fak robots, under the scenario without
communication. We show that, for akyandn = k2 + k, there exists an-node treel’
and a node of T', such thatd(k, T, r) /opt(k,T,r) € 2(k).

The treeT is of sizen = k% + k, has rootr, andk + 1 levels: level O consists of
the root, each of levels 1,.k,— 1, has sizet + 1, and levelk has sizek. All nodes at
leveli + 1 have the same parent at leveCall this parent the main node at levelWe
say that a robot is delayed at levelf it spends there at least timiebefore finding the
main node. Consider levels 1., wherem = k — 1.

Fix a robotR, and pick the main node at each level randomly, with uniforobp
ability. HenceR is delayed at level with probability at least /2. Consequently, the
probability thatR is delayed at fewer tham. /4 of the firstm levels, is at mos2—(*),
(The expected value of the number of levels at whitks delayed isn /2, hence the
estimate is obtained by Chernoff's bound). Hence the pritihathat some robot is de-
layed at fewer tham: /4 of the firstm levels is at mosk - 2~ “(*) < 1, for sufficiently
largek. Hence there is a choice of main nodes, such that all robetdelayed at least
m /4 of the firstm levels. This means that every robot arrives at ldvel m + 1 after
time at leastk — m/4) + km/4 € k? /4 — O(k).

On the other hand, if the tré@ is known, then robots can use tirhe- 1 to position
themselves evenly at levels 0, 1, k.- 1 on the main branch, and then complete the
task in time2k, in parallel for all levels. Then all of them must get backhe toot. This
gives time2k + 2(k — 1). The ratio isk/16 — O(1).

6 Conclusion

We showed that collective tree exploration can be donerfabtebots have some com-
munication capabilities. This result should be considerficst step in the study of the
impact of communication between robots on the efficiencyatfiective network ex-
ploration. Several related problems remain open, inclgdfh) find a tree exploration
algorithm with constant overhead in the complete commuitinascenario; (2) find a
good lower bound on the overhead of tree exploration for thiseewead model; (3)
generalize our results to exploration of arbitrary netvgind (4) consider other com-
munication models in the context of collective network exption.



References

1

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

. S. Albers and M. R. Henzinger, Exploring unknown enviremts,SIAM Journal on Com-

puting 29 (2000), 1164-1188.

E. Arkin, M. Bender, S. Fekete, J. Mitchell, and M. Skwellhe freeze-tag problem: How to

wake up a swarm of robots, [h3th ACM-SIAM Symp. on Disc. Alg(SODA02), 568-577.

. E. Arkin, M. Bender, D. Ge, S. He, and J. Mitchell. Improagaproximation algorithms for
the freeze-tag problem. lh5th ACM Symp. on Par. in Alg. and ArciSPAA03), 295-303.

. |. Averbakh and O. Berman, A heuristic with worst-casdysia for minimax routing of two
traveling salesmen on a tre@jscr. Appl. Mathematic$68, (1996), 17-32.

. 1. Averbakh and O. Bermafp—1)/(p+1)-approximate algorithms fgr-traveling salesmen
problems on a tree with minmax objectiv@iscr. Appl. Mathematicsr5, (1997), 201-216.

. B. Awerbuch, M. Betke, R. Rivest and M. Singh, Piecemeagbhiearning by a mobile robot,
In 8th Conf. on Comput. Learning Theo{@OLT’95), 321-328.

. E. Bar-Eli, P. Berman, A. Fiat and R. Yan, On-line navigatin a room,Journal of Algo-
rithms 17, (1994), 319-341.

. M.A. Bender, A. Fernandez, D. Ron, A. Sahai and S. Vadhase, gower of a pebble: Ex-
ploring and mapping directed graphs,36th Ann. Symp. on Theory of Com{5TOC’98),
269-278.

. M.A. Bender and D. Slonim, The power of team exploratiomoTobots can learn unlabeled

directed graphs, 185th Ann. Symp. on Foundations of Comp. Scie(f®CS’'96), 75-85.

P. Berman, A. Blum, A. Fiat, H. Karloff, A. Rosen and M. SaRandomized robot naviga-

tion algorithms, In7th ACM-SIAM Symp. on Discrete Algorithm$SODA96), 74-84.

A. Blum, P. Raghavan and B. Schieber, Navigating in uiifarmgeometric terrain SIAM

Journal on Computing6, (1997), 110-137.

M. Betke, R. Rivest and M. Singh, Piecemeal learning afrdmown environmentylachine

Learning 18, (1995), 231-254.

X. Deng, T. Kameda and C. H. Papadimitriou, How to learor@mown environment I: the

rectilinear caseJournal of the ACMA45, (1998), 215-245.

X. Deng and C. H. Papadimitriou, Exploring an unknowmrtd. of Graph Th.32, (1999),

265-297.

A. Dessmark and A. Pelc, Optimal graph exploration witrgnod maps, Ir10th European

Symposium on Algorithm@ESA02), 374-386.

K. Diks, P. Fraigniaud, E. Kranakis and A. Pelc, Tree ergilon with little memory, InZ3th

Ann. ACM-SIAM Symposium on Discrete Algorithn{fSODA02), 588-597.

C.A. Duncan, S.G. Kobourov and V.S.A. Kumar, Optimalstoained graph exploration, In

12th Ann. ACM-SIAM Symp. on Discrete Algorithm§SODA01), 807-814.

G. N. Frederickson, M. S. Hecht and C. E. Kim, Approximathlgorithms for some routing

problems,SIAM J. on Computing7, (1978), 178-193.

M. Garey, and D. Johnson, Computers and Intractabiliti4. Freeman and Company, New

York, 1979.

A. Lopez-Ortiz and S. Schuierer, On-line Parallel Hgtizs and Robot Searching under the

Competitive Framework. 18th Scandinavian Work. on Alg. Theqrif&WAT'02), 260-269.

P. Panaite and A. Pelc, Exploring unknown undirecteglgal. of Algorithms 33, (1999),

281-295.

C. H. Papadimitriou and M. Yannakakis, Shortest pathisoui a mapTheoretical Computer

Science84, (1991), 127-150.

N. S. V. Rao, S. Hareti, W. Shi and S.S. lyengar, Robotgadiin in unknown terrains:

Introductory survey of non-heuristic algorithmbech. Rep. ORNL/TM-124300ak Ridge

National Laboratory, July 1993.

S. Schuierer, On-line searching in geometric treeSdnsor Based Intelligent RobptNAI

1724, 1999, 220-239.



