Institut für Informatik Prof. Dr. Heiko Röglin Clemens Rösner

Probabilistic Analysis of Algorithms Summer 2015

Problem Set 7

Problem 1

Prove that the existence of an NP-hard problem Π with $\Pi \in ZPP$ implies ZPP = NP.

Problem 2

Prove that in any round *i* of the SSP algorithm, the flow f_i is a minimum-cost flow among all flows with value $|f_i|$ (Theorem 5.1).

Problem 3

Argue why Dijkstra's algorithm can be used in every iteration of the SSP algorithm despite the negative arc costs in the residual network.

Problem 4

In the analysis of the SSP algorithm we have assumed that all ϕ -perturbed costs are chosen from the interval [0, 1]. Now consider the case that for every edge e the costs c_e equal $|X_e|$, where X_e follows a normal distribution with mean in [0, 1] and standard deviation 1. Can the smoothed analysis of the SSP algorithm be extended to this case?