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Abstract

We show that the firefighter problem is NP-complete for trees of maximum degree three, but in P for graphs of maximum degree
three if the fire breaks out at a vertex of degree at most two.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

We consider a dynamic problem introduced by Hartnell in 1995 [7]. Let (G, r) be a connected rooted graph. At time
0, a fire breaks out at r. At each subsequent time interval, the firefighter defends some vertex which is not on fire, and
then the fire spreads to all undefended neighbours of each burning (i.e., on fire) vertex. Once burning or defended, a
vertex remains so for all time intervals. The process ends when the fire can no longer spread. The firefighter optimization
problem is to determine the maximum number of vertices that can be saved, i.e., that are not burning when the process
ends. The firefighter decision problem is stated formally below:
FIREFIGHTER

INSTANCE: A rooted graph (G, r) and an integer k�1.
QUESTION: If the fire breaks out at r, is there a strategy under which at most k vertices burn? That is, does there exist

a finite sequence d1, d2, . . . , dt of vertices of G such that, if the fire breaks out at r, then,

(i) vertex di is neither burning nor defended at time i,
(ii) at time t no undefended vertex is adjacent to a burning vertex, and

(iii) at most k vertices are burned at the end of time t.

Papers investigating the firefighter problem have appeared in the literature.Algorithms for two- and three-dimensional
grid graphs are presented in [11]. These lead to bounds on the maximum number of vertices that can be saved.
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NP-completeness of the firefighter problem on bipartite graphs is established in [10]. This paper also establishes
improved bounds and some exact values for the maximum number of vertices that can be saved for two-dimensional
grids, and considers the restriction of the problem to trees. The results include exponential algorithms for solving the
firefighter problem on trees (one of these runs in linear time for binary trees), and a polynomial-time algorithm for a
subclass of trees related to perfect graphs. It is proved in [9] that the greedy algorithm is a 2-approximation algorithm
on trees, that is, the maximum number of vertices saved is never more than twice the number saved using the greedy
algorithm. (It need not be the case that the number of vertices burned under a greedy strategy is at most twice the
number of vertices burned under an optimum strategy.) The firefighter problem on infinite grids is considered in [3].
The questions considered include the number of firefighters needed to contain the fire, or fires, and how the firefighters
should proceed in the case where the fire burns for t time units before they arrive. Other aspects of the firefighter
problem are studied in [2]. Related topics are examined in [1,5,6,8].

Perhaps the most interesting open question about the firefighter problem is its complexity for trees.A formal conjecture
has never appeared in the literature, but it has been widely believed for some time that the problem is NP-complete for
trees. We prove that this is indeed the case, and more. A sequence of transformations with increasing expressive power
is used to show that the problem is NP-complete for trees of maximum degree three. By contrast, we show that if the
fire breaks out at a vertex of degree two, the problem can be solved in polynomial time for graphs of maximum degree
three.

2. Problems and preliminaries

In this section, we introduce the decision problems used in our sequence of reductions, and establish several prepara-
tory lemmas.
3-T-FIRE

INSTANCE: A rooted tree (T , r) with maximum degree �(T )�3 and a positive integer k.
QUESTION: If the fire breaks out at r, is there a strategy such that at most k vertices burn?

3-T′-FIRE
INSTANCE: A rooted tree (T , r) such that d(r) = 2m + 2 for some positive integer m and every other vertex in T has

degree at most 3, and a positive integer k.
QUESTION: If the fire breaks out at r, is there a strategy such that at most k vertices burn?
The next problem is commonly known as Not All Equal 3-SAT without negated literals, or Hypergraph 2-Colour-

ability [4].
NAE 3-SAT WITHOUT NEGATED LITERALS

INSTANCE: An ordered pair (B, C) consisting of a set B of boolean variables and a set C of clauses over B in
conjunctive normal form, each containing three non-negated literals.

QUESTION: Is there a truth assignment for B such that every clause in C contains at least one true literal and at least
one false literal?

For our purposes, it is helpful to work with a variation of the above problem.
RESTRICTED NAE 3-SAT

INSTANCE: An ordered pair (B, C) consisting of a set B of boolean variables and a set C of clauses over B in
conjunctive normal form, where |B| = 2m for some integer m�2, exactly |C|/2 clauses have no negated literals, and
the remaining clauses are obtained from these by replacing each literal with its negation.

QUESTION: Is there a truth assignment for B such that every clause in C contains at least one true literal and at least
one false literal?

Proposition 1. RESTRICTED NAE 3-SAT is NP-complete.

Proof. The transformation is from NAE 3-SAT without negated literals. Consider an instance (B, C) of NAE 3-SAT
without negated literals. We construct an instance (B ′, C′) of RESTRICTED NAE 3-SAT. Let m=�log2|B|�. Construct
B ′ by adding 2m − |B| new boolean variables to B. The collection C′ of clauses is formed from C by adding, for every
c ∈ C, the clause formed by negating every literal in c. The transformation can clearly be accomplished in polynomial
time.
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Suppose B has a truth assignment such that each clause in C contains a true literal and a false literal. Then, since no
variable in B ′ − B appears in a clause in C′, assigning each variable in B ′ − B the value FALSE extends this truth
assignment to one for B ′ with the property that each clause in C′ contains a true literal and a false literal.

Conversely, suppose there is a truth assignment for B ′ such that each clause in C′ contains a true literal and a false
literal. Then, since B ⊆ B ′ and C ⊆ C′, the restriction of this truth assignment to B has the property that each clause
in C contains a true literal and a false literal. �

3. Trees

In this section we will establish NP-completeness of the firefighter problem for rooted trees of maximum degree
three, and in which the root has degree three.

Since any two vertices of a tree are joined by a unique path, if some ancestor of a vertex v is defended, then v is
saved. We shall also say that v is protected.

Our reductions will make use of two classes of graphs. We call a graph of the type shown in Fig. 1(i), and rooted
at the vertex of degree two, a snake. We will denote a snake of diameter n with distance m from a to b by S(n, m).
A snake tree is a spanning tree of a snake of the form shown in Fig. 1(ii). We call a graph of the type shown in
Fig. 1(iii), and rooted at the vertex of degree two, a ladder. We use L(n) to denote a ladder of diameter n. A ladder
tree is a spanning tree of a ladder of the form shown in Fig. 1(iv).

As our reductions are based on complicated arguments involving the number of vertices in certain subtrees, the
following observations will be useful:

(i) The graph S(n, m) has 2n − 1 vertices, of which 2m belong to the unique cycle containing a and b.
(ii) The graph L(n) has 2n + 1 vertices.

A rooted tree (T , r) is called full if all leaves occur at the same level (i.e. all leaves are at the same distance from the
root).

A binary tree (T , r) is called complete if every internal vertex has exactly two children. Thus, a complete and full
binary tree of height h has exactly 2h+1 − 1 vertices of which 2h are leaves, each of which is at distance h from r.

Let x be a vertex of a graph G, and let (T , r) be a rooted graph. When we root a copy of T at x, we construct a new
graph from the disjoint union of G and T by identifying the vertices x and r.

In the constructions that follow, we will normally root either complete and full binary trees, or paths, at vertices of
other graphs. We always assume that the root vertex of a path is an endvertex.

Theorem 1. 3-T′-FIRE is NP-complete.

Proof. The transformation is from RESTRICTED NAE 3-SAT. Suppose an instance (B, C) of RESTRICTED NAE
3-SAT, where B = {b1, b2, . . . , bb}, the integer m is defined by b = 2m−1, and C = {c1, c2, . . . , cn}, is given. Assume
that n > b�4, (clauses can be duplicated to ensure n > b; this assumption will simplify analysis). Also assume that for

a a

b b

(i) (ii) (iii) (iv)

Fig. 1. (i) Snake; (ii) snake tree; (iii) ladder; (iv) ladder tree.
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i = 1, 2, . . . , n/2, the clause c2(i+1) arises from negating each variable in the clause c2i+1. Let p = �log2(n)� + 2. The
construction of the rooted tree in our instance of 3-T′-FIRE proceeds in two phases. First, we construct a full rooted
tree (T1, r) with height b + p in which the degree of r is 2m + 2. We subsequently augment (T1, r), without changing
the degree of r, to construct our final rooted tree (T , r).

Starting with the single vertex r, proceed as follows. For i = 1, 2, . . . , b, root two paths of length i at r and call the
vertices of degree one in the resulting graph bi and b̄i . At each of bi and b̄i , root a complete and full binary tree of height
p. From each leaf of these trees root a path of the appropriate length so that the vertex of degree one in the resulting
graph is distance b + p from r. (The paths rooted at bb and b̄b have length zero.) Call these leaves tbi ,1, tbi ,2, . . . , tbi ,2p

and tb̄i ,1, tb̄i ,2, . . . , tb̄i ,2p , respectively. Next, root two paths of length b + 1 at r and call the resulting vertices of

degree one b0 and b̄0. From these vertices, root complete and full binary trees of height p − 1, calling their leaves
tb0,1, tb0,2, . . . , tb0,2p−1 and tb̄0,1, tb̄0,2, . . . , tb̄0,2p−1 , respectively. The tree constructed so far is (T1, r) (it will arise in
the argument below). Note that d(r) = 2m + 2.

The number of vertices of T1 is

|V (T1)| = 1 + 2(1 + 2 + · · · + b) + 2b(2p+1 − 2)

+ 2 · 2p((b − 1) + (b − 2) + · · · + 0) + 2(b + 1) + 2(2p − 2)

(the number of these that are leaves is 2b · 2p + 2 · 2p−1 = (2b + 1)2p). By definition of p we have 2p < 8n, hence this
phase of the construction can be carried out in polynomial time.

For the second phase of the construction, form (T , r) by augmenting (T1, r) as follows. For 1�j �2p−1, add
children xj and yj from vertex tb0,j , and children x̄j and ȳj from tb̄0,j

. At each of the vertices just added, root a copy

of LT (3n + 1). For each i and j with 1� i�b and 1�j �n, do the following: if bi is in clause cj , root a copy of
ST (3n+2, 3j −1) at tbi ,j and a copy of ST (3n+2, 3j) at tb̄i ,j

. If b̄i is in clause cj , root a copy of ST (3n+2, 3j −1)

at tb̄i ,j
and a copy of ST (3n + 2, 3j) at tbi ,j . At each remaining unaltered leaf of T1, root a copy of LT (3n + 2). This

completes the construction.
We now calculate the number of vertices of T. For i = 1, 2, . . . , b, let ni denote the number of clauses containing

bi . By definition of RESTRICTED NAE 3-SAT, there are also exactly ni clauses containing b̄i . Each clause contains
exactly three literals, thus

n∑
i=1

ni = 3n

2
.

Since each copy of LT (3n + 1) has 6n + 3 vertices, each copy of LT (3n + 2) has 6n + 5 vertices, and both
ST (3n + 2, 3j − 1) and ST (3n + 2, 3j) have 6n + 3 vertices,

|V (T )| = |V (T1)| + 2 · 2p−1 · 2 + 2 · 2p−1 · 2(6n + 3 − 1)

+ 2
b∑

i=1

2ni(6n + 3 − 1) + 2
b∑

i=1

(2p − 2n1)(6n + 5 − 1)

= |V (T1)| + 2p(6n + 3) + 2b · 2p(6n + 4) − 12b.

Thus, this phase of the construction can also be carried out in polynomial time.
To complete the instance of 3-T′-FIRE, set

k = |V (T )| −
(

b∑
i=1

[2p(6n + 6 + b − i) − 1] +
p∑

i=0

[2p−i (6n + 4) − 1] + 9n2 + 15n

2
+ 1

)
.

The reasoning behind the value of k will become apparent in the remainder of the argument.
The height of (T , r) is d = b + p + 3n + 2. For i = 1, 2, . . . , d, let wi be the largest number of vertices in a subtree

of (T , r) rooted at level i.
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Claim 1. The quantity

wi =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2p(6n + 6 + b − i) − 4ni − 1, 1� i�b,

2p−i+b−1(6n + 4) − 1, b + 1� i�b + p + 1,

2(d − i) + 1, b + p + 2� i�d

and i − (b + p + 2) /≡ 0 (mod 3),

2(d − i) b + p + 2� i�d

and i − (b + p + 2) ≡ 0 (mod 3).

The claim is proved by considering each case in turn.
Case 1: 1� i�b. Let �i = 2p(6n + 6 + b − i) − 4ni − 1. We shall show that the subtree rooted at bi , or b̄i , has �i

vertices, and the subtree rooted at any other vertex at level i has at most �i − n vertices.
The subtree rooted at bi , or b̄i , consists of a full, complete, binary tree of height p, a path from each of its leaves to

depth b + p, 2ni snake trees, and 2p − 2ni ladder trees. The number of vertices in this subtree is therefore

(2p+1 − 1) + 2p(b − i) + 2p(6n + 4) − 4ni = �i .

Similar counting shows that for 0 < j �b + 1 − i < n the number of vertices in the subtree rooted at the ancestor of
bi+j , or b̄i+j , at level i is

j + 2p(6n + 6 + b − i − j) − 4ni+j = �i + 4ni − 4ni+j − 2pj + j + 1

��i + 4ni − 4ni+j − 4n + j + 1

��i − 4ni+j − 2n + j + 1

��i − n,

where we have used the fact that, by definition of RESTRICTED NAE 3-SAT, ni �n/2. Similarly again, for 1�j �p

and i > j the number of vertices in a subtree rooted at a descendant of bi−j , or b̄i−j , at level i is at most

2p−j (6n + 6 + b − i + j) − 1��i − 2pj − (2p − 2p−j )(6n + 6 + b − i) + 4ni

��i + 2pj − 2p−1(6n + 6 + b − i) + 2n

��i + 8nj − 12n2 − 12n − 2nb + 2ni + 2n

��i + 8n2 − 12n2 − 12n − 2nb + 2n2 + 2n

��i − n,

where we have used the inequality j < i�b < n. For i > j > p, the number of vertices in the subtree rooted at a
descendant of bi−j or b̄i−j is at most

6n + 3 + (b + p) − i��i − n

Finally, consider the subtree rooted at the ancestor of b0 or b̄0 at level i. Counting similarly to the above, it contains

(b − i + 1) + (2p − 1) + 2 · 2p−1(6n − 3)��i − 2 · 2p − 2p(b − i) + 4ni + 1 + (b − i + 1)

��i − 8n + 4ni + 1

��i − n

vertices. This completes the proof of Case 1.
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Case 2: b + 1� i�b + p + 1. In this case, set

�i = 2p−(i−b)+2 − 1 + 2p−(i−b)+1(6n + 2) = 2p−(i−b)+1(6n + 4) − 1.

Suppose first that b + 1� i�b + p. Consider a subtree rooted at a descendant of b0 or b̄0 at level i (all such subtrees
are isomorphic). It contains a full, complete binary tree of height p− (i −b)+1 with 2p−(i−b)+1 copies of LT (3n+1)

rooted at its leaves. Thus, it has

(2p−i+b+2 − 1) + 2p−(i−b)+1(6n + 3 − 1) = �i

vertices. Now consider a subtree rooted at a descendant of b1, b̄1, b2, b̄2, . . . , bb, b̄b at level i. It has at most
2p−(i−b)+1 − 1 vertices at levels i through b + p and no more than 2p−(i−b) vertices at level b + p. The maximum
number of vertices in the subtree rooted at one of these is 6n + 5. Therefore, the number of vertices is at most

2p−(i−b)+1 − 1 + 2p−(i−b)(6n + 4)�2p−(i−b)(6n + 6) − 1

= 2p−(i−b)+1(3n + 3) − 1

��i − 2p−(i−b)+1(3n + 1)

��i − n.

Finally, consider the case i = b + p + 1. The maximum number of vertices in the subtree rooted at a descendant of
b1, b̄1, b2, b̄2, . . . , bb, b̄b at level i is 6n+ 1 < 6n+ 3 = �i (as the snake trees and ladder trees are rooted at level b +p).

This completes the proof of Case 2.
Case 3: b + p + 2� i�d = b + p + 3n + 2. A subtree rooted at level i is a subtree of a snake tree or a ladder tree

which is rooted at level b+p of T. Thus, for �=0, 1, . . . , n, there is no vertex with two children at level b+p+3�+2
of T. By definition of the snake trees ST (3n + 2, 3j) and ST (3n + 2, 3j − 1), we then have

wi =
{2(d − i) + 1, b + p + 2� i�d and i − (b + p + 2) /≡ 0 (mod 3),

2(d − i), b + p + 2� i�d and i − (b + p + 2) ≡ 0 (mod 3).

This completes the proof of the claim. �

We must show that the answer for our instance of 3-T ′-FIRE is YES if and only if the answer for the given instance
of RESTRICTED NAE 3-SAT is YES. We will do so by arguing that if (B, C) has a satisfying truth assignment then
there is a strategy for the firefighter problem on (T , r) under which at most k vertices are burned, and if (B, C) has no
satisfying truth assignment then no such strategy exists.

It is proved in [10] that an optimal strategy for the firefighter problem on a tree defends, for i�1, a vertex on level i
at time i until the fire can no longer spread. Therefore, in what follows we consider only strategies of this type.

Let � be a strategy for the firefighter problem on (T , r). For i�1, we let ��
i be the number of vertices in the subtree

whose root is defended at level i under �.
Let � be a truth assignment for the variables in B. We define the truth assignment strategy f (�) for the firefighter

problem as follows: For i =1, 2, . . . , b, if bi is true, defend bi at time i and otherwise defend b̄i at time i. At time b+1,
defend b̄0. From time b + 2 to b + p, defend the unprotected descendant of b0 which is not on the path from r to x1. At
time b + p + 1, defend x1. For time i = b + p + 2 to b + p + 3n + 2, defend the tree greedily, that is, at time i defend
a vertex at level i with the largest number of descendants. Note that, in case of a tie, the subtrees rooted at each such
vertex are isomorphic. Thus, assuming a predetermined tie-breaking scheme, the function f (�) is well defined.

Claim 2. If � is a satisfying truth assignment for (B, C), then the number of vertices saved by f (�) is
∑d

i=1 �f (�)
i =

|V (T )| − k.
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Fig. 2. The possible configurations for snake trees in an clause pair unprotected as of time b + p + 1. Clockwise from top left, these correspond to
the cases where the first clause has exactly 3, 2, 0, and 1 true literals.

Proof. For 1� i�b + p + 1 it follows from the definition of f (�) and our earlier argument that �f (�)
i = wi . We must

determine �f (�)
i for i�b + p + 2.

For 1�j �n/2, consider the clause pair c2j−1, c2j . In the construction of (T , r), these two clauses gave rise to 12
snake trees:

(i) For each of the three literals b in c2j−1 there is a copy of
ST (3n + 2, 3(2j − 1) − 1) rooted at tb,2j−1, and a copy of
ST (3n + 2, 3(2j − 1)) rooted at tb̄,2j−1;

(ii) For each of the three literals b̄ in c2j there is a copy of
ST (3n + 2, 3(2j) − 1) rooted at tb̄,2j , and a copy of

ST (3n + 2, 3(2j)) rooted at tb,2j .

Since � is a satisfying truth assignment, the definition of RESTRICTED NAE 3-SAT implies that one of c2j−1,

and c2j has exactly one true literal while the other has exactly two true literals. Suppose c2j−1 has exactly two true
literals. Then, among the 12 snake trees mentioned above, one copy of ST (3n + 2, 3(2j − 1) − 1), two copies of
ST (3n + 2, 3(2j − 1)), two copies of ST (3n + 2, 3(2j) − 1), and one copy of ST (3n + 2, 3(2j)) have no vertex
defended at time b + p + 2. The case where c2j−1 has exactly one true literal is similar.

Thus, for j =1, 2, . . . , n/2 and �=0, 1, . . . , 5 the strategy f (�) defends vertices at level i =b+p+2+6(j −1)+�

as shown in the upper right and lower left parts of Fig. 2, depending on which member of the clause pair has exactly
one true literal. Note that exactly 3n/2 of these defended vertices have exactly one child.

Since one vertex can be saved at level d as well, it follows that

d∑
i=b+p+2

�f (�)
i =

d∑
i=b+p+2

[2(d − i) + 1] − 3n

2

=
3n∑
i=0

[2i + 1] − 3n

2

= 9n2 + 9n

2
+ 1.
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The number of vertices saved by f (�) is then

d∑
i=1

�f (�)
i =

b∑
i=1

[2p(6n + 6 + b − i) − 2ni − 1] +
p∑

i=0

[2p−i (6n + 4) − 1] + 9n2 + 9n

2
+ 1

=
b∑

i=1

[2p(6n + 6 + b − i) − 1] +
p∑

i=0

[2p−i (6n + 4) − 1] + 9n2 + 15n

2
+ 1

= |V (T )| − k.

This completes the proof of the claim. �

We now prove the converse of Claim 2, that if there is no satisfying truth assignment for (B, C) then every strategy
results in more than k vertices being burned, in several steps.

Define the integer � = 9n2 + 21
2 n + 4.

Claim 3. Suppose (B, C) has no satisfying truth assignment. Then, for any strategy �, if
∑d

i=b+p+1 ��
i �� then there

is no truth assignment strategy which is the same as � on every level from 1 to b + p.

Suppose to the contrary that there exists such a strategy � and a truth assignment � such that � is the same as � on
every levels from 1 to b+p. Then, at time b+p, there are 3n snake trees whose root is burning (as well as some ladder
trees).

At most wb+p+1 vertices can be saved by any vertex defended at level b + p + 1 under �. Since ��
d = 1, it remains

to consider the number of vertices that can be saved under � at times i = b + p + 1, b + p + 2, . . . , b + p + 3n + 1.
It is easy to see that defending a vertex in a snake tree saves at least as many vertices as defending a vertex in a ladder
tree, so we assume � defends in snake trees at all of these times.

It follows from the definition of T that, for 1�j �n/2, at most 33 vertices can be protected on levels b+p+2+6(j−1)

through b + p + 1 + 6j by the vertices defended at times b + p + 2 + 6(j − 1) through b + p + 1 + 6j (see Fig. 2).
Further, 33 vertices can be saved if and only if both elements of the clause pair c2j−1, c2j are satisfied by �. Below
level b + p + 1 + 6j , no more than 36(n − 2j) + 12 vertices can be saved by the vertices defended on these six levels.
Since (B, C) has no satisfying truth assignment, there is a clause pair in which at least one member is not satisfied by
�. Thus, at levels b + p + 1 through d, the number of vertices saved must be fewer than

wb+p+1 +
n/2∑
j=1

[36(n − 2j) + 45] + 1 = wb+p+1 + 45n

2
+ 36

n/2∑
j=1

[n − 2j ] + 1

= wb+p+1 + 45n

2
+ 36

((n

2

)2 − n

2

)
+ 1

= 9n2 + 21n

2
+ 4

= �.

This proves the claim. �

Claim 4. Suppose a strategy � differs from all truth assignment strategies on level i for some i with 1� i�b +p. Then
��

i < wi − n/2.

This follows immediately from our work when calculating wi .
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By Claim 1,

d∑
i=b+p+1

wi = (6n + 3) +
⎡
⎣ d∑

i=b+p+2

[2(d − i) + 1]
⎤
⎦− n

= 5n + 3 +
3n∑

�=0

[2� + 1]

= 9n2 + 10n + 4

= � + n

2
.

Thus, for any strategy �,

d∑
i=b+p+1

��
i �� + n

2
.

Together, Claims 3 and 4 imply that if there is no satisfying truth assignment for (B, C), then for any strategy �,

d∑
i=1

��
i < � +

b+p∑
i=1

wi = |V (T )| − k.

This completes the proof. �

Theorem 2. 3-T-FIRE is NP-complete.

Proof. The transformation is from RESTRICTED NAE 3-SAT. Given an instance (B, C) of RESTRICTED NAE
3-SAT, first construct (T , r) and k as in Theorem 1. In what follows we continue to use the notation from that proof.
We will use (T , r) and k to obtain a rooted tree (T ′, r ′) with maximum degree three (and deg(r ′) = 3) and an integer
k′ so that at most k vertices burn in (T , r) if and only if at most k′ vertices burn in (T ′, r ′).

The construction of T ′ begins with the single vertex r ′. Join three new vertices to r ′ and, at each of these, root a full,
complete binary tree of height m − 1 (where m is defined by b = 2m−1, as in Theorem 1). For the moment consider the
tree constructed so far as being ordered, so that its leaves are ordered from left to right. At each of the first 2m − 1 of
these leaves, root a copy of a full, complete binary tree F of height h = �log2|V (T )|� + 3. Label the remaining leaves
from left to right as r0, r1, . . . , rb.

For i = 0, 1, . . . , b, let (Ri, wi) and (R̄i , w̄i) denote the subtree of T rooted at the unique neighbour of r on the
(r, bi)-path and (r, b̄i)-path, respectively. Let (Si, xi) be the rooted tree constructed from (Ri, wi) and (R̄i , w̄i) by
adding a new vertex xi and joining it to wi and w̄i .

To complete the construction of T ′, for i=1, 2, . . . , b, root a copy of Si at ri (see Fig. 3). Finally, set k′=k+2m−1+m.
We claim the construction can be carried out in polynomial time. The tree T ′ has 1 + 3(2m − 1)�3|V (T )| vertices

on levels 0 through m. To estimate the number of vertices at levels greater than m, note that every copy of F has at most
32|V (T )| vertices, and there are fewer than 2(2b + 2) such copies. Therefore, T ′ has fewer than 64(2b + 2)|V (T )| +
|V (T )| vertices on levels greater than or equal to m + 1. Hence, the number of vertices of T ′ is polynomial in the size
of the instance of RESTRICTED NAE 3-SAT. Since all steps in the construction can be carried out in polynomial time,
the claim is proved.

Recall that in an optimal strategy for the firefighter problem on a tree, the vertex defended at time � must be at
level �. By construction of T ′, the number of vertices on levels 0 through m that burn under any optimal strategy is
1+m+2m−1=2m+m. If no vertex among r0, r1, . . . , rb is defended, then from time m onwards the firefighter problem
on T ′ is (essentially) the same as the firefighter problem on T: this is because identifying the parents of r0, r1, . . . , rb
would yield a copy of T rooted at this new vertex. Thus, it suffices to show that if one of r0, r1, . . . , rb is protected then
more than k′ vertices of T ′ burn.
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Fig. 3. The construction of T ′ from T.

We now establish a useful observation. Consider a full, complete binary tree K of height �, and suppose the root and
both of its neighbours are burning. Then, under any strategy, at least 1 + (2� − 1) + � = 2� + ��(|V (K)| + 1)/2
vertices of K burn.

Suppose first that one of r0, r1, . . . , rb has a defended ancestor. Then there are two copies of F whose root eventually
burns, and thus a copy of F for which the root and both of its neighbours are burning. By the above observation, more
than half of the vertices of this copy of F-at least 8|V (T )| vertices—burn. Since 8|V (T )|� |V (T )�k + 2n�k + 2m +
m − 1 = k′, Thus, if one of r0, r1, . . . , rb has a defended ancestor then more than k′ vertices of T ′ burn.

It remains to consider the case where none of r0, r1, . . . , rb has a defended ancestor, but one of them is defended at
time m. In this case, the root of some copy of F is burning. By the above observation and the definition of F, vertices
belonging to this copy of F must be defended at times m + 1, m + 2 and m + 3, otherwise more than k′ vertices will
burn. This means that among the vertices corresponding to T − r , we cannot save more than (in the notation of the
previous reduction)(

d∑
i=1

wi

)
+ w1 − w2 − w3 �

⎛
⎝b+p∑

i=1

wi

⎞
⎠+ � + n

2
+ w1 − w2 − w3

�

⎛
⎝b+p∑

i=1

wi

⎞
⎠+ � + n

2
− 2p(6n + 6 + b − 4) + 2n − 1

�

⎛
⎝b+p∑

i=1

wi

⎞
⎠+ � + n

2
− 2p(6n + b)

<

⎛
⎝b+p∑

i=1

wi

⎞
⎠+ �

� |V (T )| − k.

That is, at least k + 1 vertices in this part of the tree burn. Since at least 2m + m vertices on levels 0 through m burn
under any strategy, at least (k + 1) + 2m + m > k′ vertices of T ′ burn. This completes the proof. �

4. Graphs with maximum degree three rooted at a vertex of degree two

The results of the last section imply that FIREFIGHTER is NP-complete for rooted graphs (G, r) of maximum
degree three and such that deg(r) = 3. In this section we show that the firefighter problem is polynomially solvable for
rooted graphs (G, r) of maximum degree three and such that deg(r)�2. If deg(r) = 1 then the game is over after one
move, so we assume in what follows that deg(r) = 2.

We first define three sets that are used in the algorithm. Let V1 be the set of vertices of degree one in G, and let V2
be the set of all vertices of degree two in G. Define Vc as the set of vertices which belong to a cycle in G. For a vertex
u ∈ Vc, let C(u) denote the length of a shortest cycle containing u.
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Next, we define a function f : (V1 ∪ V2 ∪ Vc) → Z+:

f (u) =
{dist(u, r) + 1 if u ∈ V1 ∪ V2,

dist(u, r) + C(u) − 1 if u ∈ Vc\V2.

Strategy 1. Begin by finding some u ∈ (V1 ∪ V2 ∪ Vc) such that f (u) = min{f (x) | x ∈ (V1 ∪ V2 ∪ Vc)}.
Case 1: If u ∈ V1 ∪ V2, then find a shortest path P from v to u. At each turn, defend the vertex which is adjacent to a

burning vertex but neither burning itself nor on P. If u ∈ V2, then at turn f (u) defend the neighbour of u which is not
on burning. (Clearly f (u) vertices are burned.)

Case 2: Suppose u ∈ Vc\V2. Let C be the shortest cycle containing u, and let P be a shortest path from v to u. At
each turn from 1 to dist(v, u), defend the vertex adjacent to a burning vertex but neither burning itself nor on P. On
turn dist(v, u) + 1, defend either unburned vertex on C with a burning neighbour. On each subsequent turn, defend the
vertex not on C that has a burning neighbour. (A total of f (u) vertices are burned: each vertex in P, and each vertex on
C except one.)

Lemma 3. Given a rooted graph (G, r) with �(G)�3 and deg(r)�2, there is an optimal solution to the firefighter
problem in which the vertex defended at each time has a burning neighbour.

Proof. If deg(r)= 1, then the lemma is trivial, so we consider the case where r has two neighbours x1 and x2. Suppose
the statement is false and let (G, r) be a minimal counterexample.

Suppose there is an optimal strategy in which the first vertex defended is a neighbour of r, without loss of generality
say x1. Then (G − {x1, r}, x2) is a smaller counterexample, a contradiction.

Let u be the closest vertex to r which is defended in an optimal strategy �, and suppose dist(u, v)�2. If two
neighbours of u are burning at the end of the strategy, then u lies on a cycle which is completely burned except for u. In
this case, Strategy 1 saves at least as many vertices as �. If no neighbour of u is burned, then dist(u, r) = ∞, in which
case � is clearly not optimal. It remains to consider the case where exactly one neighbour of u is burned. By defending
this neighbour instead of u, and leaving all other moves the as before, u will still not burn and the new strategy will
save one more vertex. This proves the lemma. �

Theorem 4. Strategy 1 yields an optimal solution to the firefighter problem on a rooted graph (G, r) with maximum
degree at most three and such that deg(r) = 2.

Proof. By Lemma 3, there is an optimal solution � in which each vertex defended has a burning neighbour. If the fire
can no longer spread after it burns a vertex � of degree one, then at least dist(l, v) + 1 vertices are lost, in which case
Strategy 1 is optimal. The same is true if the fire can no longer spread after only unburned neighbour u of a degree 2
vertex is defended, i.e. at least dist(u, v) + 1 vertices are burned, and Strategy 1 does at least as well.

Suppose the fire can no longer spread because the second of two neighbours of a degree three burning vertex w

is defended. Then, since each vertex defended has a burning neighbour, w is on a cycle which is completely burned
except for the first of its two defended neighbours. In this case, Strategy 1 does at least as well (using Case 2).

Since �(G)�3 the above are the only three ways in which the fire can no longer spread. in each case, Strategy 1 is
optimal. �

Corollary 5. Let (G, r) be a rooted graph with maximum degree at most three and such that deg(r)=2. The maximum
number of vertices that can be saved is |V (G)| − min{f (x) | x ∈ (V1 ∪ V2 ∪ Vc)}.
Corollary 6. The firefighter problem is solvable in polynomial time for graphs with maximum degree three in which
the fire starts at a vertex of degree at most 2.
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