
RHEINISCHE FRIEDRICH-WILHELMS-UNIVERSITÄT BONN
INSTITUT FÜR INFORMATIK I

Elmar Langetepe

Online Motion Planning

MA INF 1314

Summersemester 2016

Manuscript: Elmar Langetepe

1.4 Exploration of grid environments 23

(i) (iii)(ii) (iv)

c
c′ Q

cc′Qc

P′
P′

P′′ P′′

c

P′

P′′

c′

P′′

P′

Q

Figure 1.20: A gridpolygon Pi that is separated into components of type (I) or (II) at the split-cell. The rectangle
Q is always inside Pi.

s

Vaterzelle

aktuelle Zelle

(ii)(i)

D

2D
W

R

Figure 1.21: 2D-cells and D×D sub-cells.

1.4.3 Exploration of general gridpolygons

For the more general exploration of gridpolygons we first slightly change the model4: We consider an

agent that is located at the center of 4 cells of size D×D. The tool for the exploration still has size D×D

as before and moves freely around the agent. More precisely, we consider 4 sub-cells of size D×D and

unify them to a 2D-cell5; see Figure 1.21(i).

It can happen that for the 2D-cell, not all sub-cells belong to the initial gridpolygon, since some of

the sub-cells simply belong to the boundary. Such 2D-cell are denoted as partially occupied cells.

In Figure 1.21(i) all cells intersected by the original polygonal segments are partially occupied (com-

pare also reffigfigOnline/PolyToGrid on page 8). The agent is always located in the center of the 2D-cell.

Analogously to the SmartDFS model, the agents scans the four adjacent 2D-cells. The tool moves freely

around the agent, we would like the count the number of steps of the tool; see also Figure 1.21(ii).

The current cell of the agent is denoted as current cell. The parent cell of the agent is the cell where

he is actually coming from. In the beginning we initially an arbitrary adjacent 2D-cell as the parent cell.

The strategy “Spanning-Tree-Covering” (STC) constructs a spanning tree for all connected 2D-cells

that are also not occupied. The tool moves along the spanning tree by the Left-Hand-Rule. The con-

struction can be done fully online. The 2D-cells are detected by the Right-Hand-Rule. Obviously by

this approach the tool exactly visits any cell at most once by following the spanning tree. Figure 1.22(i)

shows an example for the efficient exploration of all non-occupied cells by 2D-Spiral-STC. As mentioned

before, for the start we can choose an arbitrary parent cell.

The disadvantage of 2D-Spiral-STC is, that we do not visit sub-cells by that tool which actually lie in

the connected component of the sub-cells. Now we relax the behaviour of 2D-Spiral-STC. The strategy

4We will see later that the change was only done for the reason of a convenient analysis and description.
5In the following a cell always denotes a 2D-cell.

24 Chapter 1 Labyrinths, grids and graphs

Algorithm 1.6 2D-Spiral-STC

2DSPSTC(parent, current):

Mark current as visited.

while current has unvisited neighbour cell do

• From parent search in ccw order for a neighbouring cell free, which is not marked as visited and

is not partially occupied.

• Build the spanning tree edge from current to free.

• Move the tool by Left-Hand-Rule along the spanning tree edge to the first sub-cell of free.

• Call 2DSPSTC(current, free).

end while

if current ̸= s then

• Move by the Left-Hand-Rule along the spanning tree edge back from current to the first sub-cell

of parent.

end if

Algorithm 1.7 SpiralSTC

SPSTC(parent, current):

Mark current as visited.

while current has unvisited neighbour cell do

• From parent search in ccw order for the first neighbouring cell free.

• Build a spanning tree edgs from current to free.

• Move the tool along the spanning tree edge to the first sub-cell of free. The movement depends on

the local situation. For double-sided edges the tool moves by Left-Hand-Rule along the edge. For

single-sided edges the tool might change to the other (left) side of the spanning tree edge in order

to avoid an occupied sub-cell for reaching the corresponding sub-cell.

• Call SPSTC(current, free).

end while

if current ̸= s then

• Move along the spanning tree edge back from current to the first possible sub-cell of parent. The

movement depends on the type of the edge, as mentioned above.

end if

1.4 Exploration of grid environments 25

s s

(ii)(i)

Figure 1.22: Examples for (i) 2D-Spiral-STC and (ii) Spiral-STC.

Spiral-STC (Algorithmus 1.7) also constructs a spanning tree in an online fashion. But we also insert a

corresponding edge if a partially occupied 2D-cell contains sub-cells that are still reachable by the tool.

In this case the tool cannot always move the the Left-Hand-Rule along the spanning tree edge. The tool

has to avoid occupied sub-cells and visits some sub-cells more than once. For systematically analysing

the corresponding additional sub-cell visits of the tool we make use of the following notion:

Lokal unzusammenh”angendeEinseitige Kante
Zelle

Doppelseitige Kante

(iii)(ii)(i)

Figure 1.23: (i) Double-sided edge, (ii) one-sided edge, (iii) locally disconnected 2D-cell.

Definition 1.18 A spanning tree edge construced by STC in a gridpolygon P is denoted as

(i) double-sided edge, if all adjacent sub-cells belong to the gridpolygon P (Figure 1.23(i)),

(ii) single-sided edge, if at least one of the adjacent sub-cells is a boundary sub-cell of P (Figure 1.23(ii)).

Double-sided edges are handled in the same way as in the 2D-Spiral-STC strategy. Single-sided

edges impose a detour for the tool, some sub-cells will be visited more than once since the tool changes

to the other side of the spanning tree edge. For the analysis we will consider the corresponding cases

systematically. A special case occurs, if the situation imposes two spanning tree edges for the same cell

from different directions. The cell is locally disconnected in this case; see Figure 1.23(iii). This 2D-cell

will be visited twice from different directions. For simplicity we internally double the corresponding

vertex and the spanning tree has exactly one incoming edge for any vertex. For the analysis we have

to take care that we count the cell only once. An example of the execution of Spiral-STC is shown in

Figure 1.22(ii).

By the preference rule for the 2D-cells the Spiral-STC constructs spanning trees with many windings.

This is not always intended, especially for lawn-mowing or vacuum-cleaning a tool should try to avoid

so many turns. The number of turns might also be part of the cost model. The Scan-STC variant has

a fixed given preference for vertical or horizontal edges. We would like to make local decision for the

construction of spanning tree edges. In our examples we prefer a vertical scan of the gridpolygon. For

this we extend the sensor model and allow to have information about all diagonally adjacent 2D-cells of

a current cell.

The idea is that the construction of a horizontal edge will be postponed, if it is clear that we can also

reach the 2D-cell by another vertical spanning tree edge. To keep the rule simple we only look ahead as

26 Chapter 1 Labyrinths, grids and graphs

f ree

f ree+90

f ree current f ather

f ree+45

f ather

f ree+90 f ree+45

(i) (ii) (iii)

f ree+90f ree+45

f ree current f ather

f 0

f+45 f+90

c

current

Figure 1.24: Avoid horizontal edges with the Scan-STC.

indicated in Figure 1.24 (i) and (ii). Here we currently would like to build a horizontal edge. The agent

is located at cell current and is looking (in ccw order starting from father) for the first free cell free. If

there is a counterclockwise path from free over free+45 and free+90 back to the current cell, we change

the preference and build a spanning tree edge to free+90. Here free+45 lies on the sam row as free and is

the the next cell in ccw order from free. free+90 is the next cell in ccw order from free+45 in the same

column as current.

If the full turn exists, the cell free will also be reached from free+45 be a vertical edges and free+45

can be reached from free+90. Note that we have extended the sensor model in this case and also have

information about diagonally adjacent edges.

Analogously, we can also consider partially occupied 2D-cells and apply the same idea. For the

corresponding avoidance rule we consider the sub-cells c, f 0, f+45 and f+90 instead if the cells current,

free, free+45 und free+90; see Figure 1.24(iii).

By the above idea we could define a strategy 2D-Scan-STC that corresponds to 2D-Spiral-STC. We

skip this step and directly define a Scan-STC Algorithm that makes use of the sub-cells c, f 0, f+45 and

f+90 by the same arguments. If f+45 and f+90 are also free, we will reach f 0 from f+45 and in turn f+45

from f+90. Algorithmus 1.8 summarizes this behaviour.

s s

(ii)(i)

Figure 1.25: Examplle for (i) 2D-Scan-STC, (ii) Scan-STC.

Theorem 1.19 (Gabriely, Rimon, 2000)

Let P be a gridpolygon with C sub-cells. Let K be the number of all sub-cells, which are diagonally

adjacent to an occupied (boundary) sub-cell. 6. The gridpolygons P will be explored by Spiral-STC and

Scan-STC in time O(C) and space O(C). The number of exploration steps,S, for the tool is bounded by:

[GR03]

S ≤C+K.

6K can be estimated by the number of sub-cells in the first layer of P.

1.4 Exploration of grid environments 27

Algorithm 1.8 ScanSTC

SCSTC(parent, current):

Mark current as visited.

while current has unvisited neighbouring cell do

• From parent search in ccw order for the fisrt non-visited neighbouring cell free.

if Spanning tree edge from current to free is horizontal and sub-cells f+45 and f+90 are free then

free := free+90.

end if

• Build a spanning tree edge from current to free.

• Move the tool along the spanning tree edge to the first sub-cell of free. The movement depends on

the local situation. For double-sided edges the tool moves by Left-Hand-Rule along the edge. For

single-sided edges the tool might change to the other (left) side of the spanning tree edge in order

to avoid an occupied sub-cell and reach the corresponding sub-cell.

• Call SCSTC(current, free) auf.

end while

if current ̸= s then

• Move along the spanning tree edge from current back to the first possible sub-cell of parent. The

movement depends on the type of the edge, as mentioned above.

end if

Proof.

Correctness:

Both algorithms construct a spanning tree by DFS such that any 2D-cell which has reachable D sub-cells

will be visited. The tool moves along the spanning tree on both sides – as long as the path is not blocked

– and visits all sub-cells that are touched by the spanning tree.

Zelle ”Ubergr. Intern Gesamt Randzellen

1 0 1 1 2

2 1 2 3 3

3 1 2 3 3

4 1 1 2 2

5 1 2 3 3

s

5

1

3

4 2

Figure 1.26: Estimating the double visits of sub-cells by STC locally.

Path length:

The number of steps for the tool is essential the sum of the visited sub-cells C. If the tool changes to the

left side of a spanning tree a detour has to be made and some sub-cells will be visited more than once.

Beyond C we simply count the number of sub-cells that are visited more than once and locallly charge

the sub-cells of a 2D-cell for these visits.

We differentiate between inner double visits and intra double visits. The latter one occur during the

movement inside a 2D-cell if a sub-cell is visited again. The former one occur if we leave a 2D cell c

along the spanning tree to a neighbouring cell and the corresponding sub-cell was visited before. For this

double visit we also charge the 2D cell c, since it was responsible for the detour.

Any 2D-cell c is visited for the first time by an incoming spanning tree edge. The inner-cell double

visit will occur only if the cell c is left again along this edge. Figure 1.26 shows an example for counting

inner and intro double visits. For cell 1 sub-cell s is visited twice, an intra double visit. The sub-cell

above s is also visited twice, but by the movement back for 5 to 1 along the spanning tree edge. Therefore

2D-cell 5 is charged for this by an inner double visit.

28 Chapter 1 Labyrinths, grids and graphs

0 0 2 1 1 2

1 1 2

1 0 1

(∗)

1 0 1

"U I R "U I R

"U I R

"U I R

"U I R

Zwei freie

Subzellen

Eine freie

Subzelle

1 1 2

0 1 3 1 2 3

Doppelseitige Kante Einseitige Kante

"U I R
0 0 0

"U I R "U I R

"U I RSubzellen

Vier freie

Drei freie

Subzellen

1 2 3
"U I R

1 2 3
"U I R

Figure 1.27: Analysis of STC, all possible cases.

The table of2D-cells Figure 1.26 shows the number of inner and intra double visits for any 2D-cell.

We charge the 2D-cells for these double visits. On the other hand, for any 2D-cell we also count the

number of sub-cells that are diagonally adjacent to a boundary sub-cell. The corresponding boundary

sub-cell need not lie inside the 2D-cell itself. Surprisingly, the sum of inner and intra double visits does

never exceed the number sub-cells with diagonally adjacent neighbours. This is also given in the table of

Figure 1.26.

For a full systematic proof we refer to Figure 1.27. Any 2D-cell c is visited by some spanning tree

edge for the first time and the inner double visits can only occur on this edge. Therefore it is sufficient to

consider the 2D-cell without other outgoing spanning tree edges. For any intra detours only sub-cells of

the current cell are responsible. For the inner detour only the parent cell was responsible.

We distinguish between double sided and single sided edges and between the number of boundary

sub-cells inside the corresponding 2D-cell c. We always count inner and intra double visits and compare

the sum to the number of sub-cells adjacent to boundary sub-cells.

For all reasonable cases the sum of double visits is always covered locally by the number sub-cells

adjacent to boundary sub-cells. The case marked with (∗) is a bit tricky. The corresponding 2D cell

might also be visited by another spanning tree edge. This is not critical because there is only 1 double

1.4 Exploration of grid environments 29

visit in this case for each sub-case. They can be handled separately.

Running time and space requirement

The tool performs at most C +K ≤ 2C steps. Any movement is computed locally in O(1) time. The

corresponding overall information required does not exceed O(C). !

Finally, we consider the Scan-variants of the STC-Algorithms. We would like to give a rough estimate

for the efficiency in avoiding horizontal edges by 2D-Scan-STC.

C

Cℓ

Cr

CCℓ,1

Cr

Cℓ,2

Cℓ,3

(iii)(i) (ii)

C2,1

C2,2

C4,2

C4,1 C5,1

C4,4

C4,3

C5,2C3,2

C6C1

C3,1

c

Figure 1.28: (i) Columns and the change of connectivity, (ii) Columns without changes, (iii) Difficult online
situation.

We consider columns of the gridpolygon and from left to right we count the change of the connec-

tivity from a column to its neighbour on the right. For example on Figure 1.28(i) there is a numbering of

the columns and the number of different vertical components of the columns. From left to right we sum

up all differences in the number of components of a column to its neighbour. In Figure 1.28(i) column C1

has one component and in column C2 this component split into two components C2,1 and C2,2. This gives

a difference of 1. The components C5,1 and C5,2 of column C5 run together in C6 to a single component.

This also is a change of 1 in the difference. Of course also many parts might be involved. We count the

changes of any component separately. Let Z denote the sum of all these local changes.

The number Z is a measure for the additional horizontal edges of the spanning tree of Scan-STC against

an optimal number of spanning tree edges:

Theorem 1.20 (Gabriely, Rimon, 2000)

Let P be a gridpolygon. Let HOpt denote the minimal number of spanning tree edges among all 2D

spanning trees of P. Let Z be the above number of connectivity changes for the columns of the 2D-cells.

2D-Scan-STC constructs a spanning tree with at most

HSTC ≤ HOpt +Z+1

horizontal edges. [GR03]

Proof.(Sketch)

If there is no change in a 2D column, the optimal spanning tree and 2D-Scan-STC will visit and leave

the column only once; compare Figure 1.28(ii). The main problem is that by 2D-Scan-STC a connected

component of a column will be left by the spanning tree to the same side more than once. This can only

happen, if there are changes in the connectivity; see Figure 1.28(iii). !

30 Chapter 1 Labyrinths, grids and graphs

Concluding remarks

Arkin, Fekete and Mitchell gave some approximation results for the offline exploration of gridpolygons;

see [AFM00]. Betke, Rivest und Singh considered a variant of the exploration problem. They introduced

the following piecemeal-condition: The agent has to explore an environment with rectangular obstacles

and has to return to the start from time to time (charging an accumulator); see [BRS94]. A strategy for

this problem for general grid-environments stems from Albers, Kursawe und Schuierer [AKS02].

