# Theoretical Aspects of Intruder Search Course Wintersemester 2015/16 Escape Paths for the Intruder 

Elmar Langetepe<br>University of Bonn

February 2nd, 2016

## Different performance measure: Simple Polygon

- Simple polygon, escape path unknown
- Searching for different cost measure
- Polygonal extension of the list search problem
- Distance to the boundary $x$ (estimation, given)
- Simple circular strategy $x\left(1+\alpha_{x}\right)$



## Extreme cases: Circular strategy

- Circular escape path: Distribution of the length is known
- Extreme situations: $x_{1}(1+2 \pi), x_{2}(1+0)$



## Discrete Version! Extreme Cases!

- Assume distribution is known!
- $f_{1} \geq f_{2} \geq \cdots \geq f_{m}$ order of the length given
- Extreme cases! $x_{1}(m), x_{2}(1)$



## Circular strategy: Star shaped polygon

- Optimal circular espape path for $s \in P: \Pi_{s}(x)$
- For any distance $x$ a worst-case $\alpha_{s}(x)$
- In total: $\min _{x} x\left(1+\alpha_{s}(x)\right)$

$$
\Pi_{s}:=\min _{x} \Pi_{s}(x)=\min _{x} x\left(1+\alpha_{s}(x)\right) .
$$

- Radial dist. function interpretation: Area plus height!



## Extreme cases: Radial dist. function

- Circular escape path: Distribution of the length is known
- Extreme situations: $x_{1}(1+2 \pi), x_{2}(1+0)$



## Radial distance function of extreme cases

- Optimal circular espape path
- Hit the boundary by 90 degree wedge
- Area plus height! $\min _{x} x\left(1+\alpha_{x}\right)$




## Different justifications

- Simple, computation (polynomial), star-shaped vs. convex
- Natural extension of the discrete certificate (Kirkpatrik)
- Outperforms escape paths for known cases (diameter)



## Outperforms Zig-Zag path

- For any position, better than the Zig-Zag path
- Formal arguments!
- Zig-Zag cannot end in farthest vertex: Region $R$ !

$0.125 \times(5 \pi / 4+1)<2 x=2 \frac{\sqrt{3}}{\sqrt{28}}$


## Interesting example

- Distance distribution exactly resembles the polygon
- Analogy to discrete case! Sorting!
- Log. spiral $\alpha_{x}$ for any $x$ is known:
$x(\phi) \cdot\left(1+\alpha_{x(\phi)}\right)$ with $\alpha_{x(\phi)}=2 \pi-\phi$ and $x(\phi)=A \cdot e^{\phi \cot \beta}$



## Online Approximation!

- Inside a polygon $P$ at point $s$, totally unknown
- Leave the polygon, compare to certificate path for $s \in P$
- Dovetailing strategy (discr. case)! Now spiral strategy $(a, \beta)$ !



## Analysis of a spiral strategy!

- Assume certificate: $x\left(1+\alpha_{x}\right)$ for $s$
- Spiral reach distance $x=a \cdot e^{\left(\phi-\alpha_{x}\right) \cot (\beta)}$ at angle $\phi$
- Worst-case success at angle $\phi$ ! (Increasing for $\alpha_{x}$ distances!)
- Ratio:

$$
f(\gamma, a, \beta)=\frac{\frac{a}{\cos \beta} \cdot e^{\phi \cot \beta}}{a \cdot e^{(\phi-\gamma) \cot \beta}(1+\gamma)}=\frac{e^{\gamma \cot \beta}}{\cos \beta(1+\gamma)} \text { for } \gamma \in[0,2 \pi]
$$

- $\gamma$ represents possible $\alpha_{x}$ !
- $(\beta, a)$ represents the spiral strategy!
- Independent from $a$ !
- How to choose $\beta$ ?


## How to choose $\beta$ ?

- Ratio: $f(\gamma, \beta)=\frac{e^{\gamma \cot \beta}}{\cos \beta(1+\gamma)}$ for $\gamma \in[0,2 \pi]$
- Balance: Choose $\beta$ s.th. extreme cases have the same ratio
- $f(0, \beta)=\frac{1}{\cos \beta}=\frac{e^{2 \pi \cot \beta}}{\cos \beta(1+2 \pi)}=f(2 \pi, \beta)$
- $\beta=\operatorname{arccot}\left(\frac{\ln (2 \pi+1)}{2 \pi}\right)=1.264714 \ldots$



## Balance the extreme cases!

- $\beta:=\operatorname{arccot}\left(\frac{\ln (2 \pi+1)}{2 \pi}\right)=1.264714 \ldots$
- Ratio: $f(\gamma, \beta)=\frac{e^{\gamma \cot \beta}}{\cos \beta(1+\gamma)}$ for $\gamma \in[0,2 \pi]$
- $f(0, \beta)=f(2 \pi, \beta)=3.31864 \ldots$ and $f(\gamma, \beta)<3.31864 \ldots$ for $\gamma \in(0,2 \pi)$



## Spiral strategy for $\beta=1.264714$

Theorem 76: There is a spiral strategy for any unknown starting point $s$ in any unknown environment $P$ that approximates the certificate for $s$ and $P$ within a ratio of 3.31864 .

