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mobile robot moving in m environment filled with obstpcles whose shape 
and positions are not known. Under the accewd model, the automaton 
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knows its own and the target coordinates, and has a "sensory" feedback 
which provides it with local information on its immediate surroundings. 
This information is shown to be sufficient to guarantee reaching a global 
objective (the target), while generating reasonable (if not optimal) paths. 
A lower bound on the length of paths generated by any algorithm 
operating with uncertainty is formulated, and two nonheuristic path 
planning algorithms are described. In the algorithms, motion planning is 
done continuously (dynamically), based on the automaton's current 
position and on its feedback. The effect of additional sources of 
information (e.g.* from a vision sensor) on the outlined approach is 
discussed. 

I. INTRODUCTION 

To generate a path for a mobile automaton means to find a continuous 
trajectory leading from the initial position of the automaton to its target 
position, in the environment filled with obstacles. The path generation 
strategy is affected by the assumptions about geometric characteristics of 
the environment, as well as by information available to the automaton. 
For our purposes, we distinguish between those approaches where full 
information on the environment is given and approaches where an element 
of uncertainty is assumed. 

One model with full information that has been extensively studied in 
recent years is the Piano Mover's problem, in which full information is 
assumed to be available on the geometry and positions of the obstacles and 
of the moving body. For this model, the complexity of the path generation 
problem has been investigated, and a number of heuristic and nonheuristic 
approaches involving moving rigid or hinged bodies in two- or three- 
dimensional space have been considered [ 11451. 

Works on path generation with uncertainty come primarily from studies 
on navigation of an autonomous vehicle moving along a two-dimensional 
surface 161. 171. [I41 and from studies on local control (e.g., compliance 
control) of robot arms 181. In these works, various heuristics are used for 
path generation in the limited area around the automaton for which 
information is available. Within this limited area, the problem is actually 
treated as one with full information. 

The purpose of this study is to design a methodology for nonheuristic 
motion planning in an uncertain environment. Situations with uncertain or 
unknown environments are typical in navigation of autonomous vehicles. 
In applications involving industrial robot arms, where the environment is 
easier to control, an assumption of full information is still unwarranted in 
many cases, for example, when the control relies on the real-time 
information from sensors. 

We consider a case opposite to that of the Piano Mover's model: it is 
assumed that no information on the geometry or positions of obstacles is 
available. An idealized twodimensional model with a point automaton is 
considered. (Actually, any surface homeomorphic to the plane suits this 
approach.) Any obstacle is of finite area, and its boundary is of finite 
length; a scene of finite size contains a finite number of obstacles. The 
coordinates of the target and of thc obstacles are fixed. The automaton 
knows its own and the target coordinates, but has no information about the 
obstacles. The lack of information about the environment is compensated 
in the model by the automaton's ability to recognize the fact of meeting an 
obstacle, using a feedback from some contact or noncontact sensors. and 
to walk along the obstacle boundary. In this context. "avoiding 
obstacles" means maneuvering around thc rnost recently discovered 
obstacle in some reasonable way. The question being asked is whether the 
purely local information provided by the feedback is sufficient to reach a 
global goal (here, the target posit&n). 

A somewhat similar problem is addressed by the Pledge algorithm [ I I ! 
which uses the same model of the environment and of the automaton and 
guarantees escaping from a maze. However, the Pledge algorithm cannot 
be used to find a fixed point inside or outside the maze. 

When analyzing the problem, one can see that seemingly reasonable 
strategies do not guarantee success. Consider, for example, this algorithm 
[see Fig. I(a)]. 

1) Go directly to the target until one of the following occurs. 
a) Target is reached. The procedure stops. 
b) An obstacle is encountered. Go to Step 2. 

2) Turn left and follow the obstacle boundary until one of the following 
occurs. 

a) Target is reached. The procedure stops. 
b) The direction on the target clears. Go to Step I. 

Unfortunately, depending on the scene, this strategy can create problems. 
For example, in Fig. l(b), in spite of the fact that each of the obstacles is 
of finite size, the strategy will take the automaton to infinity, instead of the 
target, whereas in Fig. I(c) the strategy will result in infinite looping. 

To analyze the problem, we first introduce a formal model of the 
automaton and the environment and develop a lower bound for the length 
of generated paths. The bound is expressed in terms of perimeters of 
obstacles which intersect the straight line between the starting and the 
target points. Then, we show that the local information provided to the 
automaton by its sensors is indeed sufficient for the path planning. Two 
nonheuristic algorithms are introduced, each of which guarantees 
reaching the target or concluding that the target cannot be reached. The 
g'eneral idea is to arrange a sequence of steps, each having in it some 
special critical points such that they correspond to monotonically 
decreasing (and converging to zero) distances between the automaton and 
the target. Along the path, however, no monotonic behavior of the 
distance to the target is expected. Path planning is done, therefore, 
continuously (dynamically), based on the automaton's current position, 
and also on the local information from the feedback. 

The algorithms are described in the context of a "tactile" feedback, 
followed by a discussion on using the same ideas in the context of a 
noncontact (e.g., vision) feedback, and on handling finite dimensions of 
the automaton. More detailed analysis, examples, and proofs of lemmas 
and theorems can be found in [9], [lo]. Although our approach does not 
generalize easily to three or more dimensions, a case-by-case study 
reveals that a number of applications do lend themselves into it (for 
applications to two- and three-dimensional arm manipulators, see [I 21, 
[ 131). 

In the algorithms, the automaton is continuously generating the path, 
based on its current coordinates and on the incoming local information. 
The general idea is similar to the local methods of studying the 
geometrical phenomena developed in [ 1 I]. No approximation of obstacles 
(e.g., by polygons) is done. and no explicit reduction to a discrete space 
(e.g., to a set of nodes of the polygons) takes place. As a result, the whole 
space (and not only those points that lie along certain subspaces, e.g., 
along the edges of the connectivity graph representing the nodes of the 
polygons) are available for path generation purposes. Since, unlike the 
Piano Mover's problem, the only information to be processed at any given 
moment is limited to the automaton's immediate surroundings. the 
algorithms are rather efficient and suitable for real-time implementation. 

11. MODEL 

The goal of the mobile automaton (MA) is to generate a continuous 
path from the point start (S) to the point target (T). Both Sand Tare fixed 
points. A scene is a set of nonintersecting simple closed curves in the 
plane, such that any disk of a finite radius intersects only a finite set of 
curves. Each simple closed curve represents the boundary of an obstacle. 
To avoid some degenerate cases, any obstacle boundary is assumed to 
cross any straight line a finite number of times: also. any disk intersects a 
finite number of obstacles. 

The following notation is used: d(A , B) is the distance between any two 
points A and B in the scene; specifically. d(S, T) = D, where D is a 
constant: d(Ai, B) signifies the fact that the point A is located on the 
boundary of the ith obstacle met by MA on its way to T; P is the total 
length of the path generated by MA on its way from S to T; pi is the 
perimeter (the length of the boundary) of the ith obstacle. The line (S, T) 
is called the main line, or M-line. 

MA is a point; thus, any opening between two obstacles is considered 
passable. MA is given the position of target and its own current position 
(coordinates); using its "sensors," it can recognize the fact of hitting an 
obstacle. Also. MA is capable of moving toward T along a straight line, 
and of moving along the obstacle boundary. Realizing this capability 
requires special algorithms which are beyond the scope of this note; it is 
inprtant. however. that the only information on the environment that it 
requires is very small since it is limited to the current immediate 
surroundings of MA. 

A local direction is defined as a once-and-for-all decided upon direction 
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Fig. I .  This intuitively waurnable algorithm (walk toward the target whenever you can) 
will often work (a). but it  docs not guarantee temiination (b). (c). 
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of passing around an obstacle. For the two-dimensional problem, it can be 
either left or right. &cause of incompleteness of information, where MA 
hits an obstacle, there is no information or criteria that could help it decide 
which local direction it should use. For the sake of clarity and without losing 
generality. assume that the local direction of MA is always left (as in Fig. 
3. dashed line). MA is said to define a hit point H on an obstacle 
boundary when, while moving along the M-line toward target, MA meets 
the first point of an obstacle; it defines a leave point L on the obstacle 
boundary when it leaves the obstacle and starts moving in "free space." 

111. A LOWER BOUND FOR THE PATH GENERATION PROBLEM 

The bound determines, within the framework of our model, what 
ultimate performance can be expected from any path generation al- 
gorithm. The bound applies to the length of generated paths and is 
expressed in terms of the distance between S and T and of perimeters of 

' 

the obstacles that intersect the M-line. It is given by the following. . - 
Theorem I :  For any path generating algorithm and any positive 

(however small) E ,  there exists a scene for which the length P of the path 
S 

generated by the algorithm will obey the relationship Fig. 2. Automaton's path under the algorithm Bugl. 

where P, D > 0, and p, have been defined above, and Cpi is the sum of 
perimeters of all the obstacles intersecting the M-line. The theorem 
suggests that no matter what algorithm is being used, a nontrivial scene 
can be designed such that MA will have to pass around each obstacle at 
least once. (This is true no matter how "small" the uncertainty is-as 
long as it is present-and how good the sources of additional local 
information are.) The theorem thus describes a major characteristic of 
operating in an environment with uncertainty; it also presents a good way 
for measuring the performance of various path generating procedures. 

IV. A N  UPPER BOUND FOR THE PATH GENERATION PROBLEM: 
ALGORITHM BUG I 

This procedure is executed at any point of a continuous path. It uses 
three registers, R I ,  R2, R3, to store intermediate information, and consists 
of the following steps (see Fig. 2); initially, j = 1; Lo = start. 

1) From point L,- move toward target along a straight line until one 
of the following ocprs. 

a) Target is reached. The procedure stops. 
b) An obstacle is encountered and a hit point, H,, is defined. Go to 

Step 2. 
2) Using the accepted local direction, follow the obstacle boundary. If 

reach target, stop. Use HI to store coordinates of the current point, Q,, of 
a minimal distance from target (this computation takes a simple 
comparison at each path point), R2 to integrate the length of the boundary 
starting at Hj, and R3 to integrate the length of the boundary starting at 
Q,,. (In case of many choices for Q,,,, take any.) After having traversed 
the whole boundary and having returned at Hj, define a new leave point as 
L, = Q,,, . Go to Step 3. 

3) Using the content of R2 and H3. determine the shorter way along the 
2 

boundary to L, .  and use it to get to L,. Set j = j + 1. Go to Step 1. 
Test for Target Heachnbili[~ for Bugl is as follows. If, after having 

defined a leave point L,, MA discovers that the straight line segment (L, ,  
target) crosses an obstacle at L,, then either MA or target is trapped and, 
therefore, target cannot be reached (see [lo] for details). The test should 
be used as a part of Step 3 of the procedure. 

It can be shown that the algorithm converges and never creates cycles. 
The following theorem estimates the length of paths generated by Bugl; 
this is also our best upper bound on the length of paths generated under the 
accepted model. 

Theoretn 2: The length of a path generated by the algorithm Bugl 
never exceeds the limit 

Both bounds developed above indicate a gap in the length estimates for the 

path planning problem with uncertainty, between at least Cpi given by the 
lower bound, and at most 1 S-Cp, assured by the algorithm Bugl. This 
poses an interesting problem of narrowing the gap by either finding a 
higher lower bound, or by introducing a better path planning algorithm 
and lowering the upper bound. (In spite of many attempts, we were not 
able to improve the bounds.) 

Note that the requirement to know the current MA coordinates may be 
softened in case of Bugl . Namely, the algorithm will function and the 
convergence is guaranteed if only the current direction on and distance 
from the target are known. This may have important ramifications when 
choosing between the algorithms Bugl and Bug2 based on available 
sensors. 

The procedure is executed at any point of a continuous path. It consists 
of the following steps (see Fig. 3); initially, j = 1 ; Lo = start. 

1) From point L,- ,, move along the M-line until one of the following 
occurs. 

a) Target is reached. The procedure stops. 
b) An obstacle is encountered and a hit point, Hj, is defined. Go to 

Step 2. 
2) Using the accepted local direction, follow the obstacle boundary 

until one of the following occurs. 
a) Target is reached. The procedure stops. 
b) M-line is met at a distance d from T such that d < d(H,, T ) .  

Define the leave point L,. Set j = j + 1. Go to Step 1. 
c) The automaton returns to Hj and thus completes a closed curve 

along the obstacle boundary without ever meeting the M-line. The target 
is trapl)ed and cannot be reached. The procedure stops. 

Test for Target Reachability for Bug2 is as follows. If, after having 
identified and left a given hit point H,, MA returns to H, before it 
identifies the next hit point, Hj+ ,, then either MA or target is trapped 
and, therefore, target cannot be reached (see [lo] for details). The test 
requires storing up to two latest hit points; it should be used as a part of 
Step 2 of the procedure. 

Although in many instances (such as the one depicted in Fig. 3) Bug2 
generates paths that are shorter than those defined by (1) or those 
generated by Bug 1, it may create cycles and produce longer paths. A local 
cycle is said to be created when MA passes some segment of the obstacle 
boundary more than once. It can be shown that local cycles are created 
only in scenes with rather bpecial obstacles and special initial positions of 
start and target relative to the obstacles. A case of an in-obstacle (Fig. 4) 
refers to a mutual position of the pair of points (S, T) and a given obstacle 
where i) the straight line segment (S, T )  crosses an obstacle boundary at 
least once, and ii) either S or T lie inside the convex hull of the obstacle. 
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Fig. 3. Automaton's path under the algorithm Bug2. 

Fig. 4. Automaton's path in a maze-like obstacle, procedure Bug2. The obstacle 
complexity is measured by the number of times, n,, that the straight line (5, T) crosses 
i . here. n, = 10. At most, the path passes one segment (H 1 ,  L 1). three times; that is. 
kcre are at most two local cycles in this path. 

A case of an out-obstacle (Fig. 3) refers to a mutual position of the pair 
(S, T) and an obstacle in which both Sand T lie outside the convex hull of 
the obstacle. 

Let ni be the number of intersections between the M-line and the ith 
obstacle; thus, ni is a characteristic of the set (obstacles, start, target) and 
not of a specific algorithm. Clearly, for any convex obstacle ni = 2. If an 
obstacle is not convex, the situation still may be as simple: for example, a 
concave obstacle ob2 in Fig. 3 has n2 = 2 and creates no local ,cycles. 
However, in Fig. 4 the segment of the boundary from H1 to L 1, (Hl, 
L I ) ,  will be passed (under Bug2) three times; segments (L 1, L2) and 
(H2, HI) ,  twice each; and segments (L2, L3) and (H3, H2), once each. 

Lemma I: Under the procedure Bug2, MA will pass any segment of 
the ith obstacle boundary at most ni/2 times. 

Theorem 3: The length of a path generated by the procedure Bug2 
never exceeds the limit 

P = ~ + C ! ! &  
2 (3) 

Together, the lemma and the theorem guarantee termination, put a limit 
on the number of local cycles, and provide the upper bound on the ;ength 
of paths generated by Bug2. The upper bound (3) is constructive, in the 
sense that a set of obstacles can be readily suggested on which the bound 
will be reached. It can be shown, however, that local cycles can appear 
only in rather special cases with in-obstacle positions. For the rest of the 
cases, paths generated by Bug2 never exceed the lower bound (I). 
Specifically, it can be shown that in the case of convex obstacles the upper 
bound for the length of path is, in the worst case, . - 

P=D+ Cp; (4) 

and, on the average, 

This suggests that the shape of the obstacles is not important in creating 
local cycles unless special positions of S and T relative to the obstacles are 
involved. In other words, situations similar to that shown in Fig. 4 are 
rare; local cycles do not appear in many scenes with in-obstacle positions, 
even in many mazes (such an example can be found in [lo]). 

VI. HANDLING NONCONTACT SENSORS AND THE AUTOMATON'S 
DIMENSIONS 

Consider a case when, instead of a tactile feedback assumed in the 
model, MA is equipped with a sensor system which provides it with 
information within a disk of a radius r,, ("radius of vision") centered at 
the current position of MA. Various sensors fall in this category: vision 
systems, ultrasonic and infrared proximity sensors, time-of-flight range 
finders, etc. 

Consider, for example, the algorithm Bug2. When incorporating a 
noncontact feedback in the algorithm, it is important to assure that MA 
will be able to always come back to the M-line. With this in mind, the 
modification is as follows. At its current position, MA reconstructs, in the 
area that it can "see," the path segment that would have been generated if 
no vision were available, and replaces it with a straight line segment. If no 
obstacles interfere with vision, the resulting segment will be exactly of 
length r,, . The operation is repeated at each point of the path, resulting in a 
curved path which smooths out the path of a "blind" MA (Fig. 5). With 
such a modification, convergence of Bug2 is preserved. Increasing the 
radius r,, produces, in general, shorter paths. In the limit, with r ,  going to 
infinity, it results in locally optimal paths; this comes from the simple 
fact that the distance between the current position of MA and its next 
iritermedi~te visible goal is always covered along a straight line. 

When obstacles interfere with vision, the generated straight line 
segments become shorter, and, in theory, can be eventually reduced to 
zero by a "bad" set of obstacles. Consequently, all the estimates for path 
lengths developed for the "blind" MA remain true for the case with 
vision. 

Now, consider an MA of finite dimensions. We replace the 'single 
feedback sensor of a point MA with a set of sensors covering the MA 
body such that any point of the body is capable of detecting an obstacle. 
Also, assume that no changes in MA orientation along the path is allowed. 
Then, the algorithms described above can be used and their convergence 
is still assured. This is primarily because nowhere in the algqrithms the 

' Interestingly, the segment (A, B) of the path in Fig. 5 forms a curve called tractrix; 
this curve has been studied independently by Leibnitz and Huygens in the late XVII 
century. One forms the tractrix here by putting one end of a stick of the length r,, at the 
pont A and its other end at the point where it meets the line (S, T). and then pulling the 
second end along (S, T). 
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/ 
Fig. 5. Automaton's path in the scene of Fig. 3 when additional (vision) information is 

available. 

dimensions. shape, or positions of the obstacles are used. The motion of a 
"finite" MA with fixed orientation among original obstacles is known to 
be reducible to the motion of a point MA among new, "grown" 
obstacles, whose dimensions are changed to reflect the corresponding 
shrinking of MA (for a detailed discussion, see, e.g., [2]). 

For this case, slight modifications in the definitions will be needed. 
Define some point of h4A-say, one of its corners or its center of 
gravity-as the corepoint (C-point). Define the motion of MA along the 
line (S, T )  as that of rraving C-point along (S, T ) .  A hit point is defined 
as a position of C-point at which MA, while moving along (S, T), meets 
the obstacle boundary first. A leave point (for example, in the algorithm 
Bug2) is defined as a position of C-point at which C-point, while MA is 
passing around the obstacle, meets the line (S, T )  at a distance frorn the 
target shorter than that from the last hitpoint to the target. In general, the 
actual path of a finite MA (e.g., of its C-point) will differ from that of a 
point MA. It is possible, for example. that, given a set of obstacles and S 
and T  positions, a finite MA will produce local cycles whereas a point 
MA will not. 

VII. CONCI.UDING REMARKS 

The only work that these authors are aware of on convergence of path 
planning algorithms operating with unknown obstacles is the Pledge 
algorithm [ l l ] ,  which addresses a different problem: namely, how to 
escape from a maze (and not how to find a given point inside or outside of 
the maze). Very little is known about the performance of such algorithms. 
There is no path length estimates even for the Pledge algorithm. In this 

, note, we limit the algorithln performance by the lower bound (1) and by 
the upper bounds (2)-(5) above. 

On the theoretical level, therefore, the question, "How reasonable are 
the paths generated by these algorithms?," the answer is simple: the 
algorithm Bugl is the best that can be offered today. Also, unlike Bug2, 
Bugl does not require knowing the automaton's current coordinates. On 
the practical level, Bugl is a rather "conservative" algorithm, whose 
thoroughness is investigating each obstacle met on its way may or may not 
be related to our notion of "being reasonable.'' The algorithm Bug2, on the 
other hand, is more "aggressive" and more efficient in many cases. Its 
behavior (especially, in the version with vision) seems more reasonable, 
more "human." And, as it often happens with humans who get lost in the 
woods while desperately trying to get to their target, Bug2 pays a high 
price in those rare occasions when points start and target are positioned in 

a rather special way relative to a nontrivial scene (see the last paragraph in 
Section V). 

The algorithms Bug 1 and Bug2 are based on two quite different ideas. It 
would be natural to try to combine their better features, so as to avoid 
investigating the whole boundary of each obstacle, while limiting the 
rlu~nhsr of local cycles. Such a version, which limits the number of local 
cycles to a constant, is described in  [lo]. 
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