
Facility location

Given a set P of n sites in the plane,
find the point c that minimises the distance r to the furthest point(s) of P

Facility location

Given a set P of n sites in the plane,
find the point c that minimises the distance r to the furthest point(s) of P

c

r

r

r

Facility location

Given a set P of n sites in the plane,
find the point c that minimises the distance r to the furthest point(s) of P

c

r

r

r

Smallest enclosing circles

Given a set P of n points in the plane,
find the smallest circle C(P) that contains all points of P

Smallest enclosing circles

C(P) is either a circle defined by a set S ⊆ P of three points on the boundary,
or a circle defined by a set S ⊆ P of two diametrically opposite points

Given a set P of n points in the plane,
find the smallest circle C(P) that contains all points of P

Smallest enclosing circles

Why not more than three points?
Why not less than two points?
Why not two points that are not diametrically opposite?

Given a set P of n points in the plane,
find the smallest circle C(P) that contains all points of P

C(P) is either a circle defined by a set S ⊆ P of three points on the boundary,
or a circle defined by a set S ⊆ P of two diametrically opposite points

Smallest enclosing circles

Given a set P of n points in the plane,
find the smallest circle C(P) that contains all points of P

C(P) is either a circle defined by a set S ⊆ P of three points on the boundary,
or a circle defined by a set S ⊆ P of two diametrically opposite points

Why not more than three points? Three points define a unique circle
Why not less than two points?
Why not two points that are not diametrically opposite?

Smallest enclosing circles

Given a set P of n points in the plane,
find the smallest circle C(P) that contains all points of P

C(P) is either a circle defined by a set S ⊆ P of three points on the boundary,
or a circle defined by a set S ⊆ P of two diametrically opposite points

Why not more than three points? Three points define a unique circle
Why not less than two points? Could make circle smaller until there are two
Why not two points that are not diametrically opposite?

Smallest enclosing circles

Given a set P of n points in the plane,
find the smallest circle C(P) that contains all points of P

C(P) is either a circle defined by a set S ⊆ P of three points on the boundary,
or a circle defined by a set S ⊆ P of two diametrically opposite points

Why not more than three points? Three points define a unique circle
Why not less than two points? Could make circle smaller until there are two
Why not two points that are not diametrically opposite?

Smallest enclosing circles

Given a set P of n points in the plane,
find the smallest circle C(P) that contains all points of P

C(P) is either a circle defined by a set S ⊆ P of three points on the boundary,
or a circle defined by a set S ⊆ P of two diametrically opposite points

Why not more than three points? Three points define a unique circle
Why not less than two points? Could make circle smaller until there are two
Why not two points that are not diametrically opposite?

Smallest enclosing circles

Given a set P of n points in the plane,
find the smallest circle C(P) that contains all points of P

C(P) is either a circle defined by a set S ⊆ P of three points on the boundary,
or a circle defined by a set S ⊆ P of two diametrically opposite points

Why not more than three points? Three points define a unique circle
Why not less than two points? Could make circle smaller until there are two
Why not two points that are not diametrically opposite? Smaller again

Smallest enclosing circles

Given a set P of n points in the plane,
find the smallest circle C(P) that contains all points of P

C(P) is either a circle defined by a set S ⊆ P of three points on the boundary,
or a circle defined by a set S ⊆ P of two diametrically opposite points

Trivial algorithm: for all Θ(n3) pairs and triples of points that define a circle,
test if all other Θ(n) points lie inside;
choose the smallest circle that passes the test → Θ(n4) time

Smallest enclosing circles: an incremental algorithm

Algorithm SEC(P, n)

Input: an array P with points in the plane; a number n ≥ 2
Output: the smallest circle that contains all points of P [1..n]

C ← circle defined by P [1] and P [2]
for i← 3 to n
do if P [i] lies in C

then be happy and continue
else C ← the smallest enclosing circle of P [1..i]

return C

1

2

3

5

6

7

8

4

Smallest enclosing circles: an incremental algorithm

1

2

3

5

6

7

8

4

Algorithm SEC(P, n)

Input: an array P with points in the plane; a number n ≥ 2
Output: the smallest circle that contains all points of P [1..n]

C ← circle defined by P [1] and P [2]
for i← 3 to n
do if P [i] lies in C

then be happy and continue
else C ← the smallest enclosing circle of P [1..i]

return C

Smallest enclosing circles: an incremental algorithm

1

2

5

6

7

8

4

3

Algorithm SEC(P, n)

Input: an array P with points in the plane; a number n ≥ 2
Output: the smallest circle that contains all points of P [1..n]

C ← circle defined by P [1] and P [2]
for i← 3 to n
do if P [i] lies in C

then be happy and continue
else C ← the smallest enclosing circle of P [1..i]

return C

Smallest enclosing circles: an incremental algorithm

1

2

3

5

6

7

8

4

Algorithm SEC(P, n)

Input: an array P with points in the plane; a number n ≥ 2
Output: the smallest circle that contains all points of P [1..n]

C ← circle defined by P [1] and P [2]
for i← 3 to n
do if P [i] lies in C

then be happy and continue
else C ← the smallest enclosing circle of P [1..i]

return C

Smallest enclosing circles: an incremental algorithm

1

2

3

5

6

7

8

4

Algorithm SEC(P, n)

Input: an array P with points in the plane; a number n ≥ 2
Output: the smallest circle that contains all points of P [1..n]

C ← circle defined by P [1] and P [2]
for i← 3 to n
do if P [i] lies in C

then be happy and continue
else C ← the smallest enclosing circle of P [1..i]

return C

Smallest enclosing circles: an incremental algorithm

1

2

3

5

6

7

8

4

Algorithm SEC(P, n)

Input: an array P with points in the plane; a number n ≥ 2
Output: the smallest circle that contains all points of P [1..n]

C ← circle defined by P [1] and P [2]
for i← 3 to n
do if P [i] lies in C

then be happy and continue
else C ← the smallest enclosing circle of P [1..i]

return C

Smallest enclosing circles: an incremental algorithm

1

2

3

6

7

8

4
5

Algorithm SEC(P, n)

Input: an array P with points in the plane; a number n ≥ 2
Output: the smallest circle that contains all points of P [1..n]

C ← circle defined by P [1] and P [2]
for i← 3 to n
do if P [i] lies in C

then be happy and continue
else C ← the smallest enclosing circle of P [1..i]

return C

Smallest enclosing circles: an incremental algorithm

1

2

3

6

7

8

4
5

Algorithm SEC(P, n)

Input: an array P with points in the plane; a number n ≥ 2
Output: the smallest circle that contains all points of P [1..n]

C ← circle defined by P [1] and P [2]
for i← 3 to n
do if P [i] lies in C

then be happy and continue
else C ← the smallest enclosing circle of P [1..i]

return C

Smallest enclosing circles: an incremental algorithm

1

2

3

6

7

8

4
5

Algorithm SEC(P, n)

Input: an array P with points in the plane; a number n ≥ 2
Output: the smallest circle that contains all points of P [1..n]

C ← circle defined by P [1] and P [2]
for i← 3 to n
do if P [i] lies in C

then be happy and continue
else C ← the smallest enclosing circle of P [1..i]

return C

Smallest enclosing circles: an incremental algorithm

1

2

3

6

8

4
5

7

Algorithm SEC(P, n)

Input: an array P with points in the plane; a number n ≥ 2
Output: the smallest circle that contains all points of P [1..n]

C ← circle defined by P [1] and P [2]
for i← 3 to n
do if P [i] lies in C

then be happy and continue
else C ← the smallest enclosing circle of P [1..i]

return C

Smallest enclosing circles: an incremental algorithm

1

2

3

6

8

4
5

7

Algorithm SEC(P, n)

Input: an array P with points in the plane; a number n ≥ 2
Output: the smallest circle that contains all points of P [1..n]

C ← circle defined by P [1] and P [2]
for i← 3 to n
do if P [i] lies in C

then be happy and continue
else C ← the smallest enclosing circle of P [1..i]

return C

Smallest enclosing circles: an incremental algorithm

Algorithm SEC(P, n)

Input: an array P with points in the plane; a number n ≥ 2
Output: the smallest circle that contains all points of P [1..n]

C ← circle defined by P [1] and P [2]
for i← 3 to n
do if P [i] lies in C

then be happy and continue
else C ← the smallest enclosing circle of P [1..i] with P [i] on boundary

return C

1

2

3

6

8

4
5

7

Smallest enclosing circles: an incremental algorithm

1

2

3

6

8

4
5

7 Why does this work? (sketch)

SEC(P, i) is defined by some set S ⊆ P [1..i]
on the boundary of SEC(P, i); |S| ≤ 3.

P [i] /∈ S → SEC(P, i) = SEC(P, i− 1)

Algorithm SEC(P, n)

Input: an array P with points in the plane; a number n ≥ 2
Output: the smallest circle that contains all points of P [1..n]

C ← circle defined by P [1] and P [2]
for i← 3 to n
do if P [i] lies in C

then be happy and continue
else C ← the smallest enclosing circle of P [1..i] with P [i] on boundary

return C

Smallest enclosing circles: an incremental algorithm

1

2

3

6

8

4
5

7 Why does this work? (sketch)

SEC(P, i) is defined by some set S ⊆ P [1..i]
on the boundary of SEC(P, i); |S| ≤ 3.

P [i] /∈ S → SEC(P, i) = SEC(P, i− 1),
so SEC(P, i) 6= SEC(P, i− 1)→ P [i] ∈ S;

Algorithm SEC(P, n)

Input: an array P with points in the plane; a number n ≥ 2
Output: the smallest circle that contains all points of P [1..n]

C ← circle defined by P [1] and P [2]
for i← 3 to n
do if P [i] lies in C

then be happy and continue
else C ← the smallest enclosing circle of P [1..i] with P [i] on boundary

return C

Smallest enclosing circles: an incremental algorithm

1

2

3

6

8

4
5

7 Why does this work? (sketch)

SEC(P, i) is defined by some set S ⊆ P [1..i]
on the boundary of SEC(P, i); |S| ≤ 3.

P [i] /∈ S → SEC(P, i) = SEC(P, i− 1),
so SEC(P, i) 6= SEC(P, i− 1)→ P [i] ∈ S;
in other words:
P [i] /∈ SEC(P, i− 1)→ P [i] ∈ S

Algorithm SEC(P, n)

Input: an array P with points in the plane; a number n ≥ 2
Output: the smallest circle that contains all points of P [1..n]

C ← circle defined by P [1] and P [2]
for i← 3 to n
do if P [i] lies in C

then be happy and continue
else C ← the smallest enclosing circle of P [1..i] with P [i] on boundary

return C

Smallest enclosing circles: an incremental algorithm

Algorithm SEC(P, n)

Input: an array P with points in the plane; a number n ≥ 2
Output: the smallest circle that contains all points of P [1..n]

C ← circle defined by P [1] and P [2]
for i← 3 to n
do if P [i] does not lie in C then C ← s.e.c. of P [1..i] with P [i] on boundary
return C

Smallest enclosing circles: an incremental algorithm

Algorithm SEC(P, n)

Input: an array P with points in the plane; a number n ≥ 2
Output: the smallest circle that contains all points of P [1..n]

C ← circle defined by P [1] and P [2]
for i← 3 to n
do if P [i] does not lie in C then C ← s.e.c. of P [1..i] with P [i] on boundary
return C

Algorithm SEC1(P, n, p)

Input: an array P with points in the plane; a number n ≥ 1
Output: smallest circle containing all points of P [1..n] with p on boundary

C ← circle defined by p and P [1]
for i← 2 to n
do if P [i] does not lie in C

then C ← s.e.c. of P [1..i] with P [i] and p on boundary
return C

Smallest enclosing circles: an incremental algorithm

Algorithm SEC(P, n)

Input: an array P with points in the plane; a number n ≥ 2
Output: the smallest circle that contains all points of P [1..n]

C ← circle defined by P [1] and P [2]
for i← 3 to n
do if P [i] does not lie in C then C ← SEC1(P, i− 1, P [i])
return C

Algorithm SEC1(P, n, p)

Input: an array P with points in the plane; a number n ≥ 1
Output: smallest circle containing all points of P [1..n] with p on boundary

C ← circle defined by p and P [1]
for i← 2 to n
do if P [i] does not lie in C

then C ← s.e.c. of P [1..i] with P [i] and p on boundary
return C

Smallest enclosing circles: an incremental algorithm

Algorithm SEC(P, n) (smallest circle enclosing P [1..n])

C ← circle defined by P [1] and P [2]
for i← 3 to n
do if P [i] does not lie in C then C ← SEC1(P, i− 1, P [i])
return C

Algorithm SEC1(P, n, p) (small. circle encl. P [1..n] with p on boundary)

C ← circle defined by p and P [1]
for i← 2 to n
do if P [i] does not lie in C then C ← SEC2(P, i− 1, P [i], p)
return C

Algorithm SEC2(P, n, p, q) (sm. circ. encl. P [1..n] with p, q on bound.)

C ← circle defined by p and q
for i← 1 to n
do if P [i] does not lie in C then C ← circle defined by p, q and P [i]
return C

Smallest enclosing circles: an incremental algorithm

Algorithm SEC(P, n)

C ← circle defined by P [1] and P [2]
for i← 3 to n
do if P [i] does not lie in C then C ← SEC1(P, i− 1, P [i])
return C

Algorithm SEC1(P, n, p)

C ← circle defined by p and P [1]
for i← 2 to n
do if P [i] does not lie in C then C ← SEC2(P, i− 1, P [i], p)
return C

Algorithm SEC2(P, n, p, q)

C ← circle defined by p and q
for i← 1 to n
do if P [i] does not lie in C then C ← circle defined by p, q and P [i]
return C

Worst-case running time: Θ(n)

Smallest enclosing circles: an incremental algorithmSmallest enclosing circles: an incremental algorithm

Algorithm SEC(P, n)

C ← circle defined by P [1] and P [2]
for i← 3 to n
do if P [i] does not lie in C then C ← SEC1(P, i− 1, P [i])
return C

Algorithm SEC1(P, n, p)

C ← circle defined by p and P [1]
for i← 2 to n
do if P [i] does not lie in C then C ← SEC2(P, i− 1, P [i], p)
return C

Algorithm SEC2(P, n, p, q)

C ← circle defined by p and q
for i← 1 to n
do if P [i] does not lie in C then C ← circle defined by p, q and P [i]
return C

Worst-case running time: Θ(n)

Worst-case running time:

Θ(1) +
∑n

i=2O(i) = O(n2)

Smallest enclosing circles: an incremental algorithm

Worst-case running time: Θ(n)

Smallest enclosing circles: an incremental algorithm

Algorithm SEC(P, n)

C ← circle defined by P [1] and P [2]
for i← 3 to n
do if P [i] does not lie in C then C ← SEC1(P, i− 1, P [i])
return C

Algorithm SEC1(P, n, p)

C ← circle defined by p and P [1]
for i← 2 to n
do if P [i] does not lie in C then C ← SEC2(P, i− 1, P [i], p)
return C

Algorithm SEC2(P, n, p, q)

C ← circle defined by p and q
for i← 1 to n
do if P [i] does not lie in C then C ← circle defined by p, q and P [i]
return C

Θ(1) +
∑n

i=2O(i) = O(n2)

Worst-case running time:

Θ(1) +
∑n

i=3O(i2) = O(n3)

Worst-case running time:

Smallest enclosing circles: an incremental algorithmSmallest enclosing circles: an incremental algorithm

Algorithm SEC(P, n)

C ← circle defined by P [1] and P [2]
for i← 3 to n
do if P [i] does not lie in C then C ← SEC1(P, i− 1, P [i])
return C

Algorithm SEC1(P, n, p)

C ← circle defined by p and P [1]
for i← 2 to n
do if P [i] does not lie in C then C ← SEC2(P, i− 1, P [i], p)
return C

Worst-case running time:

Worst-case running time:

Worst case takes into account that line 3 of SEC may call SEC1 for every i,
and line 3 of SEC1 may call SEC2 for every i.
But this does not always happen, only if P [i] does not lie in C.

What about average expected running time?

Θ(1) +
∑n

i=2O(i) = O(n2)

Θ(1) +
∑n

i=3O(i2) = O(n3)

Smallest enclosing circles: an incremental algorithmSmallest enclosing circles: an incremental algorithm

Algorithm SEC(P, n)

C ← circle defined by P [1] and P [2]
for i← 3 to n
do if P [i] does not lie in C then C ← SEC1(P, i− 1, P [i])
return C

Algorithm SEC1(P, n, p)

C ← circle defined by p and P [1]
for i← 2 to n
do if P [i] does not lie in C then C ← SEC2(P, i− 1, P [i], p)
return C

Worst-case running time:

Worst-case running time:

Worst case takes into account that line 3 of SEC may call SEC1 for every i,
and line 3 of SEC1 may call SEC2 for every i.
But this does not always happen, only if P [i] does not lie in C.

What about average expected running time? IMPOSSIBLE TO SAY: maybe
the data in our application has some structure that often brings out the worst-
case behaviour (e.g. with points on a line from left to right: SEC calls SEC1 for every i)

Θ(1) +
∑n

i=2O(i) = O(n2)

Θ(1) +
∑n

i=3O(i2) = O(n3)

Smallest enclosing circles: a randomised incremental algorithm

Algorithm SEC(P, n) (smallest circle enclosing P [1..n])

randomly permute the points in P [1..n]
C ← circle defined by P [1] and P [2]
for i← 3 to n
do if P [i] does not lie in C then C ← SEC1(P, i− 1, P [i])
return C

Smallest enclosing circles: a randomised incremental algorithm

Algorithm SEC(P, n) (smallest circle enclosing P [1..n])

randomly permute the points in P [1..n]
C ← circle defined by P [1] and P [2]
for i← 3 to n
do if P [i] does not lie in C then C ← SEC1(P, i− 1, P [i])
return C

randomly choose a permutation π of P [1..n] according to
a uniform probability distribution on all n! permutations of P [1..n];
apply π to P [1..n]

Smallest enclosing circles: a randomised incremental algorithm

Algorithm SEC(P, n) (smallest circle enclosing P [1..n])

randomly permute the points in P [1..n]
C ← circle defined by P [1] and P [2]
for i← 3 to n
do if P [i] does not lie in C then C ← SEC1(P, i− 1, P [i])
return C

Algorithm SEC2(P, n, p, q) (unchanged, still running in Θ(n) time)

...

...

Algorithm SEC1(P, n, p) (small. circle encl. P [1..n] with p on boundary)

C ← circle defined by p and P [1]
for i← 2 to n
do if P [i] does not lie in C then C ← SEC2(P, i− 1, P [i], p)
return C

Smallest enclosing circles: a randomised incremental algorithm

Algorithm SEC(P, n) (smallest circle enclosing P [1..n])

randomly permute the points in P [1..n]
C ← circle defined by P [1] and P [2]
for i← 3 to n
do if P [i] does not lie in C then C ← SEC1(P, i− 1, P [i])
return C

Only happens if P [i] is one of the one or two points in P [1..i] that, together
with p, define SEC1(P, i, p). What is the probability q that this happens?

Algorithm SEC1(P, n, p) (small. circle encl. P [1..n] with p on boundary)

C ← circle defined by p and P [1]
for i← 2 to n
do if P [i] does not lie in C then C ← SEC2(P, i− 1, P [i], p)
return C

Smallest enclosing circles: a randomised incremental algorithm

Algorithm SEC(P, n) (smallest circle enclosing P [1..n])

randomly permute the points in P [1..n]
C ← circle defined by P [1] and P [2]
for i← 3 to n
do if P [i] does not lie in C then C ← SEC1(P, i− 1, P [i])
return C

Only happens if P [i] is one of the one or two points in P [1..i] that, together
with p, define SEC1(P, i, p). What is the probability q that this happens?

Answer: if all permutations of P [1..n] are equally likely, then q ≤ 2/i

Algorithm SEC1(P, n, p) (small. circle encl. P [1..n] with p on boundary)

C ← circle defined by p and P [1]
for i← 2 to n
do if P [i] does not lie in C then C ← SEC2(P, i− 1, P [i], p)
return C

Smallest enclosing circles: a randomised incremental algorithm

Algorithm SEC(P, n) (smallest circle enclosing P [1..n])

randomly permute the points in P [1..n]
C ← circle defined by P [1] and P [2]
for i← 3 to n
do if P [i] does not lie in C then C ← SEC1(P, i− 1, P [i])
return C

Expected running time:

Θ(n) +
∑n

i=2(Θ(1) + (2/i)O(i))

= Θ(n) +
∑n

i=2 Θ(1) = Θ(n)

Algorithm SEC1(P, n, p)

C ← circle defined by p and P [1]
for i← 2 to n
do if P [i] does not lie in C then C ← SEC2(P, i− 1, P [i], p)
return C

Only happens if P [i] is one of the one or two points in P [1..i] that, together
with p, define SEC1(P, i, p). What is the probability q that this happens?

Answer: if all permutations of P [1..n] are equally likely, then q ≤ 2/i

Smallest enclosing circles: a randomised incremental algorithm

Algorithm SEC(P, n)

randomly permute the points in P [1..n]
C ← circle defined by P [1] and P [2]
for i← 3 to n
do if P [i] does not lie in C then C ← SEC1(P, i− 1, P [i])
return C

Algorithm SEC1(P, n, p)

C ← circle defined by p and P [1]
for i← 2 to n
do if P [i] does not lie in C then C ← SEC2(P, i− 1, P [i], p)
return C

Expected running time Θ(n)
if all permutations of P [1..n]
are equally likely

Smallest enclosing circles: a randomised incremental algorithm

Algorithm SEC(P, n)

randomly permute the points in P [1..n]
C ← circle defined by P [1] and P [2]
for i← 3 to n
do if P [i] does not lie in C then j ← i− 1; C ← SEC1(P, j, P [i])
return C

Algorithm SEC1(P, j, p)

C ← circle defined by p and P [1]
for i← 2 to j
do if P [i] does not lie in C then C ← SEC2(P, i− 1, P [i], p)
return C

Expected running time Θ(j)
if all permutations of P [1..j]
are equally likely

Algorithm SEC(P, n)

randomly permute the points in P [1..n]
C ← circle defined by P [1] and P [2]
for i← 3 to n
do if P [i] does not lie in C then j ← i− 1; C ← SEC1(P, j, P [i])
return C

Smallest enclosing circles: a randomised incremental algorithm

Only happens if P [i] is one of the two or three points in P [1..i] that define
SEC(P, i). What is the probability that this happens?

Answer: at most 3/i (because P [1..n] was randomly permuted)

Expected running time:

Θ(n) +
∑n

i=2(Θ(1) + (3/i)O(i))

= Θ(n) +
∑n

i=2 Θ(1) = Θ(n)

Algorithm SEC(P, n)

randomly permute the points in P [1..n]
C ← circle defined by P [1] and P [2]
for i← 3 to n
do if P [i] does not lie in C then j ← i− 1; C ← SEC1(P, j, P [i])
return C

Smallest enclosing circles: a randomised incremental algorithm

Only happens if P [i] is one of the two or three points in P [1..i] that define
SEC(P, i). What is the probability that this happens?

Answer: at most 3/i (because P [1..n] was randomly permuted)

Let p = P [i]; let P ′ be the set of points in P [1..j].

Expected running time:

Θ(n) +
∑n

i=2(Θ(1) + (3/i)O(i))

= Θ(n) +
∑n

i=2 Θ(1) = Θ(n)

Algorithm SEC(P, n)

randomly permute the points in P [1..n]
C ← circle defined by P [1] and P [2]
for i← 3 to n
do if P [i] does not lie in C then j ← i− 1; C ← SEC1(P, j, P [i])
return C

Smallest enclosing circles: a randomised incremental algorithm

Only happens if P [i] is one of the two or three points in P [1..i] that define
SEC(P, i). What is the probability that this happens?

Answer: at most 3/i (because P [1..n] was randomly permuted)

Let p = P [i]; let P ′ be the set of points in P [1..j].
Let R = set of permutations with P [i] = p and P ′ in P [1..j]; |R| = j!(n−i)!.

Expected running time:

Θ(n) +
∑n

i=2(Θ(1) + (3/i)O(i))

= Θ(n) +
∑n

i=2 Θ(1) = Θ(n)

Algorithm SEC(P, n)

randomly permute the points in P [1..n]
C ← circle defined by P [1] and P [2]
for i← 3 to n
do if P [i] does not lie in C then j ← i− 1; C ← SEC1(P, j, P [i])
return C

Smallest enclosing circles: a randomised incremental algorithm

Only happens if P [i] is one of the two or three points in P [1..i] that define
SEC(P, i). What is the probability that this happens?

Answer: at most 3/i (because P [1..n] was randomly permuted)

Let p = P [i]; let P ′ be the set of points in P [1..j].
Let R = set of permutations with P [i] = p and P ′ in P [1..j]; |R| = j!(n−i)!.
If p does not lie in C, then this happens for all permutations in R.

Expected running time:

Θ(n) +
∑n

i=2(Θ(1) + (3/i)O(i))

= Θ(n) +
∑n

i=2 Θ(1) = Θ(n)

Algorithm SEC(P, n)

randomly permute the points in P [1..n]
C ← circle defined by P [1] and P [2]
for i← 3 to n
do if P [i] does not lie in C then j ← i− 1; C ← SEC1(P, j, P [i])
return C

Smallest enclosing circles: a randomised incremental algorithm

Only happens if P [i] is one of the two or three points in P [1..i] that define
SEC(P, i). What is the probability that this happens?

Answer: at most 3/i (because P [1..n] was randomly permuted)

Let p = P [i]; let P ′ be the set of points in P [1..j].
Let R = set of permutations with P [i] = p and P ′ in P [1..j]; |R| = j!(n−i)!.
If p does not lie in C, then this happens for all permutations in R.
For every permutation of P [1..j], there are (n− i)! permutations in R such
that P [1..j] is permuted this way.

Expected running time:

Θ(n) +
∑n

i=2(Θ(1) + (3/i)O(i))

= Θ(n) +
∑n

i=2 Θ(1) = Θ(n)

Algorithm SEC(P, n)

randomly permute the points in P [1..n]
C ← circle defined by P [1] and P [2]
for i← 3 to n
do if P [i] does not lie in C then j ← i− 1; C ← SEC1(P, j, P [i])
return C

Smallest enclosing circles: a randomised incremental algorithm

Only happens if P [i] is one of the two or three points in P [1..i] that define
SEC(P, i). What is the probability that this happens?

Answer: at most 3/i (because P [1..n] was randomly permuted)

Let p = P [i]; let P ′ be the set of points in P [1..j].
Let R = set of permutations with P [i] = p and P ′ in P [1..j]; |R| = j!(n−i)!.
If p does not lie in C, then this happens for all permutations in R.
For every permutation of P [1..j], there are (n− i)! permutations in R such
that P [1..j] is permuted this way.
So, for fixed p and P ′, every permutation of P [1..j] occurs with probability
(n− i)!/(j!(n− i)!) = 1/j!.

Expected running time:

Θ(n) +
∑n

i=2(Θ(1) + (3/i)O(i))

= Θ(n) +
∑n

i=2 Θ(1) = Θ(n)

Algorithm SEC(P, n)

randomly permute the points in P [1..n]
C ← circle defined by P [1] and P [2]
for i← 3 to n
do if P [i] does not lie in C then j ← i− 1; C ← SEC1(P, j, P [i])
return C

Smallest enclosing circles: a randomised incremental algorithm

Expected running time:

Θ(n) +
∑n

i=2(Θ(1) + (3/i)O(i))

= Θ(n) +
∑n

i=2 Θ(1) = Θ(n)

Only happens if P [i] is one of the two or three points in P [1..i] that define
SEC(P, i). What is the probability that this happens?

Answer: at most 3/i (because P [1..n] was randomly permuted)

If it happens, it happens for all permutations with this point P [i], and this
set of points in P [1..j]; → all permutations of P [1..j] are equally likely

Algorithm SEC(P, n)

randomly permute the points in P [1..n]
C ← circle defined by P [1] and P [2]
for i← 3 to n
do if P [i] does not lie in C then j ← i− 1; C ← SEC1(P, j, P [i])
return C

Smallest enclosing circles: a randomised incremental algorithm

Only happens if P [i] is one of the two or three points in P [1..i] that define
SEC(P, i). What is the probability that this happens?

Answer: at most 3/i (because P [1..n] was randomly permuted)

If it happens, it happens for all permutations with this point P [i], and this
set of points in P [1..j]; → all permutations of P [1..j] are equally likely

Expected running time:

Θ(n) +
∑n

i=2(Θ(1) + (3/i)O(i))

= Θ(n) +
∑n

i=2 Θ(1) = Θ(n)

Algorithm SEC1(P, j, p)

C ← circle defined by p and P [1]
for i← 2 to j
do if P [i] does not lie in C then C ← SEC2(P, i− 1, P [i], p)
return C

Expected running time Θ(j)
if all permutations of P [1..j]
are equally likely

Only happens if P [i] is one of the two or three points in P [1..i] that define
SEC(P, i). What is the probability that this happens?

Answer: at most 3/i (because P [1..n] was randomly permuted)

If it happens, it happens for all permutations with this point P [i], and this
set of points in P [1..j]; → all permutations of P [1..j] are equally likely

Algorithm SEC(P, n)

randomly permute the points in P [1..n]
C ← circle defined by P [1] and P [2]
for i← 3 to n
do if P [i] does not lie in C then j ← i− 1; C ← SEC1(P, j, P [i])
return C

Smallest enclosing circles: a randomised incremental algorithm

Only happens if P [i] is one of the two or three points in P [1..i] that define
SEC(P, i). What is the probability that this happens?

Answer: at most 3/i (because P [1..n] was randomly permuted)

Expected running time:

Θ(n) +
∑n

i=2(Θ(1) + (3/i)O(i))

= Θ(n) +
∑n

i=2 Θ(1) = Θ(n)

Algorithm SEC1(P, j, p)

C ← circle defined by p and P [1]
for i← 2 to j
do if P [i] does not lie in C then C ← SEC2(P, i− 1, P [i], p)
return C

Expected running time Θ(j)
if all permutations of P [1..j]
are equally likely

