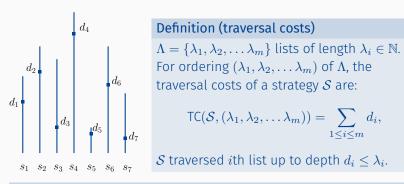


Multi-list Traversal Strategies (cf. [1])

David Kübel 21st of June 2016

University of Bonn

The multi-list traversal problem (MLTP)



Definition (traversal costs)

$$TC(S, (\lambda_1, \lambda_2, \dots \lambda_m)) = \sum_{1 \le i \le m} d_i,$$

S traversed *i*th list up to depth $d_i \leq \lambda_i$.

Definition (multi-list traversal problem - MLTP)

Given: Set Λ of m lists, each of unknown length.

Aim: Reach end of one list (with small traversal costs).

Note: no costs for switching lists; traversal of a list can be continued.

Applying an alternative cost measure

- 1. Consider partially informed variant of MLTP Find reasonable strategy. (fixed depth traversal FDT) Define cost measure. $(\xi_{\Lambda}, \overline{\xi}_{\Lambda})$ Justification of the strategy/cost measure.
- Reconsider uninformed variant of MLTP
 Suggest online strategy. (hyperbolic traversal HT)
 Prove competitiveness w.r.t. new cost measures.

Consider partially informed variant of MLTP

A simple and reasonable strategy: fixed depth traversal (FDT)

Given: Set Λ of m lists of known length, but unknown ordering.

Aim: Reach end of one list with small traversal costs.

 \Longrightarrow Lower bound for traversal costs is $\min_{1 \leq i \leq m} \lambda_i$.

Any strategy that traverses every list up to depth

 $d \geq \min_{1 \leq i \leq m} \lambda_i$ is successful.

FIXED-DEPTH-TRAVERSAL

Input: Set Λ of m lists, fixed depth $d \in \mathbb{N}_0$

for i from 1 to m do traverse list λ_i up to depth d; end for

The alternative cost measure - worst case

Definition (intrinsic maximum traversal costs)

The maximum traversal costs are defined as

$$\mathrm{MTC}_{\Lambda}(\mathrm{FDT}(d)) := \max_{\pi \in S_m} \mathrm{TC}(\mathrm{FDT}(d), \pi(\Lambda)).$$

The intrinsic maximum traversal costs are defined as

$$\xi_{\Lambda} := \min_{1 \leq k \leq m} \mathsf{MTC}_{\Lambda}(\mathsf{FDT}(\lambda_k)).$$

Theorem (cf. [1], Theorem 1)

Reorder s.th. $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_m$, then

$$\xi_{\Lambda} = \min_{1 \le i \le m} i \cdot \lambda_i$$

$$i_{\Lambda} := \underset{1 \le i \le m}{\operatorname{argmin}} i \cdot \lambda_i$$

 \rightarrow Best FDT-strategy for Λ in the worst case.

The alternative cost measure - average case

Definition (intrinsic average traversal costs)

The average traversal costs are defined as

$$\mathsf{ATC}_{\Lambda}(\mathsf{FDT}(\lambda_k)) := \underset{\pi \in S_m}{\operatorname{avg}} \ \mathsf{TC}(\mathsf{FDT}(\lambda_k), \pi(\Lambda)).$$

The intrinsic average traversal costs are defined as

$$\overline{\xi}_{\Lambda} := \min_{1 \leq k \leq m} \operatorname{ATC}_{\Lambda}(\operatorname{FDT}(\lambda_k)).$$

Theorem (cf. [1], Lemma 1)

Reorder s.th. $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_m$, then

$$\overline{\xi}_{\Lambda} \le \min_{1 \le i \le m} \frac{(m+1) \cdot \lambda_i}{m-i+2}$$

$$\bar{i}_{\Lambda} := \underset{1 \leq i \leq m}{\operatorname{argmin}} \ \frac{\lambda_i}{m-i+2}$$

 \sim Good FDT-strategy for Λ in the average case.

Justification of FDT

- 1. The competitive ratio of breadth-first traversal (= FDT(λ_m)) is $\Omega(m)$ and the competitive ratio of depth-first traversal (= FDT(λ_1)) is unbounded. ¹
- 2. No traversal strategy that is successful on all permutations of Λ , has fewer traversal costs than ξ_{Λ} in the worst case. ²
- 3. Any traversal strategy that terminates with traversal costs of at most $\overline{\xi}_{\Lambda}/3$ on all presentations of Λ , fails with probability $^1\!/_2$ on a random presentation of Λ . 3

$$\leadsto \overline{\xi}_\Lambda \text{is } \theta \left(\frac{(m+1) \cdot \lambda_{\overline{i}_\Lambda}}{m - \overline{i}_\Lambda + 2} \right)$$

¹cf. [1], Theorem 3

²cf. [1], Proof of Theorem 1

³cf. [1], Lemma 2 and Theorem 2

Reconsider uninformed variant of

MLTP

Hyperbolic traversal (HT)

Given: Set Λ of m lists of unknown length.

Aim: Reach end of one list with small traversal costs.

HYPERBOLIC-TRAVERSAL Input: List Λ $c \leftarrow 1;$ while no list fully explored do for i from 1 to m do explore list i up to depth $\lfloor \frac{c}{i} \rfloor$; end for $c \leftarrow c+1;$ end while

Competitiveness of HT

Theorem

HT solves MLTP with $O\left(\xi_{\Lambda}\cdot\ln(\min(m,\xi_{\Lambda}))\right)$ maximum traversal costs. ⁴

Theorem

HT solves the MLTP with $O\left(\overline{\xi}_{\Lambda}\cdot\ln(\min(m,\overline{\xi}_{\Lambda}))\right)$ in the average traversal costs. ⁵

Optimality

As D. Kirkpatrick shows in [1], HT is also optimal w.r.t. the alternative cost measure.

⁴cf. [1], Theorem 4

⁵cf. [1], Theorem 6

References I

D. G. Kirkpatrick. Hyperbolic dovetailing.

> In Algorithms - ESA 2009, 17th Annual European Symposium, Copenhagen, Denmark, September 7-9, 2009. Proceedings, pages 516--527, 2009.