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Discrete and Computational Geometry

What is discrete geometry?

• Discrete sets: points, lines, circles in Rd

• Structural Properties

I. n lines in the plane

Q: How many regions?

II. n points in the plane
Q: How many of them have
the same distance?

Jǐri Matoušek, Lecutes on Discrete Geometry



What is computational geometry?

Algorithms for solving geometry problems

Example Convex hulls

Time: O(n log n)

Dynamic Convex hull, 3D convex hull, and convex polytope.

Ketan Mulmuley, Computational Geometry: An
Introduction Through Randomized Algorithms

Randomized Incremental Algorithms for Geometry Structure

• Quick Sort and Search

• Vertical Trapezoidal Decomposition

• General Theoretical Foundations

• Dynamic Setting (optionl)



A probability space has three components:

1. a sampe space Ω, which is the set of all possible outcomes of the

random process modeled by the probability space;

2. a family F representing the allowable events, where each set in F is

a subset of the sample space; and

3. a probability function Pr : F → R satisfying the following:

• for any event E, 0 ≤ Pr(E) ≤ 1

• Pr(Ω) = 1; and

• for any finite or countably infinite sequence of pairwise mutually

disjoint events E1, E2, E3, . . .,

Pr(
⋃
i≥1

) =
∑
i≤q

Pr(Ei)

Example 1:

One dice

• Ω{1, 2, 3, 4, 5, 6, }

• F = {{1}, {2}, {3}, {4}, {5}, {6}, {1, 2}, {1, 3}, {1, 4}, {1, 5}, {1, 6},
{2, 3}, {2, 4}, {2, 5}, {2, 6}, {3, 4}, {3, 5}, {3, 6}, {4, 5}, {4, 6}, {5, 6},
{1, 2, 3}, {1, 2, 4}, {1, 2, 5}, {1, 2, 6}, {1, 3, 4}, {1, 3, 5}, {1, 3, 6},
{1, 4, 5}, {1, 4, 6}, {1, 5, 6}, {2, 3, 4}, {2, 3, 5}, {2, 3, 6}, {2, 4, 5},
{2, 4, 6}, {2, 5, 6}, {3, 4, 5}, {3, 4, 6}, {3, 5, 6}, {4, 5, 6}, {1, 2, 3, 4},
{1, 2, 3, 5}, {1, 2, 3, 6}, {1, 2, 4, 5}, {1, 2, 4, 6}, {1, 2, 5, 6}, {1, 3, 4, 5},
{1, 3, 4, 6}, {1, 3, 5, 6}, {1, 4, 5, 6}, {2, 3, 4, 5}, {2, 3, 4, 6}, {2, 3, 5, 6},
{2, 4, 5, 6}, {3, 4, 5, 6}, {1, 2, 3, 4, 5}, {1, 2, 3, 4, 6}, {1, 2, 3, 5, 6},
{1, 2, 4, 5, 6}, {1, 3, 4, 5, 6}, {2, 3, 4, 5, 6}, {1, 2, 3, 4, 5, 6}}.
|F| = 36

• Pr({1}) = 1
6, Pr({1, 4, 5}) = 1

2, . . .



Example 2:

Two identical dices

• Ω = {{1, 1}, {1, 2}, {1, 3}, {1, 4}, {1, 5}, {1, 6}, {2, 2}, {2, 3}, {2, 4},
{2, 5}, {2, 6}, {3, 3}, {3, 4}, {3, 5}, {3, 6}, {4, 4}, {4, 5}, {4, 6},
{5, 5}, {5, 6}, {6, 6}}. (|Ω| = 21)

• |F| = 221

• Pr({1, 1}) = 1
36, Pr({1, 4}) = 1

18, Pr({{1, 1}, {1, 4}}) = 1
12,

Pr({{1, 3}, {1, 4}}) = 1
9,. . .

A random variable X on a sample space Ω is a real-valued function on

Ω, i.e., X : Ω → R. A discrete random variable is a random variable

that takes on only a finite or countably infinite number of values.

Example 3

Sum of two different dices.

• Let X be the randm variable representing the sum of the two dices.

• Pr(X = 4) = Pr({(1, 3), (2, 2), (3, 1)}) = 1
12

The expectation of a discrete random variable X , denoted by E[X ], is

given by

E[X ] =
∑
i

iPr(X = i),

where the summation is over all values in the range of X .

Example 3

X is the randm variable representing the sume of the two dices.

E[X ] =
∑

2≤i≤12
iPr(X = i)

= 2× 1

36
+ 3× 1

18
+ 4× 1

12
+ 5× 1

9
+ 6× 5

36
+ 7× 1

6
+ 8× 5

36
+ 9× 1

9

+10× 1

12
+ 11× 1

18
+ 12× 1

36
= 7



[Linearity of Expectations]:

For n any finite collection of discrete random variable X1, X2,, . . ., Xn

with finite expectations,

E[

n∑
i=1

Xi] =

n∑
i=1

E[Xi].

Example 4

X is the randm variable representing the sum of the two dices.

• Let Xi be the value of the ith dice. Then X = X1 + X2.

• E[Xi] =
∑

1≤i≤6 i× 1
6 = 3.5

• E[X ] = E[X1 + X2] = E[X1] + E[X2] = 7



1. Quick Sort And Search

Input: a set N of n real numbers (distinct)

Output: an ordered sequence of N

Qucik-Sort(N)

1. If |N | = 1, return N .

2. Select a number p from N

3. Let NL be {l | l ∈ N and l < p}
Let NR be {r | r ∈ N and r > p}

4. If |NL| > 0, L = Quick-Sort(NL); else L = ∅

5. If |NR| > 0, L = Quick-Sort(NR); else R = ∅

6. return a seqeuence L, p, R

23, 11, 37, 47, 29, 3, 7, 19

23

11

3

7

19

37

29 47

11, 3, 7, 19 37, 47, 29,

3, 7
7

3, 7 19

3, 7, 11, 19 29, 37, 47

29 47



Expected Time Complexity

• If a subset has k elements, it takes O(k) comparisons.

• If a level has m subsets, N1, N2, . . ., Nm, since they are distinct,

a level needs
∑m

i=1O(|Ni|) = O(n).

• Expected size of NL (or NR)= n
2 ,

expected depth of recursion = O(logn)

• O(n log n) expected time

Sorting Geometric Structure

An Ordered Seqeuence = A Partition of Real Line R

3 7 11 19 23 29 37 47

• Sorting Problem:

Find the partition H(N) of R formed

by the given set N of n points.

• Search Problem:

Associate a search structure H̃(N) with H(N) so that,

given any point q ∈ R,

one can locate the interval in H(N) containing q

quickly, e.g., in logarithmic time.



1.1 Randomized Incremental Version of Quick Sort

S1, S2, . . . , Sn: a random seqeuence of N

N 0 = ∅ N i = {S1, S2, . . . , Si}
H(N 0) is R

H(N i) is the partition of R by N i

Randomized Incremental Construction:

H(N 0), H(N 1), H(N 2), . . . . . ., H(Nn) = H(N).

Fig 2. H(N 2) points in N 2 points in N \N 2

Fig 3. Addition of the third point S3

Conflict List:

For each interval I in H(N i), conflict list L(I) is

an unsorted list of points in N \N i contained by I ,

and l(I) is the size of L(I)

E.g., in Fig. 2, L(I) has four points.

Fact

Each point in N \N i is related to a unique interval in H(N i).

There is a unique edge between a point in N \ N i and its conflicted

interval in H(N i).

I

I1 I2



Adding a point S = Si+1 into N i

1. Find a interval I in H(N i) which contains S.

2. Separate I by S into IL and IR.

3. Compute L(IL) and L(IR) by L(I)

Adding S takes O(l(IL) + l(IR) + 1)

1. Finding I takes O(1) due to the unique edge between S and I in the

conflict list.

2. Separtating I takes O(1) time

3. Computing L(IL) and L(IR) takes O(l(L)) = O(l(IL)+ l(IR)+1) time.

Backward Time Analysis

Inserting Si+1 into H(N i) = Deleting Si+1 from H(N i+1)

Each point S in N i+1 is equally likely to be Si+1.

IL(S): Interval left to S

IR(S): Interval right to S

Expected Time of Adding S:

1
i+1

∑
S∈N i+1 O(l(IL(S)) + l(IR(S)) + 1)

≤ 2
i+1

∑
J∈H(N i+1)O(I(J) + 1)

Each interval are adjacent to at most two points

= O( n
i+1)

Expected Time Complexity of Randomized Incremental Version:∑n
i=1 O( n

i+1) = O(n log n)



1.2 Randomized Binary Tree

N = { 23, 11, 37, 47, 29, 3, 7, 19 }
S1 S2 S3 S4 S5 S6 S7 S8

Divide-and-Conquer Quick-Sort

23

11 37

3 19 29 47

7

Random Binary Tree H̃(N) is defined as follows:

• If N = ∅, H̃(N) is a node corresponding to the whole real line R

• otherwise,

– the root of H̃(N) is a randomly chosen point S ∈ N

– H̃(NL) and H̃(NR) are defined recursively for the havles of R on

the two sides of S, where NL and NR are the sets of points in

N \ S left to and right to S, respectively.

Search Problem:

Given a point q ∈ R, we locate the invertval in H(N) containing q

by applying a binary search on H̃(N).

Expected search time = expected depth of H̃(N) = O(log n)



1.3 History (On-Line)

Randomized Incremental Version of Quick-Sort

through the Random Binary Tree

S1, S2, . . . , Sn is a random seqeuence of N

(23, 11, 37, 47, 29, 3, 7, 19)

23

11

H̃(N 1)

23

11

H̃(N 2)

23

11 37

H̃(N 3)

• Locating the interval using the binary tree

37



23

11 37

3 19 29 47

7

H̃(N 8)

Property: If Sj is the left child of Si, Sj must belong to the left

Interval of Si in H(N i).

Cost of Inserting Sj = Searching which interval Sj is located in

= Length of Search Path

Backward Analysis

For a query pint q, the search cost is analyzed as follows:

• If the search tests Si,

q must belong to the left or right interval of Si in H(N i)

→ probability of testing Si is 2/i

• Expected length of search path is
∑n

i=1 2/i = O(log n)

• Similarly, inserting Si takes O(log i) time

Total Time of Constructing H̃(N):∑n
i=1O(log i) = O(n log n)



This randomized incremental construction through a random
binary tree does not require conflict lists:

An on-line algorithm

history(i)

• H̃(N i)

• Auxiliary Information

– Each internal node of H̃(N i) records the left and right intervals when it

was created.

– Each interval records the creation and the deletion time (if it is dead).

history(i)

• Contains the entire history of construction, H̃(N 0), H̃(N 1), . . . , H̃(Nn).

• Allow searching in H̃(N i) by the auxiliary information.


