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Discrete Optimization

Many problems and algorithms seem well understood.

Linear Programming
efficient algorithms (ellipsoid, interior point)

Simplex method performs well in practice.

Knapsack Problem (KP)
NP-hard, FPTAS exists

very easy problem, solvable in almost linear time

Traveling Salesperson Problem (TSP)
NP-hard, even hard to approximate

local search methods yield very good solutions

⇒ big gap between theory and practice
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Outline

Outline
1 Linear Programming

Why is the simplex method usually efficient?
Smoothed Analysis – analysis of algorithms beyond worst case

2 Traveling Salesperson Problem
Why is local search successful?

3 Smoothed Analysis
Overview of known results
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Linear Programming

Linear Programs (LPs)

variables: x1, . . . , xn ∈ R
linear objective function:
max cT x = c1x1 + . . .+ cnxn

m linear constraints:

a1,1x1 + . . .+ a1,nxn ≤ b1

...

am,1x1 + . . .+ am,nxn ≤ bm

c

x∗

Complexity of LPs

LPs can be solved in polynomial time by the ellipsoid method
[Khachiyan 1979] and the interior point method [Karmarkar 1984].
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Simplex Algorithm

c

Simplex Algorithm

Start at some vertex of the
polytope.

Walk along the edges of the
polytope in the direction of the
objective function cT x .

local optimum = global optimum

c Pivot Rules
Which vertex is chosen if there are
multiple options?

Different pivot rules suggested:
random, steepest descent, shadow
vertex pivot rule, . . .
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Simplex Algorithm – Shadow Vertex Pivot Rule

Shadow Vertex Pivot Rule
Let x0 be some vertex of the
polytope.

Compute u ∈ Rd such that
x0 maximizes uT x .

Project the polytope onto the
plane spanned by c and u.

Start at x0 and follow the edges
of the shadow.

cu

x0

x∗

The shadow is a polygon.

x0 is a vertex of the shadow.

x∗ is a vertex of the shadow.

Edges of the shadow correspond to edges of the polytope.
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Heiko Röglin Probabilistic Analysis of Algorithms



Simplex Algorithm – Shadow Vertex Pivot Rule

Shadow Vertex Pivot Rule
Let x0 be some vertex of the
polytope.

Compute u ∈ Rd such that
x0 maximizes uT x .

Project the polytope onto the
plane spanned by c and u.

Start at x0 and follow the edges
of the shadow. cu

x0

x∗

x∗x0

The shadow is a polygon.

x0 is a vertex of the shadow.

x∗ is a vertex of the shadow.

Edges of the shadow correspond to edges of the polytope.
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Simplex Algorithm – Running Time

Theoreticians say. . .

shadow vertex pivot rule requires
exponential number of steps

no pivot rule with sub-exponential
number of steps known

ellipsoid and interior point methods are
efficient

Engineers say. . .

simplex method usually fastest algorithm
in practice

requires usually only Θ(m) steps

clearly outperforms ellipsoid method
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Reason for Gap between Theory and Practice

Reason for Gap between Theory and Practice

Worst-case complexity is too pessimistic!

There are (artificial) worst-case LPs on which
the simplex method is not efficient. These LPs,
however, do not occur in practice.
e.g., a1,i = 2i ,

∑
i a2,i ≡ 3 mod 5, . . .

This phenomenon occurs not only for the
simplex method, but also for many other
problems and algorithms.

Adversary

“I will trick
your
algorithm!”

Goal
Find a more realistic performance measure that is not just based on
the worst case.
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Smoothed Analysis

Observation: In worst-case analysis, the adversary is too powerful.
Idea: Let’s weaken him!

Perturbed LPs

Step 1: Adversary specifies arbitrary LP:
max cT x subject to aT

1 x ≤ b1 . . . aT
n x ≤ bn.

W. l. o. g. ‖(ai , bi)‖ = 1.

Step 2: Add Gaussian random variable with standard deviation σ
to each coefficient in the constraints.

Smoothed Running Time
= worst expected running time the adversary can achieve
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Heiko Röglin Probabilistic Analysis of Algorithms



Smoothed Analysis

Observation: In worst-case analysis, the adversary is too powerful.
Idea: Let’s weaken him!

Perturbed LPs

Step 1: Adversary specifies arbitrary LP:
max cT x subject to aT

1 x ≤ b1 . . . aT
n x ≤ bn.

W. l. o. g. ‖(ai , bi)‖ = 1.

Step 2: Add Gaussian random variable with standard deviation σ
to each coefficient in the constraints.

Smoothed Running Time
= worst expected running time the adversary can achieve

Heiko Röglin Probabilistic Analysis of Algorithms



Smoothed Analysis

Step 1:
Adversary
chooses input I

Step 2: Random
perturbation
I → perσ(I)

Formal Definition:
LP(n,m) = set of LPs with n variables and m constraints
T (I) = number of steps of simplex method on LP I

smoothed run time T smooth(n,m, σ) = maxI∈LP(n,m)E [T (perσ(I))]

Why do we consider this model?

First step models unknown structure of the input.

Second step models random influences, e.g., measurement
errors, numerical imprecision, rounding, . . .

smoothed running time low⇒ bad instances are unlikely to occur

σ determines the amount of randomness
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Smoothed Analysis of the Simplex Algorithm

Lemma [Spielman and Teng (STOC 2001)]

For every fixed plane and every LP the adversary
can choose, after the perturbation, the expected
number of edges on the shadow is

O
(
poly

(
n,m, σ−1)) . cu

x0

x∗

Theorem [Spielman and Teng (STOC 2001)]

The smoothed running time of the simplex algorithm with shadow
vertex pivot rule is O

(
poly

(
n,m, σ−1)) .

Already for small perturbations exponential running time is unlikely.

Main Difficulties in Proof of Theorem:

x0 is found in phase I→ no Gaussian distribution of coefficients

In phase II, the plane onto which the polytope is projected is not
independent of the perturbations.
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Improved Analysis

Theorem [Vershynin (FOCS 2006)]

The smoothed number of steps of the simplex algorithm with shadow
vertex pivot rule is

O
(
poly

(
n, log m, σ−1)) .

only polylogarithmic in the number of constraints m

Phase I: add vertex x0 in random
direction. With constant prob. this does
not change optimal solution.
⇒ The plane is not correlated with the
perturbed polytope.

With high prob. no angle between
consecutive vertices is too small.
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Traveling Salesperson Problem

Traveling Salesperson Problem (TSP)

Input: weighted (complete) graph
G = (V ,E , d) with d : E → R+

Goal: Find Hamiltonian cycle of
minimum length.

One of the most intensively studied problems in optimization
– both in theory and practice.

Metric TSP: APX-hard Euclidean TSP: PTAS exists
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2-Opt Algorithm

Numerous Experimental
Studies:
(TSPLIB, DIMACS
Implementation Challenge)

The PTAS is too slow on
large instances.

The most successful
algorithms (w. r. t.
quality and running
time) in practice rely on
local search.

approximation ratio:
≈ 1.05
number of steps:
≤ n · log n

2-Opt:

1 Start with an arbitrary tour.
2 Remove two edges from the

tour.
3 Complete the tour by two other

edges.
4 Repeat steps 2 and 3 until no

local improvement is possible
anymore.
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Heiko Röglin Probabilistic Analysis of Algorithms



2-Opt Algorithm

Numerous Experimental
Studies:
(TSPLIB, DIMACS
Implementation Challenge)

The PTAS is too slow on
large instances.

The most successful
algorithms (w. r. t.
quality and running
time) in practice rely on
local search.

approximation ratio:
≈ 1.05
number of steps:
≤ n · log n

2-Opt:

1 Start with an arbitrary tour.
2 Remove two edges from the

tour.

3 Complete the tour by two other
edges.

4 Repeat steps 2 and 3 until no
local improvement is possible
anymore.
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Smoothed Analysis

Worst Case [Englert, R., Vöcking (SODA 2007)]

Even for 2-dim. Euclidean instances, the worst-case run time is 2Ω(n).

Smoothed Analysis:
Adversary chooses for each point i a
probability density fi : [0, 1]d → [0, φ]
according to which it is chosen.

Adversary more powerful than before. He
determines also the type of noise. φ ∼ 1/σ

Smoothed Analysis [Englert, R., Vöcking (SODA 2007)]

The smoothed number of 2-Opt steps is Õ(n4.33 · φ2.67).
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Simple Polynomial Bound

Theorem

The smoothed number of 2-Opt steps is O(n7φ3 log2 n).

Proof.

Consider a 2-Opt step (e1, e2)→ (e3, e4).

∆(e1, e2, e3, e4) = d(e1) + d(e2)− d(e3)− d(e4)

Every step decreases tour length by at least

∆ = min
e1,e2,e3,e4∈E

∆(e1,e2,e3,e4)>0

∆(e1, e2, e3, e4).

Initial tour has length at most
√

dn. Hence,

# 2-Opt Steps ≤
√

dn
∆

.

Union bound over O(n4) steps + calculations:
Pr[∆ ≤ ε] = O(n4 · φ3 · ε · log(1/ε))
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Idea for Improvement

The bound is too pessimistic: Not every step yields the smallest
possible improvement ∆ ≈ 1/(n4 log n).

Consider two consecutive steps: They yield ∆ + ∆2 > 2∆.

Consider linked pair: (e1, e2)→ (e3, e4) and (e3, e5)→ (e6, e7).

Sequence of t consecutive steps, contains Ω(t) linked pairs:

S5S2 S3 S6 S7 S8S4S1 S9

(S1, S4) (S2, S5) (S6, S9)

∆Linked ≈ 1/(n3+1/3 log2/3 n).
worst and second worst step are unlikely to form a linked pair

This idea yields Õ(n4.33 · φ2.67).
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Outline

Outline
1 Linear Programming

Why is the simplex method usually efficient?
smoothed analysis – analysis of algorithms beyond worst case

2 Traveling Salesperson Problem
Why is local search successful?

3 Smoothed Analysis
Overview of known results
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Overview of Results on Smoothed Analsyis

Linear Programming
Simplex Method [Spielman, Teng (STOC 2001)]
→ Gödel Prize 2008, Fulkerson Prize 2009

Perceptron Algo [Blum, Dunagan (SODA 2002)]
Interior Point Algo [Dunagan, Spielman, Teng
(MathProg 2011)]

Combinatorial Optimization
Complexity of Binary Optimization Problems
[Beier, Vöcking (STOC 2004)]
2-Opt Algo for TSP
[Englert, R., Vöcking (SODA 2007)]
SSP Algo for Min-Cost Flow Problem
[Brunsch, Cornelissen, Manthey, R. (SODA
2013)]
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[Englert, R., Vöcking (SODA 2007)]
SSP Algo for Min-Cost Flow Problem
[Brunsch, Cornelissen, Manthey, R. (SODA
2013)]
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Overview of Results on Smoothed Analsyis

Machine Learning
k -Means [Arthur, Manthey, R. (FOCS 2009)]
PAC-Learning [Kalai, Samorodnitsky, Teng
(FOCS 2009)]
Belief Propagation [Brunsch, Cornelissen,
Manthey, R. (WALCOM 2013)]
→ (more in Kamiel’s talk at 14.00)

Scheduling
Multilevel Feedback Algo [Becchetti, Leonardi,
Marchetti-Spaccamela, Schäfer, Vredeveld
(FOCS 2003)]
Local Search Algos [Brunsch, R., Rutten,
Vredeveld (ESA 2011)]
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Overview of Results on Smoothed Analsyis

Multiobjective Optimization
Number of Pareto optima
[Brunsch, R. (STOC 2012)]
Knapsack Problem [Beier, Vöcking (STOC 2003)]

Classical Algorithms and Data Structures
Quicksort [Fouz, Kufleitner, Manthey, Zeini
Jahromi (COCOON 2009)]
Binary Search Trees
[Manthey, Tantau (MFCS 2008)]
Gaussian Elimination [Sankar, Spielman, Teng
(SIAM. J. Matrix Anal. 2006)]

Many more results. . .
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