5. Properties of Abstract Voronoi Diagrams

### 5.1 Euclidean Voronoi Diagrams

Voronoi Diagram: Given a set $S$ of $n$ point sites in the plane, the Voronoi diagram $V(S)$ of $S$ is a planar subdivision such that

- Each site $p \in S$ is assigned a Voronoi region denoted by $\operatorname{VR}(p, S)$
- All points in $\operatorname{VR}(p, S)$ share the same nearest site $p$ in $S$

Voronoi Edge: The common boundary between two adjacent Voronoi regions, $\operatorname{VR}(p, S)$ and $\operatorname{VR}(q, S)$, i.e., $\operatorname{VR}(p, S) \cap \mathrm{VR}(q, S)$, is called a Voronoi edge.

Voronoi Vertex: The common vertex among more than two Voronoi regions is called a Voronoi vertex.


The Euclidean Voronoi diagram can be computed in $O(n \log n)$ time

- Line Segment Voronoi Diagram

- Circle Voronoi Diagram

- Voronoi Diagram in the $L_{1}$ metric

- For two sites $p, q \in S$, the bisector $\boldsymbol{J}(\boldsymbol{p}, \boldsymbol{q})$ between $p$ and $q$ is defined as $\left\{x \in R^{2} \mid d(x, p)=d(x, q)\right\}$
- $J(p, q)$ partitions the plane into two half-planes
$-D(p, q)=\left\{x \in R^{2} \mid d(x, p)<d(x, q)\right\}$
$-D(q, p)=\left\{x \in R^{2} \mid d(x, q)<d(x, p)\right\}$
- $\operatorname{VR}(p, S)=\bigcap_{q \in S \backslash\{p\}} D(p, q)$
- $V(p, S)=R^{2} \backslash \bigcup_{p \in S} \operatorname{VR}(p, S)$
- consists of Voronoi edges.


### 5.3 Abstract Voronoi Diagrams

A unifying approach to computing Voronoi diagrams among different geometric sites under different distance measures.

A bisecting system $\mathcal{J}=\{J(p, q) \mid p, q \in S\}$ for a set $S$ of sites (indices)

A bisecting system $\mathcal{J}$ is admissible if $\mathcal{J}$ satisfies the following axioms
(A1) Each bisecting curve in $\mathcal{J}$ is homeomorphic to a line (not closed)
(A2) For each non-empty subset $S^{\prime}$ of $S$ and for each $p \in S^{\prime}, \operatorname{VR}\left(p, S^{\prime}\right)$ is path-connected.
(A3) For each non-empty subset $S^{\prime}, R^{2}=\bigcup_{p \in S^{\prime}} \overline{\operatorname{VR}\left(p, S^{\prime}\right)}$
(A4) Any two curves in $\mathcal{J}$ have only finitely many intersection points, and these intersections are transversal.

- (A1) can be written as "Each curve in $\mathcal{J}$ is unbounded. After stereographic projection to the sphere, it can be completed to a closed Jordan curve through the north pole."
- (A4) can be removed through several complicated proofs.


Not Traversal


Traversal

Not Admissible


Non-Man Land


Disconnected

Three possibilities of an admissible system for three sites


## Abstract Voronoi Diagrams

- A category of Voronoi diagrams
- points in any convex distance function
- Karlsruhe metric
- Line segments and convex polygons of constant size


### 5.3 Basic Properties

## Lemma 1

Let $(S, \mathcal{J})$ be a bisecting curve system. The the following assertions are equivalent.

1. If $p, q$, and $r$ are pairwise different sites in $S$, then $D(p, q) \cap D(q, r) \subseteq$ $D(p, r)$ (Transitivity)
2. For each nonempty subset $S^{\prime} \subseteq S, R^{2}=\bigcup_{p \in s^{\prime}} \overline{\operatorname{VR}\left(p, S^{\prime}\right)}$

## Proof:

$(2) \rightarrow(1)$

- Let $z$ be a point in $D(p, q) \cap D(q, r)$.
- By (2), there must be a site $t \in S^{\prime}=\{p, q, r\}$ such that $z \in \operatorname{VR}\left(t, S^{\prime}\right)$.
- If $t=p, z \in \operatorname{VR}\left(p, S^{\prime}\right) \subseteq D(p, r)$; otherwise
$-z \in \mathrm{VR}\left(q, S^{\prime}\right) \subseteq D(q, p)$, contradicting $z \in D(p, q)$
$-z \in \mathrm{VR}\left(r, S^{\prime}\right) \subseteq D(r, q)$, contradicting $z \in D(q, r)$
$(1) \rightarrow(2)$
- By induction on $\left|S^{\prime}\right|$.
- If $\left|S^{\prime}\right|=2$, the assertion is immediate.
- The case where $\left|S^{\prime}\right|=3$ follows directly from (1)
- Let $z$ be a point in the plane. By induction hypothesis, to each $p \in S^{\prime}$, there exists a site $c(p) \neq p$ such that $z \in \mathrm{VR}\left(c(p), S^{\prime} \backslash\{p\}\right)$
case 1: There exists $v \neq w$ such that $c(v)=c(w)$. Then
$z \in \operatorname{VR}\left(c(v), S^{\prime} \backslash\{v\}\right) \cap \operatorname{VR}\left(c(v), S^{\prime} \backslash\{w\}\right.$
$\subset \mathrm{VR}\left(c(v), S^{\prime} \backslash\{v\} \cap D(c(v), v)=\operatorname{VR}\left(c(v), S^{\prime}\right)\right.$
case 2 The mapping $c$ is injective. Let $p, v, w$ be scuh that $|\{p, c(p), v, w\}|=4$. Since $c(v) \neq c(w)$, one of them is different $p$. We assume $c(v)$ is different from $p$. Since $c(v) \neq c(p)$ we obtain the contradiction:
$z \in \operatorname{VR}\left(c(p), S^{\prime} \backslash\{p\}\right) \subseteq D(c(p), c(v))$
$z \in \operatorname{VR}\left(c(v), S^{\prime} \backslash\{v\}\right) \subseteq D(c(v), c(p))$


## Theorem

A bisecting curve system $(S, \mathcal{J})$ is admissible if and only if the following conditions are fulfilled.

1. $D(p, q) \cap D(q, r) \subseteq D(p, r)$ holds for any three sites $p, q, r$, in $S$
2. Any two curve $J(p, q)$ and $J(p, r)$ cross at most twice and do not constitude a clockwise cycle in the plane
proof
$\rightarrow$

- By Lemma 1, concentrate on the connectedness of Voronoi regions.
- Consider an infinitely large bounded curve $\Gamma$ which contains all intersections among curves in $\mathcal{J}$
- For any $p, q, r \in S, V(\{p, q, r\})$ encircled by $\Gamma$ is a planar graph with exacyly 4 faces each of whose vertices is of degree at least 3 .
- By the Euler Formula, the planar graph gas at most 4 vertices
- Since at least two edges of the original diagram tend to infinity, two vertices must be situated in $\Gamma$.
- $J(p, q)$ and $J(p, r)$ cross at most twice since each intersection between them is a Voronoi vertex by definition.
- A simple case analysis shows no clockwise cycle raising from $J(p, q)$ and $J(p, r)$

disconnected region
- The case analysis shows that for any 3 -element subset $S^{\prime}$ of $S$, all Voronoi regions in $V\left(S^{\prime}\right)$ is connected.
- We prove by induction on $m$ : If $R=\operatorname{VR}\left(p,\left\{p, q_{1}, q_{2}, \ldots, q_{m}\right\}\right)$ is connected, then $R \cap D\left(p, q_{m+1}\right)=\operatorname{VR}\left(p,\left\{p, q_{1}, q_{2}, \ldots, q_{m+1}\right\}\right)$ is connected.
- Let $J(p, q)$ be oriented such that $D(p, q)$ is on its left side.
- Assume the contrary that $R \cap D\left(p, q_{m+1}\right)$ were not connected.
- If $R \cap D\left(p, q_{m+1}\right)$ is bounnded, let $C$ be $\partial R$ and $J\left(p, q_{m+1}\right)$ would form a clockwise cycle.
- For $\exists i \leq m, J\left(p, q_{i}\right)$ and $J\left(p, q_{m+1}\right)$ form a clockwise cycle.
- There exists a contradiction
- Otherwise, we intersect $R$ with the inner domain of $\Gamma$, and $C^{\prime}$ be its contour.
- The same reasoning applies to $C^{\prime}$ and $J\left(p, q_{m+1}\right)$


