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Discrete and Computational Geometry

What is discrete geometry?
e Discrete sets: points, lines, circles in R?

e Structural Properties

. n lines in the plane

Q: How many regions?

II. n points in the plane
Q: How many of them have

. . the same distance?

Jiri Matousek, Lecutes on Discrete Geometry



What is computational geometry?
Algorithms for solving geometry problems

Example Convex hulls

Time: O(nlogn)

Dynamic Convex hull, 3D convex hull, and convex polytope.

Ketan Mulmuley, Computational Geometry: An
Introduction Through Randomized Algorithms

Randomized Incremental Algorithms for Geometry Structure

e Quick Sort and Search
e Vertical Trapezoidal Decomposition
e General Theoretical Foundations

e Dynamic Setting (optionl)



A probability space has three components:

1. a sampe space (), which is the set of all possible outcomes of the
random process modeled by the probability space;

2. a family JF representing the allowable events, where each set in F is
a subset of the sample space; and

3. a probability function Pr : F — R satisfying the following:

e for any event £, 0 < Pr(E) <1

e Pr(Q)) = 1; and

e for any finite or countably infinite sequence of pairwise mutually
disjoint events Fy, Es, Ej3, .. .,

Pr({ ) =) Pr(E)

i>1 i<q

Example 1:
One dice

e 0{1,2,3,4,5,6,}

o F={{1}, {2}, {3}, {4}, {5}, {6}, {1, 2}, {1,3}, {1, 4}, {1, 5}, {1,6},
{2,3},{2,4},{2,5},{2,6},{3,4},{3,5},{3,6},{4,5}, {4, 6}, {5, 6},
{1,2,3},{1,2,4}, {1,2,5},{1,2,6}, {1,3,4},{1,3,5}, {1,3, 6},
{1,4,5},{1,4,6}, {1,5,6},{2,3,4},{2,3,5},{2,3,6}, {2, 4,5},
{2,4,6},12,5,6},{3,4,5},{3,4,6},{3,5,6}, {4,5,6},{1,2,3,4},
{1,2,3,5},{1,2,3,6},{1,2,4,5}, {1,2,4,6},{1,2,5,6},{1,3,4,5},
{1,3,4,6},{1,3,5,6},{1,4,5,6},{2,3,4,5},{2,3,4,6},{2,3,5,6},
{2,4,5,6},{3,4,5,6},{1,2,3,4,5},{1,2,3,4,6},{1,2,3,5, 6},
{1,2,4,5,6},{1,3,4,5,6},{2,3,4,5,6},{1,2,3,4,5,6} }.
| F| = 36

o Pr({1}) =%, Pr({1,4,5}) =3, ...



Example 2:
Two identical dices

o = {{1,1},{1,2}, {1, 3}, {1, 4},{1,5},{1,6},{2,2},{2,3}, {2, 4},
{2,5},{2,6},{3,3},{3,4},{3,5},{3,6}, {4, 4}, {4,5}, {4, 6},
{57 5}7 {57 6}7 {67 6}} (’Q‘ - 21)

o | F| =2

e Pr({L,1}) = & Pr({L4}) = & Pr({{1,1},{L4}}) = &
Pr({{1,3},{1,4}}) = 5....

A random wvariable X on a sample space (1 is a real-valued function on
Q,ie., X : QQ = R. A discrete random variable is a random variable
that takes on only a finite or countably infinite number of values.

Example 3
Sum of two different dices.

e Let X be the randm variable representing the sum of the two dices.

o Pr(X = 4) = Pr({(1,3), (2.2), 3. )}) = 5

The expectation of a discrete random variable X, denoted by E[X], is
given by

E[X] = Zz’Pr(X =),

where the summation is over all values in the range of X.

Example 3
X is the randm variable representing the sume of the two dices.

E[X]= ) iPr(X =)

9<i<12
=2 X ! + 3 X ! +4 % ! +5><1+6>< 0 +7><1+8>< 5+9><1
N 36 18 12 9 36 § 36 9
1 1 1
+1I0X —+ 11X —+ 12X —=7

12 18 36



[Linearity of Expectations]:

For n any finite collection of discrete random variable X, Xo,, ..

with finite expectations,

E[ZXz] = ZE[XZ]

Example 4
X is the randm variable representing the sum of the two dices.

e Let X; be the value of the i™ dice. Then X = X; + Xo.
¢ E[Xi| =31 41 %X §=235
° E[X] = E[Xl + _XQ} = E[Xﬂ + E[XQ] =7

L X,



1. Quick Sort And

Input: a set N of n real numbers (distinct)

Search

Output: an ordered sequence of N

Qucik-Sort (V)

L. If [N| =1, return N.

2. Select a number p from N

3. Let Np be{l|l € N and [ < p}
Let Ng be {r|r € N and r > p}

4. 1f |Ng| > 0, L = Quick-Sort(Ny); else L = ()
5. 1f |[Ng| > 0, L = Quick-Sort(Ng); else R = ()

6. return a seqeuence L

, p, R
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Expected Time Complexity

e [f a subset has k elements, it takes O(k) comparisons.

e If a level has m subsets, Ny, No, ..., N, since they are distinct,
a level needs > O(|V;|) = O(n).

e Expected size of Ny, (or Ng)= 3,
expected depth of recursion = O(logn)

e O(nlogn) expected time

Sorting > Geometric Structure

An Ordered Seqeuence = A Partition of Real Line R

®
11 19 23 29 37 47

w e

e Sorting Problem:

Find the partition H (IN) of R formed
by the given set IV of n points.

e Search Problem:

Associate a search structure H(N) with H(N) so that,
given any point g € R,

one can locate the interval in H(NN) containing ¢
quickly, e.g., in logarithmic time.



1.1 Randomized Incremental Version of Quick Sort

S1,59,...,5, a random seqeuence of NV
NO:® Ni:{SlasZV"aSi}
H(N% is R

H(N") is the partition of R by N'

Randomized Incremental Construction:
H(NO),H(Nl), H(NQ), ...... , H(N") = H(N).
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Fig 3. Addition of the third point S°

Conflict List:
For each interval I in H(N"), conflict list L(I) is

an unsorted list of points in N \ N’ contained by I,
and [(I) is the size of L(I)

E.g., in Fig. 2, L(I) has four points.

Fact
Each point in N \ N is related to a unique interval in H(N?).

There is a unique edge between a point in N \ N’ and its conflicted
interval in H(N").



Adding a point S = S into N*

1. Find a interval I in H(N") which contains S.
2. Separate I by S into Iy and Ip.

3. Compute L(Iy) and L(Ig) by L(I)

Adding S takes O(I(ILt) + U(Ir) + 1)

1. Finding I takes O(1) due to the unique edge between S and I in the
conflict list.

2. Separtating I takes O(1) time

3. Computing L(I1) and L(Ip) takes O(I(L)) = O(I(I)+1(Ip)+1) time.
Backward Time Analysis
Inserting S into H(N') = Deleting S“** from H(N'™)

Each point S in N“*! is equally likely to be S+,
I1(S): Interval left to S
Ir(S): Interval right to .S

Expected Time of Adding S"
1 2seni+t O(UIL(S)) + U(Ir(S)) +1)

Each interval are adjacent to at most two points
= O

1+1

Expected Time Complexity of Randomized Incremental Version:

i1 O(71) = O(nlogn)



1.2 Randomized Binary Tree

N = {23 11,37,47,29,3,7,19 )
Sy Sy S5 Sy S5 S S7 Sy

Divide-and-Conquer Quick-Sort

23

Random Binary Tree H(N) is defined as follows:
o If N = (), H(N) is a node corresponding to the whole real line R
e otherwise,

— the root of H(N) is a randomly chosen point S € N

— H(Np) and H(Np) are defined recursively for the havles of R on
the two sides of S, where N; and Npg are the sets of points in
N\ S left to and right to S, respectively.

Search Problem:
Given a point ¢ € R, we locate the invertval in H (N) containing ¢
by applying a binary search on H(N).

Expected search time = expected depth of H (N) = O(logn)



1.3 History (On-Line)

Randomized Incremental Version of Quick-Sort
through the Random Binary Tree

e Locating the interval using the binary tree

S1, S, ...,5, 1s a random seqeuence of N

(23, 11, 37, 47, 29, 3, 7, 19)
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Property: If S; is the left child of .S;, S; must belong to the left
Interval of S; in H(N?).

Cost of Inserting S; = Searching which interval S; is located in

= Length of Search Path

Backward Analysis

For a query pint ¢, the search cost is analyzed as follows:

e If the search tests ;.
g must belong to the left or right interval of S; in H(N")
— probability of testing S; is 2/1

e FExpected length of search path is >, 2/i = O(logn)
e Similarly, inserting .S; takes O(log ) time

Total Time of Constructing H(N):

> O(logi) = O(nlogn)



This randomized incremental construction through a random
binary tree does not require conflict lists:

An on-line algorithm

history(2)
e Auxiliary Information

— Bach internal node of H (N?) records the left and right intervals when it
was created.

— Each interval records the creation and the deletion time (if it is dead).

history(?)
e Contains the entire history of construction, H(N°), H(NY),..., H(N™).

o Allow scarching in H (N?) by the auxiliary information.



