
Exact VC-dimension for L1-visibility
of points in simple polygons

Elmar Langetepe and Simone Lehmann

University of Bonn, Department of Computer Science, D-53113 Bonn, Germany

Abstract. The VC-dimension plays an important role for the algorith-
mic problem of guarding art galleries efficiently. We prove that inside
a simple polygon at most 5 points can be shattered by L1-visibility
polygons and give an example where 5 points are shattered. The VC-
dimension is exactly 5. The proof idea for the upper bound is different
from previous approaches.
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1 Introduction and Definitions

In this paper we study a visibility problem that is related to efficient algorithmic
solutions of the art gallery problem. Such problems have a long tradition, for
example one can ask for the minimum set of guards so that the union of visibility
regions covers a simple polygon P ; see [1,12].

The classic ε-net Theorem implies that O(d r log r) many stationary guards
with 360◦ vision are sufficient to cover P , provided that each point in P sees at
least an 1/r-th part of the area of P . The constant hidden in O is very close to 1;
see [6,10]. Here the (constant) d denotes the well-known V C-dimension for visi-
bility polygons of points in simple polygons. If d is small, only few guards are re-
quired. The definition of V C-dimension goes back to Vapnik and Chervonenkis;
see [15]. Note that for computing the number of guards required there are also
direct approaches that do not make use of this theory. Kirkpatrick [9] obtained
an 64 r log log r upper bound to the number of (boundary) guards needed to
cover the boundary of P . This was further examined in [8].

We briefly explain the concept of VC-dimension for visibility polygons of
points in simple polygons. For L2-visibility two points p and q inside P are
visible or see each other, if the line-segment pq fully lies inside P . Given a simple
polygon P and a finite set S = {p1, p2, . . . , pn} of points in P , we say that a
subset T ⊆ S can be shattered in P , if there exists a viewpoint vT ∈ P such that
vT exactly sees all points in T but definitely sees no point in S \ T . If such a
viewpoint vT (or a set V (T ) ⊆ P of such viewpoints) for any of the 2n subsets
T ⊆ S exists, we say that the whole set S can be shattered. The VC-dimension
d is the maximum cardinality of a set S such that a polygon P exists where all
subsets T of S can be shattered.

The VC-dimension is also used in other computational areas. In computa-
tional learning theory the use of VC-dimension helps for deriving upper and
lower bounds on the number of necessary training examples; see [7].
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Some work has been done on the VC-dimension of L2-visibility in simple
polygons. In [14] d ∈ [6, 23] was shown; compare also [11]. Figure 12 shows the
best known lower bound for 6 points that can be shattered. At WADS 2009 [3] it
was shown that 14 points on the boundary of a Jordan curve cannot be shattered.
This upper bound was further generalized to d ≤ 14 for arbitrary point in [4] .
So the current known interval for d is [6, 14]. It is an open conjecture that the
VC-dimension is exactly 6. An upper bound of 6 was shown for point sets on the
boundary of monotone polygons in [2] and there are some results for external
visibility [5].

In this paper we exactly answer the VC-dimension question for L1-visibility
of point sets in simple polygons. For a point p ∈ P the L1-visibility polygon
of p (the set of all points seen from p) is always larger than the L2-visibility
polygon of p. Note that the notion of VC-dimension is related to the property
of seeing points but also to the fact of not-seeing other points. So there is no
direct relationship between L1- and L2-visibility.

The proof idea for the upper bound used here is different from the previous
results. This is interesting in its own right. We show that the subset, V (S), of
P that sees all points of S is always path connected. Furthermore, the areas
of the subsets of P that misses exactly one point, say V (S \{pi}), have a com-
mon boundary with V (S). This means that any V (S \{pi}) is located along the
boundary of V (S). Interestingly, this is independent from L1- or L2-visibility.
For L1-visibility a simple argument already says that only 8 such regions around
V (S) can exist and no more than 8 points can be shattered. But we can further
lower down the number of potential areas V (S \{pi}) located around V (S) to 5
by considering sets V (S \{pi, pj}) for two sets V (S \{pi}) and V (S \{pj}). The
cardinality 5 coincidence with our lower bound example and the VC-dimension
is exactly 5.

This also means that we even show a slightly stronger result. For L1-visibility
inside a simple polygon and for a set S = {p1, p2, . . . , pn} of points we can shatter
all subsets S\ {pi} and all subsets S\ {pi, pj} and the set S from P for no more
than n = 5 points and there is an example where this subset-shattering for n = 5
is possible.

In this work the Figures 2, 3 and 12 were generated by a visualisation-tool
from [13], the corresponding software project was supervised by the first author.

2 Definitions for L1-visibility

For a simple polygon P we define L1-visibility and L1-cuts associated to vertices
(or axis-parallel edges). Consider two points p and q inside P as given in Figure 1.
If a shortest L1-path between p and q inside P is X- and Y -monotone, p and
q are denoted as L1-visible inside P . The L1-visibility between two points in P
can be blocked by axis-parallel cuts emanating from locally X- or Y -maximal (or
locally X- or Y -minimal) vertices vc along the boundary of P ; see Figure 1 for
some examples. For such a locally minimal or maximal vertex vc, the axis-parallel
cut emanates in both directions until it hits the boundary. If vc is minimal or
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Fig. 1. The points p and q1 are L1-visible whereas p and q2 are not L1-visible because
the L1-visibility is blocked by the horizontal L1-cut of the locally Y -minimal vertex v2.
The vertex itself does not block the visibility along the cut, for example q3 and q4 are
visible. The axis-parallel locally X-minimal edge ec analogously defines a vertical L1-
cut. With respect to directions the L1-cut of v2c can be labeled by N (north) whereas
the L1-cut of v1c is labeled by W (west). Only four directions are given. In non-general
position a cut can be evoked by different vertices (or edges) v3c and v4c.

maximal in Y -direction, the corresponding cut is horizontal, if vc is minimal or
maximal in X-direction, the L1-cut is vertical. If P is in general position such
L1-cuts subdivide the polygon into three disjoint parts. If P is allowed to have
axis-parallel edges, analogously an L1-cuts emanate in both directions from a
corresponding egde ec. Both vertices of ec are locally maximal or minimal. The
cut is associated to the edge ec.

In this paper for convenience we make use of an general position assumption
for the polygon which says that no three vertices are on the same line and two
vertices have the same X-or Y -coordinate, if and only if they share an edge. So
we allow axis-parallel edges. Please note that all arguments also hold for non-
general position. In this case an L1-cut can be evoked by different vertices (or
edges), see v3c and v4c in Figure 1. For maintaining the arguments it is sufficient
to associated the cut to a single vertex. It is allowed to change this vertex, if
this is necessary.

With respect to directions, there can be at most four different kinds of L1-
cuts, depending on X- and Y -maximality or X- and Y -minimality of the cor-
responding vertex (or edge). For convenience we label the cuts by the direction
{N,E, S,W}, where the label means that the corresponding vertex (edge) lies
in this direction. For example an L1-cut imposed by a locally Y -minimal vertex
is label by N (north) and so on; see also Figure 1.
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3 Lower bound on the VC-dimension

The lower bound of 5 is shown by the example given in Figure 2. Note that
the corresponding polygon P need not be axis-parallel. The colors of the regions
inside P indicate the number of points that are shattered (red=5,brown=4, light-
green=3 and so on). In order to not overload the figure not all areas are labeled
with the subset of points that are shattered in P . The reader can simply check
that any of the 25 = 32 subsets T of S = {1, 2, 3, 4, 5} is shattered by all points
in some area V (T ) in P .

Fig. 2. Five points that are shattered by L1-visibility polygons inside a simple polygon.
The colors indicate the number of points that are shattered (red=5,brown=4, light-
green=3 and so on). Some regions are labeled by the point set that is precisely visible.
Altogether, 25 = 32 disjoint areas are required. Note that the polygon need not be
axis-parallel.

4 Upper bound on the VC-dimension

Let us assume that inside a simple polygon P a set S := {p1, p2, . . . , pn} of
n points can be shattered by L1-visibility polygons. For a subset T ⊆ S let
V (T ) ⊂ P denote the union of all points in P which sees all points of T but no
point of S \T . Consider the set V (S) ⊂ P that sees all points of P (red areas in
the examples of Figure 2 and Figure 3).

We give a precise outline of the proof.
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Fig. 3. Four points S = {1, 2, 3, 4} inside P are shattered by L1-visibility polygons.
The union, V ({1, 2, 3, 4}), of all points in P that sees all points of S is path connected
but there are points in V ({1, 2, 3, 4}) that do not see each other. Additionally, the
set V ({1, 2, 4}) is not path-connected.

1. The first observation is that V (S) has to be path-connected. This is shown
in Lemma 1. Note that two points in V (S) are not necessarily L1-visible; see
Figure 3.

2. The second observation is that for pi, i = 1, . . . , n, any V (S \{pi}) inside P
(brown areas within our examples) has to share a common boundary with
V (S) (the red area). This is shown in Lemma 2. Additionally, the common
boundary between any component of V (S \ {pi}) and V (S) stems from a
L1-cut labeled with a well-specified direction from {N,E, S,W}. Note that
V (S \ {pi}) need not be path-connected and can be separated from V (S) in
more than one direction.

3. The third observation is that, if there are two points pi and pj such that
components V (S \ {pi}) and V (S \ {pj}) are separated from V (S) by L1-
cuts of the same direction X ∈ {N,E, S,W}, there can only be a single
L1-cut in direction X that contributes to the boundary of V (S) and this cut
separates both components of V (S \ {pj}) and V (S \ {pi}) from V (S). The
single L1-cut c is evoked by a vertex (or edge) vc that sees both points pi
and pj . This is shown in Lemma 3.

4. A direct consequence is the following. The above mentioned L1-cut c evoked
by a vertex (or edge) vc separates P into three disjoint parts, one of which,
say Pvc(V (S)), contains V (S) and the other two, say Pvc(V (S \ {pj})) and
Pvc(S \{pi})), contain pi and pj , respectively. Additionally, there is no com-
ponent of a V (S \ {pk}) for k 6= i, j that can be separated from V (S) by an
L1-cut into direction X.
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5. Since we only have four different directions, starting from V (S), by the
above argument we can have at most two points separated by a cut in the
corresponding direction. Or in other words, there are at most 8 different sets
V (S \{pi}) which can share the boundary with V (S). This already means
that the VC-dimension can be at most 8 which is the number of subsets of
size 7 for a set of 8 points. This is the statement of Corollary 1.

6. Finally, we have to do some investigation on the relative position of the
aforementioned maximal 4 L1-cuts. We show that for a fixed combination
of a horizontal and vertical L1-cut at most three sets V (S \{pi}) can be
separated. Then we argue, that this combination cannot happen again in
the opposite corner so that in total only 5 points can survive. This is shown
in the proof of the final Theorem 1. Note that Figure 2 exactly matches the
worst-case situation.

In the following we will always assume that the set S = {p1, . . . , pn} is
shattered by visibility polygons inside a simple polygon P and that V (T ) for
T ⊆ S is the union of points in P that sees any point in T but no point in
S \ T as defined as before. It will be explicitly mentioned, if it is necessary
to use L1-visibility. Furthermore, w.r.t. the notion of path, path-connected and
shortest path the next two Lemmata are actually independent from the choice of
the metric (L1- or L2), because we make use of short-cuts along a line segment
that breaks the visibility, only. For convenience let us assume that we consider
L2-paths but visibility might be different.

Lemma 1. The subset V (S) of P is path-connected.

Proof. Assume that two points p, q ∈ V (S) are not connected by a path that
fully runs inside V (S). This means that along a shortest path SPP (p, q) between
p and q inside P there will be some point q1 where some pi is not seen after q1
for a while and comes into sight again at some point q2 on SPP (p, q); compare
the sketch in Figure 4. More precisely the path from p to q1 will cross some cut

p ∈ V (S)

q′ 6= V (S)

q2 ∈ V (S)

q ∈ V (S)
SPP (p, q)

pi ∈ Svc

c

P (q′)

q1 ∈ V (S)

Fig. 4. We consider a shortest path SPP (p, q) between two points p, q ∈ V (S). If there
is some point q′ along the path with q′ 6= V (S) there is a cut c such that a short-cut
for SPP (p, q) exist. There is always a shortest path between p and q that runs fully
inside V (S) and V (S) is path-connected.
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c that emanates from some vertex vc (or edge ec). The cut c blocks the visibility
of some point pi ∈ S for some point q′ on SPP (p, q). The cut subdivides P into
a part P (q′) that contains q′ and a part P (p, q) that contains p and q. Finally at
point q2 the path SPP (p, q) has to cross c and enter P (p, q) again in order to let
pi become visible. Therefore along c there will be a short-cut along c using the
segment between q1 and q2. There is a shortest path SPP (p, q) between p and q
that runs fully inside V (S), V (S) is path-connected. ut

Note that the above arguments are independent from considering L1- or L2-
visibility. Only the fact that the cut is a line segment and allows a short-cut is
used.

Lemma 2. Any set V (S \{pk}) of P shares a common boundary with V (S).

Proof. Let us assume that V (S \{pk}) and V (S) do not share a common bound-
ary. Thus, for any two points p ∈ V (S) and q ∈ V (S \{pk}) a shortest path
SPP (p, q) between p and q in P will leave V (S) at some point q1 to enter some
V (S′) with S′ 6= S \{pk} and finally has to end in V (S \{pk}) at q. This means
at q1 at least a point pi ∈ S with pi 6= pk gets out of sight. With similar ar-
guments as in the previous proof, the path SPP (p, q) has to cross some cut c
at q1 and also at some point q2 again in order to see pi ∈ S again. Therefore
again we can short-cut SPP (p, q) by using the direct path between q1 and q2,
which contradicts the assumption that no shortest path between p ∈ V (S) and
q ∈ V (S \ {pk}) runs in V (S)∪V (S \{pk}). The sets V (S \{pk}) and V (S) share
a common boundary. ut

Note, that the arguments are again independent from L1- and L2-visibility.
Again only the fact that the cut is a line segment that allows a short-cut is used.

We make use of L1-visibility right now. The above Lemma says that V (S) and
any path-connected component (maximally path-connected subset) of V (S\{pi})
share a common edge. Obviously this edge has to stem from an L1-cut that
blocks the visibility to pi. Each such cut is labelled by a corresponding direction
{N,E, S,W} w.r.t. the relative position of its generating vertex (or edge). For
example the cut c of vertex vc in Figure 4 is labeled by direction S (south). In the
following for convenience by V (S \{pi}) we denote a path-connected component
of the set V (S \{pi}).

At this point we would like to mention the general position assumption.
Under general position assumption we have uniqueness of the cuts and the cor-
responding vertices. Note that our arguments can be maintained for non-general
position assumption as well. If there is more than one vertex (or edge) that de-
fines the same L1-cut because the vertices (or edges) have the same height or
width, we can make use of a unique vertex or edge that is responsible for the
L1-cut making the cut and its vertex unique. But it is allowed to change this
vertex, if this is necessary.

We now show that w.r.t. a specified direction at most two sets V (S\{pi}) and
V (S\{pj}) can be separated from V (S). A corresponding L1-cut c(pi) associated
to a vertex v(pi) subdivides the polygon into three parts, where one part, denoted
by Pv(pi)(V (S \{pi})), contains the corresponding portion of V (S \{pi}).
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Lemma 3. If there are two sets V (S\{pi}) and V (S\{pj}) that share a common
boundary with V (S) evoked by L1-cuts in the same direction X, there is only a
unique, single L1-cut c(pi, pj) in direction X that shares the boundary between
V (S) and both sets V (S\{pi}) and V (S\{pj}). The sets V (S\{pi}) and V (S\{pj})
lie to the left and right of the associated vertex (or edge) v(pi, pj). The points pi
and pj are L1-visible from v(pi, pj).

Proof. Assume that two sets V (S \{pi}) and V (S \{pj}) are connected to V (S)
by portions of different L1-cuts c(pi) and c(pj) of the same direction X. Let
v(pi) and v(pj) denote the (unique) vertices (or edges) that evoke c(pi) and
c(pj). W.l.o.g. we assume that X = S holds and c(pi) and c(pj) are therefore
horizontal cuts.

Since some point on c(pi) on the boundary of Pv(pi)(V (S \{pi})) lies in V (S)
and sees pi, pi is L1-visible from v(pi). Analogously, pj is L1-visible from v(pj).
By general position assumption c(pi) and c(pj) do not have the same height.
W.l.o.g. let the Y -coordinate v(pi) be larger than the Y -coordinate of v(pj), the
other case is symmetric.

Relative to the unique vertices (or edges) v(pi) and v(pj) that evokes c(pi)
and c(pj), the points pi or pj lie to the left or right from v(pi) or v(pj), meaning
that Pv(pi)(V (S \{pi})) or Pv(pj)(V (S \{pj})) (the caves containing V (S \{pi}) or
V (S \{pj}), respectively) is on the opposite side; see Figure 5. Up to mirroring,

pi
pi

pi pi

pj pj

pj pj

V (S \{pi}) V (S \{pi})

V (S \{pi}) V (S \{pi})

V (S \{pj}) V (S \{pj})

V (S \{pj})
V (S \{pj})

c(pi) c(pi)

c(pi) c(pi)

c(pj) c(pj)

c(pj) c(pj)

V (S) V (S)

V (S) V (S)

a) b)

c)
d)

v(pi) v(pi)

v(pi) v(pi)

v(pj) v(pj)

v(pj) v(pj)

Fig. 5. Two sets V (S \{pi}) and V (S \{pj}) that are connected to V (S) by some
L1-cuts of the same direction X, have to be connected to V (S) by a unique common
L1-cut. If two different L1-cuts of the same direction have different height, there is
always one L1-cut that separates both pi and pj , a contradiction. Up to mirroring,
the cases a)-d) contain the relative positions of pi and pj w.r.t. the vertices v(pi) and
v(pj). None of the cases can occur, a single cut has to be responsible for both point
sets V (S \{pi}) and V (S \{pj}).

we now consider all possible situations of the relative position of pi and pj w.r.t.
v(pi) and v(pj); compare Figure 5 a)-d). In any case (indicated by an arrow)
at least one of the cuts breaks the L1-visibility to both points pi and pj , which
contradicts the assumption that the corresponding cut separates only a single
point. In any case we have a contradiction to the assumption. ut
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The above Lemma already implies that the number of different sets V (S\{pi})
that share a common boundary with V (S) for a fixed direction X can be at
most 2. Any such pair (pi, pj) is separated by a single, unique L1-cut c evoked
by some vertex (or edges) vc. Two different such pairs for one direction cannot
exist. For such a unique L1-cut c there will be one point pi to the left of vc
and another point pj to the right of vc, Both points are L1-visible from vc. For
shattering at least n points we require at least n =

(
n

n−1
)

subsets V (S \ {pi})
around V (S).

Corollary 1. For any direction X at most two sets V (S \{pi}) can share the
boundary with V (S). The VC-dimension for L1-visibility w.r.t. points in simple
polygons is not larger than 8.

Now assume that we have a maximum number of sets V (S \{pi}) located
around V (S), which is 8 in total. In this case in any direction two different
points pi and pj such that V (S \{pi}) and V (S \{pj}) are separated by a single
L1-cut of direction X; the situation is sketched in Figure 6.

p6 p5 V (S \{p6})V (S \{p5})

c(p5, p6) v(p5, p6)

p1 p2 V (S \{p1})
V (S \{p2})

c(p1, p2)

V (S)

v(p1, p2)

p4

p3

V (S \{p4})

V (S \{p3})c(p3, p4)

v(p3, p4)

p8

p7

V (S \{p8})

V (S \{p7})
c(p7, p8)

v(p7, p8)

Fig. 6. The sketch of the worst-case situation where in any direction two different
sets V (S \{pi}) and V (S \{pj}) build a boundary with V (S). This situation will be
considered more precisely, only 5 points can survive.

Finally, we consider the situation of a horizontal and a vertical L1-cut and
the corresponding potential sets V (S \{pi}). We argue that at most three sets
V (S \{pi}) can be attained. Considering two corners or all cuts only 5 points
survive.

Theorem 1. The VC-dimension for L1-visibility w.r.t. points in simple poly-
gons is exactly 5.

Proof. The proof works as follows. Starting from at most 4 pairs of potential
points for 4 directions as sketched in Figure 6 we first consider the combination of
a horizontal and a vertical cut and the maximum number of sets V (S \{pi}) that
can be attained. It turns out that for such a single corner situation either three
sets or two sets V (S \{pi}) can be constructed depending on the constitution
of the cuts; see Figure 7 and Figure 8. Then the final situation consists of two
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opposite corners. We show that the configuration for three sets V (S\{pi}) cannot
happen for two opposite corners; see Figure 11. Therefore in total at most 5 sets
V (S\{pi}) can be attained. Indeed a combination of Case 1 of Figure 7 (three sets)
and Case 3 of Figure 8 (two sets) in the opposite corners gives the lowerbiund
bound of Figure 2.

Now as mentioned above consider the combination of a horizontal and a
vertical cut. Assume that both cuts contribute to the boundary of V (S). If this
is not the case, we would have even less sets V (S \{pi}). Let us first present the
final result for the two cuts, w.l.o.g. a horizontal cut of direction N and a vertical
cut of direction W . How many sets V (S \{pi}) can be constituted? Depending on
the position of the evoking vertices and up to symmetry (related to this corner)
only the three cases as depicted in Figure 7 (3 sets V (S \{pi})) and Figure 8 (2
sets V (S \{pi})) can occur. For any additional other point p the set V (S \{p})
has to be separated by a cut of a different direction (here S or E).

p4
V (S \{p4})

c(p4)

V (S)

v(p4)p2

p1

V (S \{p2})

V (S \{p1})

c(p1, p2)

v(p1, p2)

Z
Q

Case 1(i)

p4

c(p4)

V (S)

v(p4)p2

p1

V (S \{p2})

V (S \{p1})

c(p1, p2)

v(p1, p2)

Z
Q

Case 1(ii)

V (S \{p4})
p4

V (S \{p2})

c(p2, p4)

V (S)

v(p2, p4)

p1

V (S \{p2})

V (S \{p1})

c(p1)

v(p1)

Z
Q

Case 1(iii)

V (S \{p4})
p2

Fig. 7. The intersection Z build by (the extensions of) a horizontal and vertical cut
that share the boundary with V (S). If the evoking vertices lie to the right and below Z,
we can obtain at most three sets V (S \{pi}). For this corner up to symmetry the cases
1(i), 1(ii) and 1(iii) can occur.

For the proof that up to symmetry (related to the corner) only the cases
of Figure 7 (3 sets V (S \{pi})) and Figure 8 (2 sets V (S \{pi})) can occur,
we consider a potential pair (p1, p2) and a corresponding vertical cut c(p1, p2)
evoked by vertex v(p1, p2) of direction W and a potential pair (p3, p4) with a
corresponding vertical cut c(p3, p4) evoked by vertex v(p3, p4) of directionN . The
meaning is that we would like to find out how many different sets V (S \{pi}) can
be separated at most from V (S) by the given cuts. Note that the corner case
for S and E is symmetric.

Now, we consider the intersection point Z of the two lines passing through
c(p1, p2) and c(p3, p4). The vertices v(p1, p2) and v(p3, p4) have a relative position
with respect to the intersection point Z. In this corner by symmetry only three
cases have to be considered. The upper left axis-parallel quadrant of origin Z is
denoted by Q.

10



Case 2 Case 3

V (S \{p3})

c(p3)

V (S)

v(p3)

V (S \{p3}) c2(p3)

v2(p3)

ZQ
p3

p3

V (S \{p3})

c(p3)

v(p3)

p2

V (S \{p2}) c(p2)

v(p2)

Z
Q

V (S)
p1

V (S \{p1})

Fig. 8. The intersection Z build by (the extensions of) a horizontal and vertical cut
that share the boundary with V (S). If the evoking vertices of the cuts lie to the left and
below Z (Case 2) or to the left and above Z (Case 3), in this corner up to symmetry
we can obtain at most two sets V (S \{pi}).

1. v(p1, p2) lies below Z and v(p3, p4) lies to the right of Z; see Figure 9.

(a) Either p2 and/or p3 lies inside Q; see Figure 9 1(a).
(b) Neither p2 nor p3 lies inside Q; see Figure 9 1(b).

2. v(p1, p2) lies below Z and v(p3, p4) lies to the left of Z; see Figure 10 2.
3. v(p1, p2) lies above Z and v(p3, p4) lies to the left of Z; see Figure 10 3.

For Case 1 we have two sub-cases. For Case 1(a) let p3 lie inside the quadrant
Q (upper-left quadrant from Z), then below v(p1, p2) there is no region V (S\{p2})
connected to V (S), so p2 does not belong to the two cuts.

Assume that both sets V (S \{p2}) and V (S \{p3}) for direction W and N
exist as depicted in Figure 9 1(b). The two sets V (S \{p2}) and V (S \{p3})
are well-separated from each other. Assume that p1 and p4 exist for the given
cuts or more precisely V (S \{p1}) and V (S \{p4}) are separated by the cuts
in direction N and W , respectively. There will be no subsets V (S \{p2}) and
V (S\{p3}) separated by cuts of direction S or E, respectively. This holds because
a corresponding cut of direction S has to run above v(p1, p2) and also separates p1
and a corresponding cut of direction E has to run to the left of v(p3, p4) and
also separates p4. See for example Figure 9 1(b) for the point p2.

Altogether, if p1 and p4 exist for the given cuts and we would like to shatter
V (S \{p2, p3}) from some point in P , we have to enter one of the sets V (S \{p2})
or V (S \{p3}) from V (S) separated by the given cuts. Assume that we would
like to shatter V (S \{p2, p3}) and move inside V (S \{p2}), the other case is
symmetric. If we would like to get p3 out of sight, we will also loose visibility
to p4. So V (S \{p2, p3}) cannot be shattered, if both points p1 and p4 exist
or if both points p2 and p3 exist. So in any combination at most three points
can exist which results in Case 1(i), 1(ii) or 1(iii) of Figure 7 or its symmetric
counterparts.

In Case 2 v(p3, p4) lies to the left of Z and v(p1, p2) lies below Z as depicted in
Figure 10 2. First, we notice that V (S \{p4}) has to be separated by direction E,
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1(a)
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V (S \{p4})
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Z
Q

cv(c)

V (S \{p2, p3})?

1(b)

Fig. 9. If p3 lies inside Q the set V (S \{p2}) cannot be separated by the given cuts.
Thus for Case 1(a) either p2 or p3 does not exist. For Case 1(b) if p1 and p4 exist, the
set V (S \{p2}) cannot be separated by direction S and the set V (S \{p3}) cannot be
separated by direction E. Therefore we cannot shatter the set V (S \{p2, p3}) if p4 and
p1 exist. This means that either one point from p1 and p4 does not exist or one point
from p2 and p3.

therefore we conclude that p4 cannot belong to the given cuts. Additionally, w.r.t.
the position of p3 we have the same situation as given in Case 1(a) because p3 has
to lie inside Q. Similar to Figure 9 1(a), the set V (S \{p2}) cannot be shattered
by the given cuts. At least one of the points p2 or p3 cannot exist. Note that if
p3 does not exist, the cut of direction N is not used at all. Since we would like
to exploit both cuts only p3 and p1 remains. This results in Case 2 of Figure 8.

In the remaining Case 3, v(p1, p2) lies above Z and v(p3, p4) lies to the left
of Z and we have a situation as given in Figure 10 3. Here p2 has to be above
v(p1, p2) and p3 lies to the left of v(p3, p4). Additionally, p1 has to be below
v(p1, p2) and p4 lies to the right of v(p3, p4). The sets V (S \{p4}) and V (S \{p1})
are not separated from the given cuts, p4 and p1 have to be omitted. This results
in Case 3 of Figure 8.

Now for the final argumentation we have to combine the cases. Note that the
combination of Case 3 and the application of a symmetric version of Case 1 in the
opposite corner results in our lower-bound construction. The above arguments
already mean that we can shatter at most 6 points, if we apply Case 1 and its
symmetric version for the opposite corner twice. This is the remaining case.

Case 1 makes use of three points and allows that some p′2 lies inside the given
Q as indicated by configuration (p1, p

′
2, p3) in Figure 11. If this happens for the

upper left corner, for shattering 6 points in total we cannot apply Case 1 again
to the opposite corner because for the upper right corner Q′ or for the lower left
corner Q′′ we would have a contradiction to Case 1; see Figure 11.

This means that we can have at most 6 points as depicted in Figure 11 where
for two opposite directions in each direction two sets V (S \{pi}) and V (S \{pj})
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V (S \{p2})
c(p1, p2)

v(p1, p2)

Z
Q

3

V (S)

Fig. 10. For Case 2 the set V (S \{p2}) cannot be separated from V (S) at all. The
point p4 or more precisely the set V (S \{p4}) does not belong to the cuts of the given
directions and has to be omitted. Only p3 exist because otherwise the cut c(p3, p4) is
useless. In Case 3, if v(p1, p2) lies above Z and v(p3, p4) lies to the left of Z only the
sets V (S \{p2}) and V (S \{p3}) are separated by the given cuts. The points p1 and p4
can be omitted.

p5

p4

V (S \{p5})

V (S \{p4})c(p5, p6)

v(p5, p6)

p1

p2

V (S \{p1})

V (S \{p2}) c(p1, p2)

V (S)v(p1, p2)

p3
V (S \{p3})

c(p3)v(p3)

p6
V (S \{p6})

c(p6)v(p6)

Q

p′2

V (S \{p3, p6})?

Q′

Fig. 11. The remaining case considers Case 1 twice. If p′2 lies in Q, application of Case 1
in the opposite corner is not possible. So for shattering 6 points up to symmetry two
sets V (S \{pj}) and V (S \{pi}) are separated exclusively by opposite directions. Here
we have pi = p6 and pj = p3. The set V (S \{p6, p3}) cannot be shattered.
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are separated from V (S) and for the two remaining opposite directions in each
direction only one set V (S \{pj}) is separated from V (S). W.l.o.g. we choose
direction E and W for the two sets that are separared and N and S for the
remaining two sets, say V (S \{p3}) and V (S \{p6}) as in Figure 11. Now we can
argue that V (S \{p6, p3}) cannot be shattered. Starting from V (S) we have to
move inside V (S \{p6}) or V (S \{p3}). If we would like to loose the visibility
to the corresponding opposite point, we definitely also loose visibility to some
point on the remaining two directions.

Altogether, we cannot apply Case 1 twice, only 5 points can be shattered by
L1-visibility polygons. ut

5 Conclusion

We have shown that the VC-dimension for L1-visibility of points in simple poly-
gons is exactly 5. This result holds for any area that is enclosed by a simple
Jordan curve. The VC-dimension plays an important role for the number of
guards required for art gallery problems. Our prove idea mainly considers the
relative position of the sets V (T ) ∈ P that sees exactly the subsets T = S,
T = S \{pi} and T = S \{pi, pj}. Therefore we even show a slightly stronger
result, because shattering these sets can only be done for exactly 5 points. The
main open question is, whether we can exploit such properties for better upper-
bounds for the L2-visibility case. Figure 12 shows the best known lower bound
for L2-visibility.

Fig. 12. The lower bound construction for the VC-dimension of points for L2-visibility
in simple polygons from Valtr [14]. All 26 subsets can be shattered, some regions are
labeled by the point sets that are visible.
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