Chan’s randomized optimization technique

e T. M. Chan, “Geometric Applications of a Randomized Optimization
Technique,” Discrete and Computational Geometry, vol. 22, pp. 547-
567, 1999. (We teach first three sections)

e For certains geometric problems, the technique can turn a deterministic
algorithm for the decision version into a randomized algorithm for the
optimization version.

Decision Problem:

e Given an instance I and a value k, answer if there exists a solution for
whose value is k, at most k, or at least k.

e [.GG.: Given a set I of points in the plane and a value k, does there exist
a spanning tree connecting all points in I whose length is at most k7

Optimization Problem:

e Given an instance I, answer a solution for / with the minimum or maxi-
mum value.

e £.G.: Given a set [ of points in the plane, find a spanning tree connecting
all points in I with the minimum length.

Importance of the Technique

e [t is usually easier to develop an algorithm for the decision version of a
problem than one for the optimization version.

e An algorithm for the decision version is probably a bit simpler, i.e., easier
for implementation

e Eixpected behavior of an algorithm usually reflects its actual behavior, i.e.,
the worst case hardly occurs.



Finding the minimum of » numbers, i.e., min{ A[1], A[2], ..., A[r]}
Algorithm RAND-MIN
1. randomly pick a permutation (i1, ..., 4 )of(1,...,7)
2.1 < 00
3.fork=1,...,rdo
4. if Aliz] <t then (decision)
5. t < Alig] (evaluation)

6. return t

O(Dr + Elogr) expected time
e Imagine A|0], ..., A[r] have not yet been precomputed
e D: time to decide if Ali] <t
e [/ time to evaluate Ali]

e The expected number of times that step 5 is execuated is Inr + 1. (Exer-
cise)

e O(Dr+ Elogr). If E>> D, it is better than O(Er).

Consider an instance I with n elements for a minimization problem. Let
AlI] be the cost of the minimal solution for I. Assume we can randomly
partitaion I into r subsets with almost equal size, Iy, .. ., I,. such that A[I] =

min{ A[L1],..., A[l,]}.
o if All;] < t: a decision problem
e ¢ + Al[l;]: an optimization problem
e O(D(n/r)*r+ E(n/r)=*logr)
— D(m): time to solve the decision problem for an m-size input

— E(m): time to solve the optimization problem for an m-size input



Denotation and Assumption
e [' represent the problem space
e Given a problem P € I', let w(P) € R be its solution
e | P| is the size of P (a positive integer)

e The solution of a problem of constant size can be computed
in constant time.

Lemma Chan’s randomized technique
Let a < 1, e > 0, r be constants, and let D(-) be a function such

that D(n)/n® is monotone increasing in n. Given any problem
P € T, suppose that within D(|P|) time,

(i) we can decide whether w(P) < t for any given ¢t € R, and

(ii) we can construct r subproblems, P, ..., P, each of size at
most [a|P|], so that

w(P) = min{w(P)),..., w(P)}.

Then for any problem P &€ I', we can compute the solution w(P)
in O(D(|P]) expected time

Proof

General Idea

e Compute w(P) by applying Algorithm Rand-Min to the unknown num-
bers w(Py), w(P), ..., w(P).

e Deciding w(F;) < t takes D(|P;|) time.

e Evaluating w(PF;) is done recursively until | P;| drops below a certain con-
stant.



Analysis

e let T'(P) be the random variable corresponding to the time needed to
compute w(P).

e Let N(F) be 0-1 random variable, having value 1 if and only if w(F;) is
evaluated

ZN )) + O(rD(|P])).

Note that the expected number of evaluations by Algoirthm RAND-MIN is
ED NP <Inr+1

e Define T'(n) = max p<, E[T(P)].
Since N(P;) and T'(FP;) are independent, we have

_ Z E[N(P)|E[T(P)] + O(rD(|P|))

< (Inr + DT ([alP[]) + O(rD(|P]))
Which implies
T(n)=(Inr+ 1)T([an]) + O(D(n)).
(O(rD(|P|)) = O(D(n)) since r is a constant)
If we assume,
(Inr + 1)af < 1,

T(n) < C - D(n) for an appropriate constant C' depending on «, r, and e.
(Exercise)

To enforce (Inr+)a < 1, we compress [ levels of the recursion into one before
appying Algorithm Rand-Min, where [ is a sufficiently large constant. Then,

e r increases to 7

e o decreases to ol

o limy_,oo(In7! + 1)al =0

Note:
The above lemma still holds if (i) and (ii) require D(|P]) expected time
(rather than the worst-case).



Applications

Closest Pairs
e Let U be a collection of objects.
e Given a distance function d : U x U — R,

— closest-pair problem: to compute w(P) = min, ,cpd(p, q) for a given
set PC U

— closest-pair decision problem: to determine whether w(P) < t for a
given P and t € R.

Theorem.

If the closest-pair decision problem can be solve in D(n) time, then the closest-
pair problem can be solved in O(D(n)) expected time, assuming that D(n)/n
1S monotone increasing.

e Arbitrarily partition P into three subsets P, P, P53 of roughly equal size.
w(P) =min{w(P,U Py),w(P U P;),w(P,U P3)}

[SVI1N)

e Applying the technique with r = 3 and o =



Ray Shooting
e Let U be a collection of objects
e Let V' be a collection of rays

e Let 7: U xV — R be an ordering function, where 7(p1,q) < 7(p2, q)
means that ray ¢ hit object p; before ps.

e The ray shooting problem: to preprocess a given set P C U of size n
into a data structure that answers queries of the following type:

— given g € V, compute w(P, ¢) = min,ep7(p, q).

e The ray shooting decision problem: given any ¢ € V and t € R, deter-
mine whether w(P, q) < t.

Theorem

If the ray-shooting decision problem can be solved with P(n) preprocessing
and D(n) query time, then the ray-shooting problem can be solved with
O(P(n)) preprocessing and O(D(n)) expected query time, assuming that
P(n)/n'™¢ and D(n)/n¢ are monotone increasing forsome constant € > 0

proof

e Parition P into two subset P and P, of roughly equal size, build the
decision data structures for P, and P, and recursively preprocess P, and
Ps.

e The new preprocessing time P'(n) satisfies the recurrence
P'(n) = 2P'(n/2) + O(P(n)).
o If P(n)/n'* is monotone increasing, P'(n) = O(P(n))

e To compute a given g € V', we can divide the problem into two subprob-
lems, each of size roughly n/2:

w(P, q) = min{w(P,q), w(,q)}

e Chan’s technique implies the expected query time to be O(D(n)).



