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Smallest enclosing circles

Given a set P of n points in the plane,
find the smallest circle C(P ) that contains all points of P
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Why not two points that are not diametrically opposite?

Given a set P of n points in the plane,
find the smallest circle C(P ) that contains all points of P

C(P ) is either a circle defined by a set S ⊆ P of three points on the boundary,
or a circle defined by a set S ⊆ P of two diametrically opposite points



Smallest enclosing circles

Given a set P of n points in the plane,
find the smallest circle C(P ) that contains all points of P

C(P ) is either a circle defined by a set S ⊆ P of three points on the boundary,
or a circle defined by a set S ⊆ P of two diametrically opposite points

Why not more than three points? Three points define a unique circle
Why not less than two points?
Why not two points that are not diametrically opposite?



Smallest enclosing circles

Given a set P of n points in the plane,
find the smallest circle C(P ) that contains all points of P

C(P ) is either a circle defined by a set S ⊆ P of three points on the boundary,
or a circle defined by a set S ⊆ P of two diametrically opposite points

Why not more than three points? Three points define a unique circle
Why not less than two points? Could make circle smaller until there are two
Why not two points that are not diametrically opposite?



Smallest enclosing circles

Given a set P of n points in the plane,
find the smallest circle C(P ) that contains all points of P

C(P ) is either a circle defined by a set S ⊆ P of three points on the boundary,
or a circle defined by a set S ⊆ P of two diametrically opposite points

Why not more than three points? Three points define a unique circle
Why not less than two points? Could make circle smaller until there are two
Why not two points that are not diametrically opposite?



Smallest enclosing circles

Given a set P of n points in the plane,
find the smallest circle C(P ) that contains all points of P

C(P ) is either a circle defined by a set S ⊆ P of three points on the boundary,
or a circle defined by a set S ⊆ P of two diametrically opposite points

Why not more than three points? Three points define a unique circle
Why not less than two points? Could make circle smaller until there are two
Why not two points that are not diametrically opposite?



Smallest enclosing circles

Given a set P of n points in the plane,
find the smallest circle C(P ) that contains all points of P

C(P ) is either a circle defined by a set S ⊆ P of three points on the boundary,
or a circle defined by a set S ⊆ P of two diametrically opposite points

Why not more than three points? Three points define a unique circle
Why not less than two points? Could make circle smaller until there are two
Why not two points that are not diametrically opposite? Smaller again



Smallest enclosing circles

Given a set P of n points in the plane,
find the smallest circle C(P ) that contains all points of P

C(P ) is either a circle defined by a set S ⊆ P of three points on the boundary,
or a circle defined by a set S ⊆ P of two diametrically opposite points

Trivial algorithm: for all Θ(n3) pairs and triples of points that define a circle,
test if all other Θ(n) points lie inside;
choose the smallest circle that passes the test → Θ(n4) time



Smallest enclosing circles: an incremental algorithm

Algorithm SEC(P, n)

Input: an array P with points in the plane; a number n ≥ 2
Output: the smallest circle that contains all points of P [1..n]

C ← circle defined by P [1] and P [2]
for i← 3 to n
do if P [i] lies in C

then be happy and continue
else C ← the smallest enclosing circle of P [1..i]

return C
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C ← circle defined by P [1] and P [2]
for i← 3 to n
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SEC(P, i) is defined by some set S ⊆ P [1..i]
on the boundary of SEC(P, i); |S| ≤ 3.

P [i] /∈ S → SEC(P, i) = SEC(P, i− 1)
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Algorithm SEC(P, n) (smallest circle enclosing P [1..n])

C ← circle defined by P [1] and P [2]
for i← 3 to n
do if P [i] does not lie in C then C ← SEC1(P, i− 1, P [i])
return C

Algorithm SEC1(P, n, p) (small. circle encl. P [1..n] with p on boundary)

C ← circle defined by p and P [1]
for i← 2 to n
do if P [i] does not lie in C then C ← SEC2(P, i− 1, P [i], p)
return C

Algorithm SEC2(P, n, p, q) (sm. circ. encl. P [1..n] with p, q on bound.)

C ← circle defined by p and q
for i← 1 to n
do if P [i] does not lie in C then C ← circle defined by p, q and P [i]
return C
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Worst case takes into account that line 3 of SEC may call SEC1 for every i,
and line 3 of SEC1 may call SEC2 for every i.
But this does not always happen, only if P [i] does not lie in C.

What about average expected running time? IMPOSSIBLE TO SAY: maybe
the data in our application has some structure that often brings out the worst-
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randomly permute the points in P [1..n]
C ← circle defined by P [1] and P [2]
for i← 3 to n
do if P [i] does not lie in C then C ← SEC1(P, i− 1, P [i])
return C
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Algorithm SEC(P, n) (smallest circle enclosing P [1..n])

randomly permute the points in P [1..n]
C ← circle defined by P [1] and P [2]
for i← 3 to n
do if P [i] does not lie in C then C ← SEC1(P, i− 1, P [i])
return C

randomly choose a permutation π of P [1..n] according to
a uniform probability distribution on all n! permutations of P [1..n];
apply π to P [1..n]



Smallest enclosing circles: a randomised incremental algorithm
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...
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Algorithm SEC1(P, n, p) (small. circle encl. P [1..n] with p on boundary)
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Algorithm SEC1(P, n, p)

C ← circle defined by p and P [1]
for i← 2 to n
do if P [i] does not lie in C then C ← SEC2(P, i− 1, P [i], p)
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Only happens if P [i] is one of the one or two points in P [1..i] that, together
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Algorithm SEC(P, n)

randomly permute the points in P [1..n]
C ← circle defined by P [1] and P [2]
for i← 3 to n
do if P [i] does not lie in C then j ← i− 1; C ← SEC1(P, j, P [i])
return C

Algorithm SEC1(P, j, p)

C ← circle defined by p and P [1]
for i← 2 to j
do if P [i] does not lie in C then C ← SEC2(P, i− 1, P [i], p)
return C

Expected running time Θ(j)
if all permutations of P [1..j]
are equally likely
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randomly permute the points in P [1..n]
C ← circle defined by P [1] and P [2]
for i← 3 to n
do if P [i] does not lie in C then j ← i− 1; C ← SEC1(P, j, P [i])
return C

Smallest enclosing circles: a randomised incremental algorithm

Only happens if P [i] is one of the two or three points in P [1..i] that define
SEC(P, i). What is the probability that this happens?

Answer: at most 3/i (because P [1..n] was randomly permuted)

Expected running time:
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Only happens if P [i] is one of the two or three points in P [1..i] that define
SEC(P, i). What is the probability that this happens?

Answer: at most 3/i (because P [1..n] was randomly permuted)

Let p = P [i]; let P ′ be the set of points in P [1..j].
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